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Chapter 4 Memory
Table 4-2. Direct-Page Register Summary (Sheet 1 of 3)

Address
Register 

Name
Bit 7 6 5 4 3 2 1 Bit 0

0x0000 PTAD PTAD7 PTAD6 0 0 PTAD3 PTAD2 PTAD1 PTAD0

0x0001 PTADD PTADD7 PTADD6 0 0 PTADD3 PTADD2 PTADD1 PTADD0

0x0002 PTBD PTBD7 PTBD6 PTBD5 PTBD4 PTBD3 PTBD2 PTBD1 PTBD0

0x0003 PTBDD PTBDD7 PTBDD6 PTBDD5 PTBDD4 PTBDD3 PTBDD2 PTBDD1 PTBDD0

0x0004 PTCD PTCD7 PTCD6 PTCD5 PTCD4 PTCD3 PTCD2 PTCD1 PTCD0

0x0005 PTCDD PTCDD7 PTCDD6 PTCDD5 PTCDD4 PTCDD3 PTCDD2 PTCDD1 PTCDD0

0x0006–
0x000D

Reserved —
—

—
—

—
—

—
—

—
—

—
—

—
—

—
—

0x000E ACMP1SC ACME ACBGS ACF ACIE ACO ACOPE ACMOD1 ACMOD0

0x000F ACMP2SC ACME ACBGS ACF ACIE ACO ACOPE ACMOD1 ACMOD0

0x0010 ADCSC1 COCO AIEN ADCO ADCH

0x0011 ADCSC2 ADACT ADTRG ACFE ACFGT — — — —

0x0012 ADCRH 0 0 0 0 0 0 ADR9 ADR8

0x0013 ADCRL ADR7 ADR6 ADR5 ADR4 ADR3 ADR2 ADR1 ADR0

0x0014 ADCCVH 0 0 0 0 0 0 ADCV9 ADCV8

0x0015 ADCCVL ADCV7 ADCV6 ADCV5 ADCV4 ADCV3 ADCV2 ADCV1 ADCV0

0x0016 ADCCFG ADLPC ADIV ADLSMP MODE ADICLK

0x0017 APCTL1 ADPC7 ADPC6 ADPC5 ADPC4 ADPC3 ADPC2 ADPC1 ADPC0

0x0018 APCTL2 ADPC15 ADPC14 ADPC13 ADPC12 ADPC11 ADPC10 ADPC9 ADPC8

0x0019–
0x001F

Reserved —
—

—
—

—
—

—
—

—
—

—
—

—
—

—
—

0x0020 TPM1SC TOF TOIE CPWMS CLKSB CLKSA PS2 PS1 PS0

0x0021 TPM1CNTH Bit 15 14 13 12 11 10 9 Bit 8

0x0022 TPM1CNTL Bit 7 6 5 4 3 2 1 Bit 0

0x0023 TPM1MODH Bit 15 14 13 12 11 10 9 Bit 8

0x0024 TPM1MODL Bit 7 6 5 4 3 2 1 Bit 0

0x0025 TPM1C0SC CH0F CH0IE MS0B MS0A ELS0B ELS0A 0 0

0x0026 TPM1C0VH Bit 15 14 13 12 11 10 9 Bit 8

0x0027 TPM1C0VL Bit 7 6 5 4 3 2 1 Bit 0

0x0028 TPM1C1SC CH1F CH1IE MS1B MS1A ELS1B ELS1A 0 0

0x0029 TPM1C1VH Bit 15 14 13 12 11 10 9 Bit 8

0x002A TPM1C1VL Bit 7 6 5 4 3 2 1 Bit 0

0x002B TPM1C2SC CH2F CH2IE MS2B MS2A ELS2B ELS2A 0 0

0x002C TPM1C2VH Bit 15 14 13 12 11 10 9 Bit 8

0x002D TPM1C2VL Bit 7 6 5 4 3 2 1 Bit 0

0x002E TPM1C3SC CH3F CH3IE MS3B MS3A ELS3B ELS3A 0 0

0x002F TPM1C3VH Bit 15 14 13 12 11 10 9 Bit 8

0x0030 TPM1C3VL Bit 7 6 5 4 3 2 1 Bit 0
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Chapter 4 Memory
Figure 4-2. Program and Erase Flowchart

4.5.4 Burst Program Execution

The burst program command is used to program sequential bytes of data in less time than would be 
required using the standard program command. This is possible because the high voltage to the FLASH 
array does not need to be disabled between program operations. Ordinarily, when a program or erase 
command is issued, an internal charge pump associated with the FLASH memory must be enabled to 
supply high voltage to the array. Upon completion of the command, the charge pump is turned off. When 
a burst program command is issued, the charge pump is enabled and then remains enabled after completion 
of the burst program operation if these two conditions are met:

• The next burst program command has been queued before the current program operation has 
completed. 

• The next sequential address selects a byte on the same burst block as the current byte being 
programmed. A burst block in this FLASH memory consists of 64 bytes. A new burst block begins 
at each 64-byte address boundary.

