
NXP USA Inc. - MC9S08SL16CTL Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor S08

Core Size 8-Bit

Speed 40MHz

Connectivity I²C, LINbus, SCI, SPI

Peripherals LVD, POR, PWM, WDT

Number of I/O 22

Program Memory Size 16KB (16K x 8)

Program Memory Type FLASH

EEPROM Size 256 x 8

RAM Size 512 x 8

Voltage - Supply (Vcc/Vdd) 2.7V ~ 5.5V

Data Converters A/D 16x10b

Oscillator Type External

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 28-TSSOP (0.173", 4.40mm Width)

Supplier Device Package 28-TSSOP

Purchase URL https://www.e-xfl.com/product-detail/nxp-semiconductors/mc9s08sl16ctl

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/mc9s08sl16ctl-4384370
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

Section Number Title Page
14.3 Functional Description ..261
14.3.1 Baud Rate Generation ...261
14.3.2 Transmitter Functional Description ..262
14.3.3 Receiver Functional Description ..263
14.3.4 Interrupts and Status Flags ..265
14.3.5 Additional SCI Functions ...266

Chapter 15
Real-Time Counter (S08RTCV1)

15.1 Introduction ...269
15.1.1 Features ...272
15.1.2 Modes of Operation ..272
15.1.3 Block Diagram ..273

15.2 External Signal Description ..273
15.3 Register Definition ..273

15.3.1 RTC Status and Control Register (RTCSC) ..274
15.3.2 RTC Counter Register (RTCCNT) ..275
15.3.3 RTC Modulo Register (RTCMOD) ..275

15.4 Functional Description ..275
15.4.1 RTC Operation Example ...276

15.5 Initialization/Application Information ..277

Chapter 16
Timer Pulse-Width Modulator (S08TPMV2)

16.1 Introduction ...279
16.1.1 Features ...281
16.1.2 Modes of Operation ..281
16.1.3 Block Diagram ..282

16.2 Signal Description ...284
16.2.1 Detailed Signal Descriptions ..284

16.3 Register Definition ..288
16.3.1 TPM Status and Control Register (TPMxSC) ..288
16.3.2 TPM-Counter Registers (TPMxCNTH:TPMxCNTL) ..289
16.3.3 TPM Counter Modulo Registers (TPMxMODH:TPMxMODL)290
16.3.4 TPM Channel n Status and Control Register (TPMxCnSC) ..291
16.3.5 TPM Channel Value Registers (TPMxCnVH:TPMxCnVL) ..293

16.4 Functional Description ..294
16.4.1 Counter ..295
16.4.2 Channel Mode Selection ...297

16.5 Reset Overview ...300
16.5.1 General ..300
16.5.2 Description of Reset Operation ...300
MC9S08EL32 Series and MC9S08SL16 Series Data Sheet, Rev. 3

16 Freescale Semiconductor

Chapter 3 Modes of Operation
MC9S08EL32 Series and MC9S08SL16 Series Data Sheet, Rev. 3