START

WRITE TO FLASH OR EEPROM
TO BUFFER ADDRESS AND DATA

WRITE COMMAND TO FCMD

NO

YES
FPVIOL OR 

WRITE 1 TO FCBEF
TO LAUNCH COMMAND 
AND CLEAR FCBEF (2)

1

0
FCCF ?

ERROR EXIT

DONE

(2) Wait at least four bus cycles
before checking FCBEF or FCCF.

0
FACCERR ?

CLEAR ERROR

FACCERR ?

WRITE TO FCDIV(1) (1) Required only once
after reset.

PROGRAM AND
ERASE FLOW
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Chapter 4 Memory
4.5.11.6 FLASH and EEPROM Command Register (FCMD)

Only six command codes are recognized in normal user modes as shown in Table 4-15. All other command 
codes are illegal and generate an access error. Refer to Section 4.5.3, “Program and Erase Command 
Execution,” for a detailed discussion of FLASH and EEPROM programming and erase operations.

It is not necessary to perform a blank check command after a mass erase operation. Only blank check is 
required as part of the security unlocking mechanism.

 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0

W FCMD

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 4-10. FLASH and EEPROM Command Register (FCMD)

Table 4-15. FLASH and EEPROM Commands

Command FCMD Equate File Label

Blank check 0x05 mBlank

Byte program 0x20 mByteProg

Burst program 0x25 mBurstProg

Sector erase 0x40 mSectorErase

Mass erase 0x41 mMassErase

Sector erase abort 0x47 mEraseAbort
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Chapter 5  
Resets, Interrupts, and General System Control

5.1 Introduction
This section discusses basic reset and interrupt mechanisms and the various sources of reset and interrupt 
in the MC9S08EL32 Series and MC9S08SL16 Series. Some interrupt sources from peripheral modules 
are discussed in greater detail within other sections of this data sheet. This section gathers basic 
information about all reset and interrupt sources in one place for easy reference. A few reset and interrupt 
sources, including the computer operating properly (COP) watchdog are not part of on-chip peripheral 
systems with their own chapters.

5.2 Features
Reset and interrupt features include:

• Multiple sources of reset for flexible system configuration and reliable operation
• Reset status register (SRS) to indicate source of most recent reset
• Separate interrupt vector for each module (reduces polling overhead) (see Table 5-2)

5.3 MCU Reset
Resetting the MCU provides a way to start processing from a known set of initial conditions. During reset, 
most control and status registers are forced to initial values and the program counter is loaded from the 
reset vector (0xFFFE:0xFFFF). On-chip peripheral modules are disabled and I/O pins are initially 
configured as general-purpose high-impedance inputs with pull-up devices disabled. The I bit in the 
condition code register (CCR) is set to block maskable interrupts so the user program has a chance to 
initialize the stack pointer (SP) and system control settings. SP is forced to 0x00FF at reset.

The MC9S08EL32 Series and MC9S08SL16 Series has eight sources for reset:
• Power-on reset (POR)
• External pin reset (PIN)
• Low-voltage detect (LVD)
• Computer operating properly (COP) timer
• Illegal opcode detect (ILOP)
• Illegal address detect (ILAD)
• Background debug forced reset

Each of these sources, with the exception of the background debug forced reset, has an associated bit in 
the system reset status register (SRS).
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Chapter 5 Resets, Interrupts, and General System Control
The COP counter is initialized by the first writes to the SOPT1 and SOPT2 registers after any system reset. 
Subsequent writes to SOPT1 and SOPT2 have no effect on COP operation. Even if the application will use 
the reset default settings of COPT, COPCLKS, and COPW bits, the user should write to the write-once 
SOPT1 and SOPT2 registers during reset initialization to lock in the settings. This will prevent accidental 
changes if the application program gets lost.

The write to SRS that services (clears) the COP counter should not be placed in an interrupt service routine 
(ISR) because the ISR could continue to be executed periodically even if the main application program 
fails.

If the bus clock source is selected, the COP counter does not increment while the MCU is in background 
debug mode or while the system is in stop mode. The COP counter resumes when the MCU exits 
background debug mode or stop mode.

If the 1-kHz clock source is selected, the COP counter is re-initialized to zero upon entry to either 
background debug mode or stop mode and begins from zero upon exit from background debug mode or 
stop mode.

5.5 Interrupts
Interrupts provide a way to save the current CPU status and registers, execute an interrupt service routine 
(ISR), and then restore the CPU status so processing resumes where it left off before the interrupt. Other 
than the software interrupt (SWI), which is a program instruction, interrupts are caused by hardware events 
such as an edge on an external interrupt pin or a timer-overflow event. The debug module can also generate 
an SWI under certain circumstances.

If an event occurs in an enabled interrupt source, an associated read-only status flag will become set. The 
CPU will not respond unless the local interrupt enable is a 1 to enable the interrupt and the I bit in the CCR 
is 0 to allow interrupts. The global interrupt mask (I bit) in the CCR is initially set after reset which 
prevents all maskable interrupt sources. The user program initializes the stack pointer and performs other 
system setup before clearing the I bit to allow the CPU to respond to interrupts.