36 Freescale Semiconductor

Chapter 4 Memory
0x1845 PTAPS 0 0 0 0 PTAPS3 PTAPS2 PTAPS1 PTAPS0

0x1846 PTAES 0 0 0 0 PTAES3 PTAES2 PTAES1 PTAES0

0x1847 Reserved — — — — — — — —

0x1848 PTBPE PTBPE7 PTBPE6 PTBPE5 PTBPE4 PTBPE3 PTBPE2 PTBPE1 PTBPE0

0x1849 PTBSE PTBSE7 PTBSE6 PTBSE5 PTBSE4 PTBSE3 PTBSE2 PTBSE1 PTBSE0

0x184A PTBDS PTBDS7 PTBDS6 PTBDS5 PTBDS4 PTBDS3 PTBDS2 PTBDS1 PTBDS0

0x184B Reserved — — — — — — — —

0x184C PTBSC 0 0 0 0 PTBIF PTBACK PTBIE PTBMOD

0x184D PTBPS 0 0 0 0 PTBPS3 PTBPS2 PTBPS1 PTBPS0

0x184E PTBES 0 0 0 0 PTBES3 PTBES2 PTBES1 PTBES0

0x184F Reserved — — — — — — — —

0x1850 PTCPE PTCPE7 PTCPE6 PTCPE5 PTCPE4 PTCPE3 PTCPE2 PTCPE1 PTCPE0

0x1851 PTCSE PTCSE7 PTCSE6 PTCSE5 PTCSE4 PTCSE3 PTCSE2 PTCSE1 PTCSE0

0x1852 PTCDS PTCDS7 PTCDS6 PTCDS5 PTCDS4 PTCDS3 PTCDS2 PTCDS1 PTCDS0

0x1853 Reserved — — — — — — — —

0x1854 PTCSC 0 0 0 0 PTCIF PTCACK PTCIE PTCMOD

0x1855 PTCPS PTCPS7 PTCPS6 PTCPS5 PTCPS4 PTCPS3 PTCPS2 PTCPS1 PTCPS0

0x1856 PTCES PTCES7 PTCES6 PTCES5 PTCES4 PTCES3 PTCES2 PTCES1 PTCES0

0x1857 Reserved — — — — — — — —

0x1858–
0x18FF

Reserved —
—

—
—

—
—

—
—

—
—

—
—

—
—

—
—

Table 4-3. High-Page Register Summary (Sheet 2 of 2)

Address Register Name Bit 7 6 5 4 3 2 1 Bit 0
MC9S08EL32 Series and MC9S08SL16 Series Data Sheet, Rev. 3

44 Freescale Semiconductor

Chapter 5 Resets, Interrupts, and General System Control
The status flag corresponding to the interrupt source must be acknowledged (cleared) before returning
from the ISR. Typically, the flag is cleared at the beginning of the ISR so that if another interrupt is
generated by this same source, it will be registered so it can be serviced after completion of the current ISR.

5.5.2 Interrupt Vectors, Sources, and Local Masks

Table 5-2 provides a summary of all interrupt sources. Higher-priority sources are located toward the
bottom of the table. The high-order byte of the address for the interrupt service routine is located at the
first address in the vector address column, and the low-order byte of the address for the interrupt service
routine is located at the next higher address.

When an interrupt condition occurs, an associated flag bit becomes set. If the associated local interrupt
enable is 1, an interrupt request is sent to the CPU. Within the CPU, if the global interrupt mask (I bit in
the CCR) is 0, the CPU will finish the current instruction; stack the PCL, PCH, X, A, and CCR CPU
registers; set the I bit; and then fetch the interrupt vector for the highest priority pending interrupt.
Processing then continues in the interrupt service routine.
MC9S08EL32 Series and MC9S08SL16 Series Data Sheet, Rev. 3

Freescale Semiconductor 67

Chapter 7
Central Processor Unit (S08CPUV3)

7.1 Introduction
This section provides summary information about the registers, addressing modes, and instruction set of
the CPU of the HCS08 Family. For a more detailed discussion, refer to the HCS08 Family Reference
Manual, volume 1, Freescale Semiconductor document order number HCS08RMV1/D.

The HCS08 CPU is fully source- and object-code-compatible with the M68HC08 CPU. Several
instructions and enhanced addressing modes were added to improve C compiler efficiency and to support
a new background debug system which replaces the monitor mode of earlier M68HC08 microcontrollers
(MCU).

7.1.1 Features

Features of the HCS08 CPU include:
• Object code fully upward-compatible with M68HC05 and M68HC08 Families
• All registers and memory are mapped to a single 64-Kbyte address space
• 16-bit stack pointer (any size stack anywhere in 64-Kbyte address space)
• 16-bit index register (H:X) with powerful indexed addressing modes
• 8-bit accumulator (A)
• Many instructions treat X as a second general-purpose 8-bit register
• Seven addressing modes:

— Inherent — Operands in internal registers
— Relative — 8-bit signed offset to branch destination
— Immediate — Operand in next object code byte(s)
— Direct — Operand in memory at 0x0000–0x00FF
— Extended — Operand anywhere in 64-Kbyte address space
— Indexed relative to H:X — Five submodes including auto increment
— Indexed relative to SP — Improves C efficiency dramatically