When the CPU receives a qualified interrupt request, it completes the current instruction before responding 
to the interrupt. The interrupt sequence obeys the same cycle-by-cycle sequence as the SWI instruction 
and consists of:

• Saving the CPU registers on the stack
• Setting the I bit in the CCR to mask further interrupts
• Fetching the interrupt vector for the highest-priority interrupt that is currently pending
• Filling the instruction queue with the first three bytes of program information starting from the 

address fetched from the interrupt vector locations

While the CPU is responding to the interrupt, the I bit is automatically set to avoid the possibility of 
another interrupt interrupting the ISR itself (this is called nesting of interrupts). Normally, the I bit is 
restored to 0 when the CCR is restored from the value stacked on entry to the ISR. In rare cases, the I bit 
can be cleared inside an ISR (after clearing the status flag that generated the interrupt) so that other 
interrupts can be serviced without waiting for the first service routine to finish. This practice is not 
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Chapter 6  
Parallel Input/Output Control
This section explains software controls related to parallel input/output (I/O) and pin control. The 
MC9S08EL32 has three parallel I/O ports which include a total of 22 I/O pins. See Chapter 2, “Pins and 
Connections,” for more information about pin assignments and external hardware considerations of these 
pins.

Many of these pins are shared with on-chip peripherals such as timer systems, communication systems, or 
keyboard interrupts as shown in Table 2-1. The peripheral modules have priority over the general-purpose 
I/O functions so that when a peripheral is enabled, the I/O functions associated with the shared pins are 
disabled.

After reset, the shared peripheral functions are disabled and the pins are configured as inputs 
(PTxDDn = 0). The pin control functions for each pin are configured as follows: slew rate control enabled 
(PTxSEn = 1), low drive strength selected (PTxDSn = 0), and internal pull-ups disabled (PTxPEn = 0).

NOTE
Not all general-purpose I/O pins are available on all packages. To avoid 
extra current drain from floating input pins, the user’s reset initialization 
routine in the application program must either enable on-chip pull-up 
devices or change the direction of unconnected pins to outputs so the pins 
do not float.

6.1 Port Data and Data Direction
Reading and writing of parallel I/Os are performed through the port data registers. The direction, either 
input or output, is controlled through the port data direction registers. The parallel I/O port function for an 
individual pin is illustrated in the block diagram shown in Figure 6-1.

The data direction control bit (PTxDDn) determines whether the output buffer for the associated pin is 
enabled, and also controls the source for port data register reads. The input buffer for the associated pin is 
always enabled unless the pin is enabled as an analog function or is an output-only pin.

When a shared digital function is enabled for a pin, the output buffer is controlled by the shared function. 
However, the data direction register bit will continue to control the source for reads of the port data register.

When a shared analog function is enabled for a pin, both the input and output buffers are disabled. A value 
of 0 is read for any port data bit where the bit is an input (PTxDDn = 0) and the input buffer is disabled. In 
general, whenever a pin is shared with both an alternate digital function and an analog function, the analog 
function has priority such that if both the digital and analog functions are enabled, the analog function 
controls the pin.
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Analog Comparator (S08ACMPV2) 
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Inter-Integrated Circuit (S08IICV2) 
11.4.1.2 Slave Address Transmission

The first byte of data transferred immediately after the start signal is the slave address transmitted by the 
master. This is a seven-bit calling address followed by a R/W bit. The R/W bit tells the slave the desired 
direction of data transfer.

1 = Read transfer, the slave transmits data to the master.
0 = Write transfer, the master transmits data to the slave.

Only the slave with a calling address that matches the one transmitted by the master responds by sending 
back an acknowledge bit. This is done by pulling the SDA low at the ninth clock (see Figure 11-9).

No two slaves in the system may have the same address. If the IIC module is the master, it must not 
transmit an address equal to its own slave address. The IIC cannot be master and slave at the same time. 
However, if arbitration is lost during an address cycle, the IIC reverts to slave mode and operates correctly 
even if it is being addressed by another master.

11.4.1.3 Data Transfer

Before successful slave addressing is achieved, the data transfer can proceed byte-by-byte in a direction 
specified by the R/W bit sent by the calling master.

All transfers that come after an address cycle are referred to as data transfers, even if they carry sub-address 
information for the slave device

Each data byte is 8 bits long. Data may be changed only while SCL is low and must be held stable while 
SCL is high as shown in Figure 11-9. There is one clock pulse on SCL for each data bit, the msb being 
transferred first. Each data byte is followed by a 9th (acknowledge) bit, which is signalled from the 
receiving device. An acknowledge is signalled by pulling the SDA low at the ninth clock. In summary, one 
complete data transfer needs nine clock pulses.

If the slave receiver does not acknowledge the master in the ninth bit time, the SDA line must be left high 
by the slave. The master interprets the failed acknowledge as an unsuccessful data transfer.

If the master receiver does not acknowledge the slave transmitter after a data byte transmission, the slave 
interprets this as an end of data transfer and releases the SDA line. 

In either case, the data transfer is aborted and the master does one of two things:
• Relinquishes the bus by generating a stop signal.
• Commences a new calling by generating a repeated start signal.

11.4.1.4 Stop Signal

The master can terminate the communication by generating a stop signal to free the bus. However, the 
master may generate a start signal followed by a calling command without generating a stop signal first. 
This is called repeated start. A stop signal is defined as a low-to-high transition of SDA while SCL at 
logical 1 (see Figure 11-9).

The master can generate a stop even if the slave has generated an acknowledge at which point the slave 
must release the bus.
MC9S08EL32 Series and MC9S08SL16 Series Data Sheet, Rev. 3
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Inter-Integrated Circuit (S08IICV2) 
11.4.1.8 Handshaking

The clock synchronization mechanism can be used as a handshake in data transfer. Slave devices may hold 
the SCL low after completion of one byte transfer (9 bits). In such a case, it halts the bus clock and forces 
the master clock into wait states until the slave releases the SCL line.

11.4.1.9 Clock Stretching

The clock synchronization mechanism can be used by slaves to slow down the bit rate of a transfer. After 
the master has driven SCL low the slave can drive SCL low for the required period and then release it. If 
the slave SCL low period is greater than the master SCL low period then the resulting SCL bus signal low 
period is stretched.

11.4.2 10-bit Address

For 10-bit addressing, 0x11110 is used for the first 5 bits of the first address byte. Various combinations of 
read/write formats are possible within a transfer that includes 10-bit addressing.

11.4.2.1 Master-Transmitter Addresses a Slave-Receiver

The transfer direction is not changed (see Table 11-10). When a 10-bit address follows a start condition, 
each slave compares the first seven bits of the first byte of the slave address (11110XX) with its own 
address and tests whether the eighth bit (R/W direction bit) is 0. More than one device can find a match 
and generate an acknowledge (A1). Then, each slave that finds a match compares the eight bits of the 
second byte of the slave address with its own address. Only one slave finds a match and generates an 
acknowledge (A2). The matching slave remains addressed by the master until it receives a stop condition 
(P) or a repeated start condition (Sr) followed by a different slave address.

After the master-transmitter has sent the first byte of the 10-bit address, the slave-receiver sees an IIC 
interrupt. Software must ensure the contents of IICD are ignored and not treated as valid data for this 
interrupt.

11.4.2.2 Master-Receiver Addresses a Slave-Transmitter

The transfer direction is changed after the second R/W bit (see Table 11-11). Up to and including 
acknowledge bit A2, the procedure is the same as that described for a master-transmitter addressing a 
slave-receiver. After the repeated start condition (Sr), a matching slave remembers that it was addressed 
before. This slave then checks whether the first seven bits of the first byte of the slave address following 
Sr are the same as they were after the start condition (S) and tests whether the eighth (R/W) bit is 1. If there 
is a match, the slave considers that it has been addressed as a transmitter and generates acknowledge A3. 
The slave-transmitter remains addressed until it receives a stop condition (P) or a repeated start condition 
(Sr) followed by a different slave address.

S
Slave Address 1st 7 bits R/W

A1
Slave Address 2nd byte

A2 Data A ... Data A/A P
11110 + AD10 + AD9 0 AD[8:1]

Table 11-10. Master-Transmitter Addresses Slave-Receiver with a 10-bit Address
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2. When INITACK = 0, write SLCC2 with desired values for:
a) SLCWCM — Wait clock mode.

3. Write SLCC2 to set up:
a) RXFP — Digital receive filter clock prescaler.

4. Enable the SLIC module by writing SLCC2:
a) SLCE = 1 to place SLIC module into run mode.
b) BTM = 1 to enable byte transfer mode.

5. Write SLCBT value.
6. Write SLCC1 to enable SLIC interrupts (if desired).

NOTE
The SLIC module is designed primarily for use in LIN systems and assumes 
the connection of a LIN transceiver, which provides a resistive path between 
the transmit and receive pins. BTM mode will not operate properly without 
a resistive feedback path between SLCTx and SLCRx.

12.6.7 Handling LIN Message Headers

Figure 12-14 shows how the SLIC module deals with incoming LIN message headers.
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Table 12-13. Maximum LIN Bit Rates for High-Speed Operation Due to Digital Receive Filter

SLIC 
Clock 
(MHz)

Maximum LIN
Bit Rate for ±1.5%

SLIC Accuracy
(for Master-Slave
Communication

(kbps)
DIGITAL RX FILTER
NOT CONSIDERED

RXFP Prescaler Values (See Table 12-11)

 ÷8
(Note 1)

 ÷7
(Note 1)

 ÷6
(Note 1)

÷÷5
(Note 1)

 ÷÷4
(Note 1)

 ÷÷3
(Note 1)

÷÷2 ÷÷1

Maximum LIN Bit Rate (kbps)1

1 Bit rates over 120,000 bits per second are not recommended for LIN communications, as physical layer delay between the TX 
and RX pins can cause the stop bit of a byte to be mis-sampled as the last data bit. This could result in a byte framing error.