• Memory-to-memory data move instructions with four address mode combinations
• Overflow, half-carry, negative, zero, and carry condition codes support conditional branching on

the results of signed, unsigned, and binary-coded decimal (BCD) operations
• Efficient bit manipulation instructions
• Fast 8-bit by 8-bit multiply and 16-bit by 8-bit divide instructions
• STOP and WAIT instructions to invoke low-power operating modes
MC9S08EL32 Series and MC9S08SL16 Series Data Sheet, Rev. 3

Freescale Semiconductor 95

Analog-to-Digital Converter (S08ADC10V1)

7 6 5 4 3 2 1 0

R
ADLPC ADIV ADLSMP MODE ADICLK

W

Reset: 0 0 0 0 0 0 0 0

Figure 10-10. Configuration Register (ADCCFG)

Table 10-5. ADCCFG Register Field Descriptions

Field Description

7
ADLPC

Low Power Configuration — ADLPC controls the speed and power configuration of the successive
approximation converter. This is used to optimize power consumption when higher sample rates are not required.
0 High speed configuration
1 Low power configuration: {FC31}The power is reduced at the expense of maximum clock speed.

6:5
ADIV

Clock Divide Select — ADIV select the divide ratio used by the ADC to generate the internal clock ADCK.
Table 10-6 shows the available clock configurations.

4
ADLSMP

Long Sample Time Configuration — ADLSMP selects between long and short sample time. This adjusts the
sample period to allow higher impedance inputs to be accurately sampled or to maximize conversion speed for
lower impedance inputs. Longer sample times can also be used to lower overall power consumption when
continuous conversions are enabled if high conversion rates are not required.
0 Short sample time
1 Long sample time

3:2
MODE

Conversion Mode Selection — MODE bits are used to select between 10- or 8-bit operation. See Table 10-7.

1:0
ADICLK

Input Clock Select — ADICLK bits select the input clock source to generate the internal clock ADCK. See
Table 10-8.

Table 10-6. Clock Divide Select

ADIV Divide Ratio Clock Rate

00 1 Input clock

01 2 Input clock ÷ 2

10 4 Input clock ÷ 4

11 8 Input clock ÷ 8

Table 10-7. Conversion Modes

MODE Mode Description

00 8-bit conversion (N=8)

01 Reserved

10 10-bit conversion (N=10)

11 Reserved
MC9S08EL32 Series and MC9S08SL16 Series Data Sheet, Rev. 3

148 Freescale Semiconductor

For clarification, in this document, “command” messages will refer to any message frame where the SLIC
module is receiving data bytes and “request” messages refer to message frames where the SLIC module
will be expected to transmit data bytes. This is a generic description and should not be confused with the
terminology in the LIN specification. The LIN use of the terms “command” and “request” have the same
basic meaning, but are limited in scope to specific identifier values of 0x3C and 0x3D. In the SLIC module
documentation, these terms have been used to describe these functional types of messages, regardless of
the specific identifier value used.

12.6.7.2 Possible Errors on Message Headers

Possible errors on message headers are:
• Identifier-Parity-Error
• Byte Framing Error

12.6.8 Handling Command Message Frames

Figure 12-15 shows how to handle command message frames, where the SLIC module is receiving data
from the master node.

Command message frames refer to LIN messages frames where the master node is “commanding” the
slave node to do something. The implication is that the slave will then be receiving data from the master
for this message frame. This can be a standard LIN message frame of 1–8 data bytes, a reserved LIN
system message (using 0x3C identifier), or an extended command message frame utilizing the reserved
0x3E user defined identifier or perhaps the 0x3F LIN reserved extended identifier. The SLIC module is
capable of handling message frames containing up to 64 bytes of data, while still automatically calculating
and/or verifying the checksum.

12.6.8.1 Standard Command Message Frames

After the application software has read the incoming identifier and determined that it is a valid identifier
which cannot be ignored using IMSG, it must determine if this message frame is a command message
frame or a request message frame. (i.e., should the application receive data from the master or send data
back to the master?)