20 300 120.00 120.00 120.00 120.00 120.00 120.00 120.00 120.00

18 270 120.00 120.00 120.00 120.00 120.00 120.00 120.00 120.00

16 240 120.00 120.00 120.00 120.00 120.00 120.00 120.00 120.00

14 210 109.38 120.00 120.00 120.00 120.00 120.00 120.00 120.00

12 180 93.75 107.14 120.00 120.00 120.00 120.00 120.00 120.00

10 150 78.13 89.29 104.17 120.00 120.00 120.00 120.00 120.00

8 120 62.50 71.43 83.33 100.00 120.00 120.00 120.00 120.00

6 90 46.88 53.57 62.50 75.00 93.75 120.00 120.00 120.00

4 60 31.25 35.71 41.67 50.00 62.50 83.33 120.00 120.00

2 30 15.63 17.86 20.83 25.00 31.25 41.67 62.50 120.00

Table 12-14. Digital Receive Filter Absolute Cutoff (Ideal Conditions)1

SLIC 
clock 
(MHz)

Max Bit 
Rate

(kbps)

Min Pulse 
Width 

Allowed 
(μs)

Max Bit 
Rate

(kbps)

Min Pulse 
Width 

Allowed 
(μs)

Max Bit 
Rate

(kbps)

Min Pulse 
Width 

Allowed 
(μs)

Max Bit 
Rate

(kbps)

Min Pulse 
Width 

Allowed 
(μs)

RXFP = ÷8 RXFP = ÷7 RXFP = ÷6 RXFP = ÷5

20 156,250 6.40 178,571 5.60 208,333 4.80 250,000 4.00

18 140,625 7.11 160,714 6.22 187,500 5.33 225,000 4.44

16 125,000 8.00 142,857 7.00 166,667 6.00 200,000 5.00

14 109,375 9.14 125,000 8.00 145,833 6.86 175,000 5.71

12 93,750 10.67 107,143 9.33 125,000 8.00 150,000 6.67

10 78,125 12.80 89,286 11.20 104,167 9.60 125,000 8.00

8 62,500 16.00 71,429 14.00 83,333 12.00 100,000 10.00

6 46,875 21.33 53,571 18.67 62,500 16.00 75,000 13.33

4 31,250 32.00 35,714 28.00 41,667 24.00 50,000 20.00
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Figure 12-17. SLCBT Value Calculation Example 1

Figure 12-18. SLCBT Value Calculation Example 2

Figure 12-19. SLCBT Value Calculation Example 3

2 Clock Out Period

42.67 SLIC Clock Periods

1 SLIC Clock Period

1 SLIC Clock Period
X =

406.901 ns 1 Bit

1 SLIC Clock Period
=

406.901 ns

1 Second
57,600 Bits

=
17.36111 μs

1 Bit

4,915,200 Clock Out Period

1 Second
X

17.36111 μs

1 Bit

Desired Bit Rate:                      57,600 bps

External Crystal Frequency:     4.9152 MHz

Therefore, the closest SLCBT value would be 43 SLIC clocks (SLCBT = 0x002B).
Because you can only use even values in SLCBT, the closest acceptable value is 42 (0x002A).

2 Clock Out Period

85.33 SLIC Clock Periods

1 SLIC Clock Period

1 SLIC Clock Period
X =

203.45 ns 1 Bit

1 SLIC Clock Period
=

203.45 ns

1 Second
57,600 Bits

=
17.36111 μs

1 Bit

9,830,400 Clock Out Periods

1 Second
X

17.36111 μs

1 Bit

Desired Bit Rate:                      57,600 bps

External Crystal Frequency:     9.8304 MHz

Therefore, the closest SLCBT value would be 85 SLIC clocks (SLCBT = 0x0055).
Because you can only use even values in SLCBT, the closest acceptable value is 86 (0x0056)

2 Clock Out Period

256 SLIC Clock Periods

1 SLIC Clock Period

1 SLIC Clock Period
X =

250 ns 1 Bit

1 SLIC Clock Period
=

250 ns

1 Second
15,625 Bits

=
64 μs
1 Bit

8,000,000 Clock Out Periods

1 Second
X

64 μs

1 Bit

Desired Bit Rate:                      15,625 bps

External Crystal Frequency:     8.000 MHz

Therefore, the closest SLCBT value would be 256 SLIC clocks (SLCBT = 0x0100).
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Serial Peripheral Interface (S08SPIV3)
13.3 Modes of Operation

13.3.1 SPI in Stop Modes

The SPI is disabled in all stop modes, regardless of the settings before executing the STOP instruction. 
During either stop1 or stop2 mode, the SPI module will be fully powered down. Upon wake-up from stop1 
or stop2 mode, the SPI module will be in the reset state. During stop3 mode, clocks to the SPI module are 
halted. No registers are affected. If stop3 is exited with a reset, the SPI will be put into its reset state. If 
stop3 is exited with an interrupt, the SPI continues from the state it was in when stop3 was entered.