The first case, shown in Figure 12-15 deals with command messages, where the SLIC will be receiving
data from the master node. If the received identifier corresponds to a standard LIN command frame (i.e.,
1–8 data bytes), the user must then write the number of bytes (determined by the system designer and
directly linked with this particular identifier) corresponding to the length of the message frame into
SLCDLC. The two most significant bits of this register are used for special control bits describing the
nature of this message frame.
MC9S08EL32 Series and MC9S08SL16 Series Data Sheet, Rev. 3

Freescale Semiconductor 211

unmasked, after 8 bytes are received or an error is detected. At this interrupt, the SLCSV will indicate an
error condition (in case of byte framing error, idle bus) or that the receive buffer is full. If the data is
successfully received, the user must then empty the buffer by reading SLCD7-SLCD0 and then subtract 8
from the software byte count. When this software counter reaches 8 or fewer, the remaining data bytes will
fit in the buffer and only one interrupt should occur. At this time, the final interrupt may be handled
normally, continuing to use the software counter to read the proper number of bytes from the appropriate
SLCD registers.

NOTE
Do not write SLCDLC more than one time per LIN message frame. The
SLIC tracks the number of sent or received bytes based on the value written
to this register at the beginning of the data field and rewriting this register
will corrupt the checksum calculation and cause unpredictable behavior in
the SLIC module. The application software must track the number of sent
or received bytes to know what the current byte count in the SLIC is. If
programming in C, make sure to use the VOLATILE modifier on this
variable (or make it a global variable) to ensure that it keeps its value
between interrupts.

12.6.8.3 Possible Errors on Command Message Data

Possible errors on command message data are:
• Byte Framing Error
• Checksum-Error (LIN specified error)
• No-Bus-Activity (LIN specified error)
• Receiver Buffer Overrun Error

12.6.9 Handling Request LIN Message Frames

Figure 12-16 shows how to handle request message frames, where the SLIC module is sending data to the
master node.

Request message frames refer to LIN messages frames where the master node is “requesting” the slave
node to supply information. The implication is that the slave will then be transmitting data to the master
for this message frame. This can be a standard LIN message frame of 1–8 data bytes, a reserved LIN
system message (using 0x3D identifier), or an extended request message frame utilizing the reserved 0x3E
identifier or perhaps the 0x3F LIN reserved extended identifier. The SLIC module is capable of handling
request message frames containing up to 64 bytes of data, while still automatically calculating and/or
verifying the checksum.

12.6.9.1 Standard Request Message Frames

Dealing with request messages with the SLIC is very similar to dealing with command messages, with one
important difference. Because the SLIC is now to be transmitting data in the LIN message frame, the user
software must load the data to be transmitted into the message buffer prior to initiating the transmission.
MC9S08EL32 Series and MC9S08SL16 Series Data Sheet, Rev. 3

214 Freescale Semiconductor

Because perfect conditions are almost impossible to attain, more robust values must be chosen for bit rates.
For reliable communication, it is best to ensure that a bit time is no smaller 2x–3x longer than the filter
delay on the digital receive filter. This is true in LIN or BTM mode and ensures that valid data bits which
have been shortened due to ground shift, asymmetrical rise and fall times, etc., are accepted by the filter
without exception. This would translate to 2x to 3x reduction in the maximum speeds shown in
Table 12-14. Recommended maximum bit rates are shown in Table 12-15, and ensure that a single bit time
is at least twice the length of one filter delay value. If system noise is not adequately filtered out it might
be necessary to change the prescaler of the filter and lower the bit rate of the communication. If valid
communications are being absorbed by the filter, corrective action must be taken to ensure that either the
bit rate is reduced or whatever physical fault is causing bit times to shorten is corrected (ground offset,
asymmetrical rise/fall times, insufficient physical layer supply voltage, etc.).

12.6.17 Oscillator Trimming with SLIC

SLCACT can be used as an indicator of LIN bus activity. SLCACT tells the user that the SLIC is currently
processing a message header (therefore synchronizing to the bus) or processing a message frame
(including checksum). Therefore, at idle times between message frames or during a message frame which
has been marked as a “don’t care” by writing IMSG, it is possible to trim the oscillator circuit of the MCU
with no impact to the LIN communications.