13.4 Register Definition
The SPI has five 8-bit registers to select SPI options, control baud rate, report SPI status, and for 
transmit/receive data. 

Refer to the direct-page register summary in the Memory chapter of this data sheet for the absolute address 
assignments for all SPI registers. This section refers to registers and control bits only by their names, and 
a Freescale-provided equate or header file is used to translate these names into the appropriate absolute 
addresses.

13.4.1 SPI Control Register 1 (SPIC1)

This read/write register includes the SPI enable control, interrupt enables, and configuration options.

 7 6 5 4 3 2 1 0

R
SPIE SPE SPTIE MSTR CPOL CPHA SSOE LSBFE

W

Reset 0 0 0 0 0 1 0 0

Figure 13-5. SPI Control Register 1 (SPIC1)

Table 13-1. SPIC1 Field Descriptions

Field Description

7
SPIE

SPI Interrupt Enable (for SPRF and MODF) — This is the interrupt enable for SPI receive buffer full (SPRF) 
and mode fault (MODF) events.
0 Interrupts from SPRF and MODF inhibited (use polling)
1 When SPRF or MODF is 1, request a hardware interrupt

6
SPE

SPI System Enable — Disabling the SPI halts any transfer that is in progress, clears data buffers, and initializes 
internal state machines. SPRF is cleared and SPTEF is set to indicate the SPI transmit data buffer is empty.
0 SPI system inactive
1 SPI system enabled

5
SPTIE

SPI Transmit Interrupt Enable — This is the interrupt enable bit for SPI transmit buffer empty (SPTEF).
0 Interrupts from SPTEF inhibited (use polling)
1 When SPTEF is 1, hardware interrupt requested
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Serial Communications Interface (S08SCIV4) 
status flag is set. If RDRF was already set indicating the receive data register (buffer) was already full, the 
overrun (OR) status flag is set and the new data is lost. Because the SCI receiver is double-buffered, the 
program has one full character time after RDRF is set before the data in the receive data buffer must be 
read to avoid a receiver overrun.

When a program detects that the receive data register is full (RDRF = 1), it gets the data from the receive 
data register by reading SCIxD. The RDRF flag is cleared automatically by a 2-step sequence which is 
normally satisfied in the course of the user’s program that handles receive data. Refer to Section 14.3.4, 
“Interrupts and Status Flags” for more details about flag clearing.

14.3.3.1 Data Sampling Technique

The SCI receiver uses a 16× baud rate clock for sampling. The receiver starts by taking logic level samples 
at 16 times the baud rate to search for a falling edge on the RxD serial data input pin. A falling edge is 
defined as a logic 0 sample after three consecutive logic 1 samples. The 16× baud rate clock is used to 
divide the bit time into 16 segments labeled RT1 through RT16. When a falling edge is located, three more 
samples are taken at RT3, RT5, and RT7 to make sure this was a real start bit and not merely noise. If at 
least two of these three samples are 0, the receiver assumes it is synchronized to a receive character.

The receiver then samples each bit time, including the start and stop bits, at RT8, RT9, and RT10 to 
determine the logic level for that bit. The logic level is interpreted to be that of the majority of the samples 
taken during the bit time. In the case of the start bit, the bit is assumed to be 0 if at least two of the samples 
at RT3, RT5, and RT7 are 0 even if one or all of the samples taken at RT8, RT9, and RT10 are 1s. If any 
sample in any bit time (including the start and stop bits) in a character frame fails to agree with the logic 
level for that bit, the noise flag (NF) will be set when the received character is transferred to the receive 
data buffer.

The falling edge detection logic continuously looks for falling edges, and if an edge is detected, the sample 
clock is resynchronized to bit times. This improves the reliability of the receiver in the presence of noise 
or mismatched baud rates. It does not improve worst case analysis because some characters do not have 
any extra falling edges anywhere in the character frame.

In the case of a framing error, provided the received character was not a break character, the sampling logic 
that searches for a falling edge is filled with three logic 1 samples so that a new start bit can be detected 
almost immediately.

In the case of a framing error, the receiver is inhibited from receiving any new characters until the framing 
error flag is cleared. The receive shift register continues to function, but a complete character cannot 
transfer to the receive data buffer if FE is still set.

14.3.3.2 Receiver Wakeup Operation

Receiver wakeup is a hardware mechanism that allows an SCI receiver to ignore the characters in a 
message that is intended for a different SCI receiver. In such a system, all receivers evaluate the first 
character(s) of each message, and as soon as they determine the message is intended for a different 
receiver, they write logic 1 to the receiver wake up (RWU) control bit in SCIxC2. When RWU bit is set, 
the status flags associated with the receiver (with the exception of the idle bit, IDLE, when RWUID bit is 
set) are inhibited from setting, thus eliminating the software overhead for handling the unimportant 
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Timer/PWM Module (S08TPMV3) 
• Edge-aligned PWM mode
The value of a 16-bit modulo register plus 1 sets the period of the PWM output signal. The channel 
value register sets the duty cycle of the PWM output signal. The user may also choose the polarity 
of the PWM output signal. Interrupts are available at the end of the period and at the duty-cycle 
transition point. This type of PWM signal is called edge-aligned because the leading edges of all 
PWM signals are aligned with the beginning of the period, which is the same for all channels within 
a TPM.

• Center-aligned PWM mode
Twice the value of a 16-bit modulo register sets the period of the PWM output, and the 
channel-value register sets the half-duty-cycle duration. The timer counter counts up until it 
reaches the modulo value and then counts down until it reaches zero. As the count matches the 
channel value register while counting down, the PWM output becomes active. When the count 
matches the channel value register while counting up, the PWM output becomes inactive. This type 
of PWM signal is called center-aligned because the centers of the active duty cycle periods for all 
channels are aligned with a count value of zero. This type of PWM is required for types of motors 
used in small appliances.

This is a high-level description only. Detailed descriptions of operating modes are in later sections. 

16.1.3 Block Diagram

The TPM uses one input/output (I/O) pin per channel, TPMxCHn (timer channel n) where n is the channel 
number (1-8). The TPM shares its I/O pins with general purpose I/O port pins (refer to I/O pin descriptions 
in full-chip specification for the specific chip implementation).

Figure 16-2 shows the TPM structure. The central component of the TPM is the 16-bit counter that can 
operate as a free-running counter or a modulo up/down counter. The TPM counter (when operating in 
normal up-counting mode) provides the timing reference for the input capture, output compare, and 
edge-aligned PWM functions. The timer counter modulo registers, TPMxMODH:TPMxMODL, control 
the modulo value of the counter (the values 0x0000 or 0xFFFF effectively make the counter free running). 
Software can read the counter value at any time without affecting the counting sequence. Any write to 
either half of the TPMxCNT counter resets the counter, regardless of the data value written.
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Timer/PWM Module (S08TPMV3)
16.4.1.3 Counting Modes

The main timer counter has two counting modes. When center-aligned PWM is selected (CPWMS=1), the 
counter operates in up/down counting mode. Otherwise, the counter operates as a simple up counter. As 
an up counter, the timer counter counts from 0x0000 through its terminal count and then continues with 
0x0000. The terminal count is 0xFFFF or a modulus value in TPMxMODH:TPMxMODL.

When center-aligned PWM operation is specified, the counter counts up from 0x0000 through its terminal 
count and then down to 0x0000 where it changes back to up counting. Both 0x0000 and the terminal count 
value are normal length counts (one timer clock period long). In this mode, the timer overflow flag (TOF) 
becomes set at the end of the terminal-count period (as the count changes to the next lower count value).

16.4.1.4 Manual Counter Reset

The main timer counter can be manually reset at any time by writing any value to either half of 
TPMxCNTH or TPMxCNTL. Resetting the counter in this manner also resets the coherency mechanism 
in case only half of the counter was read before resetting the count.

16.4.2 Channel Mode Selection

Provided CPWMS=0, the MSnB and MSnA control bits in the channel n status and control registers 
determine the basic mode of operation for the corresponding channel. Choices include input capture, 
output compare, and edge-aligned PWM.

16.4.2.1 Input Capture Mode

With the input-capture function, the TPM can capture the time at which an external event occurs. When 
an active edge occurs on the pin of an input-capture channel, the TPM latches the contents of the TPM 
counter into the channel-value registers (TPMxCnVH:TPMxCnVL). Rising edges, falling edges, or any 
edge may be chosen as the active edge that triggers an input capture.

In input capture mode, the TPMxCnVH and TPMxCnVL registers are read only.

When either half of the 16-bit capture register is read, the other half is latched into a buffer to support 
coherent 16-bit accesses in big-endian or little-endian order. The coherency sequence can be manually 
reset by writing to the channel status/control register (TPMxCnSC).

An input capture event sets a flag bit (CHnF) which may optionally generate a CPU interrupt request.

While in BDM, the input capture function works as configured by the user. When an external event occurs, 
the TPM latches the contents of the TPM counter (which is frozen because of the BDM mode) into the 
channel value registers and sets the flag bit.

16.4.2.2 Output Compare Mode

With the output-compare function, the TPM can generate timed pulses with programmable position, 
polarity, duration, and frequency. When the counter reaches the value in the channel-value registers of an 
output-compare channel, the TPM can set, clear, or toggle the channel pin.
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Timer/PWM Module (S08TPMV3) 
Figure 0-2. Generation of low-true EPWM signal by TPM v2 and v3 after the reset

The following procedure can be used in TPM v3 (when the channel pin is also a port pin) to emulate 
the high-true EPWM generated by TPM v2 after the reset.
...
configure the channel pin as output port pin and set the output pin;
configure the channel to generate the EPWM signal but keep ELSnB:ELSnA as 00;
configure the other registers (TPMxMODH, TPMxMODL, TPMxCnVH, TPMxCnVL, ...);
configure CLKSB:CLKSA bits (TPM v3 starts to generate the high-true EPWM signal, however 
TPM does not control the channel pin, so the EPWM signal is not available);
wait until the TOF is set (or use the TOF interrupt);
enable the channel output by configuring ELSnB:ELSnA bits (now EPWM signal is available);
...