It is important to note the exact mechanisms with which the SLIC sets and clears SLCACT. Any falling
edge which successfully passes through the digital receive filter will cause SLCACT to become set. This
might even include noise pulses, if they are of sufficient length to pass through the digital RX filter.
Although in these cases SLCACT is becoming set on a noise spike, it is very probable that noise of this
nature will cause other system issues as well such as corruption of the message frame. The software can
then further qualify if it is appropriate to trim the oscillator.

Table 12-15. Recommended Maximum Bit Rates for BTM Operation Due to Digital Filter

SLIC
Clock
(MHz)

Maximum BTM Bit Rate (kbps)

RXFP = ÷8 RXFP = ÷7 RXFP = ÷6 RXFP = ÷5 RXFP = ÷4 RXFP = ÷3 RXFP = ÷2 RXFP = ÷1

20 78.125 89.286 104.167 120.000 120.000 120.000 120.000 120.000

18 70.313 80.357 93.750 112.500 120.000 120.000 120.000 120.000

16 62.500 71.429 83.333 100.000 120.000 120.000 120.000 120.000

14 54.688 62.500 72.917 87.500 109.375 120.000 120.000 120.000

12 46.875 53.571 62.500 75.000 93.750 120.000 120.000 120.000

10 39.063 44.643 52.083 62.500 78.125 104.167 120.000 120.000

8 31.250 35.714 41.667 50.000 62.500 83.333 120.000 120.000

6 23.438 26.786 31.250 37.500 46.875 62.500 93.750 120.000

4 15.625 17.857 20.833 25.000 31.250 41.667 62.500 120.000

2 7.813 8.929 10.417 12.500 15.625 20.833 31.250 62.500
MC9S08EL32 Series and MC9S08SL16 Series Data Sheet, Rev. 3

228 Freescale Semiconductor

Timer/PWM Module (S08TPMV3)
When the TPM is configured for center-aligned PWM (and ELSnB:ELSnA not = 0:0), the data direction
for all channels in this TPM are overridden, the TPMxCHn pins are forced to be outputs controlled by the
TPM, and the ELSnA bits control the polarity of each TPMxCHn output. If ELSnB:ELSnA=1:0, the
corresponding TPMxCHn pin is cleared when the timer counter is counting up, and the channel value
register matches the timer counter; the TPMxCHn pin is set when the timer counter is counting down, and
the channel value register matches the timer counter. If ELSnA=1, the corresponding TPMxCHn pin is set
when the timer counter is counting up and the channel value register matches the timer counter; the
TPMxCHn pin is cleared when the timer counter is counting down and the channel value register matches
the timer counter.

Figure 16-5. High-True Pulse of a Center-Aligned PWM

Figure 16-6. Low-True Pulse of a Center-Aligned PWM

CHnF BIT

TOF BIT

... 7 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 7 6 5 ...

TPMxMODH:TPMxMODL = 0x0008
TPMxMODH:TPMxMODL = 0x0005

TPMxCNTH:TPMxCNTL

TPMxCHn

CHnF BIT

TOF BIT

... 7 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 7 6 5 ...

TPMxMODH:TPMxMODL = 0x0008
TPMxMODH:TPMxMODL = 0x0005

TPMxCNTH:TPMxCNTL

TPMxCHn
MC9S08EL32 Series and MC9S08SL16 Series Data Sheet, Rev. 3

Freescale Semiconductor 287

Timer/PWM Module (S08TPMV3)
The following sections describe the main counter and each of the timer operating modes (input capture,
output compare, edge-aligned PWM, and center-aligned PWM). Because details of pin operation and
interrupt activity depend upon the operating mode, these topics will be covered in the associated mode
explanation sections.

16.4.1 Counter

All timer functions are based on the main 16-bit counter (TPMxCNTH:TPMxCNTL). This section
discusses selection of the clock source, end-of-count overflow, up-counting vs. up/down counting, and
manual counter reset.