ELSnB:ELSnA BITS

CLKSB:CLKSA BITS

0

TPMxMODH:TPMxMODL = 0x0007
TPMxMODH:TPMxMODL = 0x0005

TPMxCNTH:TPMxCNTL

TPMv2 TPMxCHn

EPWM mode

00

00 01

BUS CLOCK

01

1 2 3 4 5 6 7 0 1 2

CHnF BIT

MSnB:MSnA BITS 00 10

(in TPMv2 and TPMv3)

TPMv3 TPMxCHn

...

RESET (active low)
MC9S08EL32 Series and MC9S08SL16 Series Data Sheet, Rev. 3

306 Freescale Semiconductor
 



Appendix A Electrical Characteristics
The average chip-junction temperature (TJ) in °C can be obtained from:

TJ = TA + (PD × θJA) Eqn. A-1

where:

TA = Ambient temperature, °C
θJA = Package thermal resistance, junction-to-ambient, °C/W
PD = Pint + PI/O
Pint = IDD × VDD, Watts — chip internal power
PI/O = Power dissipation on input and output pins — user determined

For most applications, PI/O << Pint and can be neglected. An approximate relationship between PD and TJ 
(if PI/O is neglected) is:

PD = K ÷ (TJ + 273°C) Eqn. A-2

Solving Equation A-1 and Equation A-2 for K gives:

K = PD  × (TA + 273°C) + θJA × (PD)2 Eqn. A-3

where K is a constant pertaining to the particular part. K can be determined from equation 3 by measuring 
PD (at equilibrium) for a known TA. Using this value of K, the values of PD and TJ can be obtained by 
solving Equation A-1 and Equation A-2 iteratively for any value of TA.

A.5 ESD Protection and Latch-Up Immunity
Although damage from electrostatic discharge (ESD) is much less common on these devices than on early 
CMOS circuits, normal handling precautions should be used to avoid exposure to static discharge. 
Qualification tests are performed to ensure that these devices can withstand exposure to reasonable levels 
of static without suffering any permanent damage.

All ESD testing is in conformity with AEC-Q100 Stress Test Qualification for Automotive Grade 
Integrated Circuits. During the device qualification ESD stresses were performed for the human body 
model (HBM) and the charge device model (CDM).

A device is defined as a failure if after exposure to ESD pulses the device no longer meets the device 
specification. Complete DC parametric and functional testing is performed per the applicable device 
specification at room temperature followed by hot temperature, unless specified otherwise in the device 
specification.

1 Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, 
mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on 
the board, and board thermal resistance.

2 Junction to Ambient Natural Convection
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Appendix A Electrical Characteristics
Figure A-1. Typical VOL vs IOL, High Drive Strength

23
T Low-voltage inhibit reset/recover 

hysteresis
Vhys 5 V — 100 —

mV
3 V — 60 —

24 P Bandgap Voltage Reference10 VBG 1.18 1.202 1.21 V

1 Typical values are measured at 25°C. Characterized, not tested
2 When a pin interrupt is configured to detect rising edges, pulldown resistors are used in place of pullup resistors.
3 The specified resistor value is the actual value internal to the device. The pullup value may measure higher when measured 

externally on the pin.
4 Power supply must maintain regulation within operating VDD range during instantaneous and operating maximum current 

conditions. If positive injection current (VIn > VDD) is greater than IDD, the injection current may flow out of VDD and could result 
in external power supply going out of regulation. Ensure external VDD load shunts current greater than maximum injection 
current. This is the greatest risk when the MCU is not consuming power. For example, if no system clock is present, or if clock 
rate is very low (which would reduce overall power consumption).

5 All functional non-supply pins except RESET are internally clamped to VSS and VDD.
6 Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate 

resistance values for positive and negative clamp voltages, then use the larger of the two values.
7 The RESET pin does not have a clamp diode to VDD. Do not drive this pin above VDD.
8 Maximum is highest voltage that POR is guaranteed.
9 Simulated, not tested.
10 Factory trimmed at VDD = 5.0 V, Temp = 25°C.

Table A-6. DC Characteristics (continued)

Num C Characteristic Symbol Condition Min Typ1 Max Unit

V
O

L 
(V

)

IOL (mA)
20151050 25

0

0.5

1

1.5

2

a) VDD = 5V, High Drive

V
O

L 
(V

)

IOL (mA)
86420 10

0

0.2

0.4

0.8

1.0

b) VDD = 3V, High Drive

0.6

125°C
25°C

–40°C
Max 0.8V@5mAMax 1.5V@25mA

125°C
25°C

–40°C
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