16.4.1.1 Counter Clock Source

The 2-bit field, CLKSB:CLKSA, in the timer status and control register (TPMxSC) selects one of three
possible clock sources or OFF (which effectively disables the TPM). See Table 16-4. After any MCU reset,
CLKSB:CLKSA=0:0 so no clock source is selected, and the TPM is in a very low power state. These
control bits may be read or written at any time and disabling the timer (writing 00 to the CLKSB:CLKSA
field) does not affect the values in the counter or other timer registers.
MC9S08EL32 Series and MC9S08SL16 Series Data Sheet, Rev. 3

Freescale Semiconductor 295

Timer/PWM Module (S08TPMV3)
The bus rate clock is the main system bus clock for the MCU. This clock source requires no
synchronization because it is the clock that is used for all internal MCU activities including operation of
the CPU and buses.

In MCUs that have no PLL and FLL or the PLL and FLL are not engaged, the fixed system clock source
is the same as the bus-rate-clock source, and it does not go through a synchronizer. When a PLL or FLL
is present and engaged, a synchronizer is required between the crystal divided-by two clock source and the
timer counter so counter transitions will be properly aligned to bus-clock transitions. A synchronizer will
be used at chip level to synchronize the crystal-related source clock to the bus clock.

The external clock source may be connected to any TPM channel pin. This clock source always has to pass
through a synchronizer to assure that counter transitions are properly aligned to bus clock transitions. The
bus-rate clock drives the synchronizer; therefore, to meet Nyquist criteria even with jitter, the frequency
of the external clock source must not be faster than the bus rate divided-by four. With ideal clocks the
external clock can be as fast as bus clock divided by four.

When the external clock source shares the TPM channel pin, this pin should not be used for other channel
timing functions. For example, it would be ambiguous to configure channel 0 for input capture when the
TPM channel 0 pin was also being used as the timer external clock source. (It is the user’s responsibility
to avoid such settings.) The TPM channel could still be used in output compare mode for software timing
functions (pin controls set not to affect the TPM channel pin).

16.4.1.2 Counter Overflow and Modulo Reset

An interrupt flag and enable are associated with the 16-bit main counter. The flag (TOF) is a
software-accessible indication that the timer counter has overflowed. The enable signal selects between
software polling (TOIE=0) where no hardware interrupt is generated, or interrupt-driven operation
(TOIE=1) where a static hardware interrupt is generated whenever the TOF flag is equal to one.

The conditions causing TOF to become set depend on whether the TPM is configured for center-aligned
PWM (CPWMS=1). In the simplest mode, there is no modulus limit and the TPM is not in CPWMS=1
mode. In this case, the 16-bit timer counter counts from 0x0000 through 0xFFFF and overflows to 0x0000
on the next counting clock. TOF becomes set at the transition from 0xFFFF to 0x0000. When a modulus
limit is set, TOF becomes set at the transition from the value set in the modulus register to 0x0000. When
the TPM is in center-aligned PWM mode (CPWMS=1), the TOF flag gets set as the counter changes
direction at the end of the count value set in the modulus register (that is, at the transition from the value
set in the modulus register to the next lower count value). This corresponds to the end of a PWM period
(the 0x0000 count value corresponds to the center of a period).

Table 16-8. TPM Clock Source Selection

CLKSB:CLKSA TPM Clock Source to Prescaler Input

00 No clock selected (TPM counter disabled)

01 Bus rate clock

10 Fixed system clock

11 External source
MC9S08EL32 Series and MC9S08SL16 Series Data Sheet, Rev. 3

296 Freescale Semiconductor

Timer/PWM Module (S08TPMV3)
In output compare mode, values are transferred to the corresponding timer channel registers only after both
8-bit halves of a 16-bit register have been written and according to the value of CLKSB:CLKSA bits, so:

• If (CLKSB:CLKSA = 0:0), the registers are updated when the second byte is written
• If (CLKSB:CLKSA not = 0:0), the registers are updated at the next change of the TPM counter

(end of the prescaler counting) after the second byte is written.

The coherency sequence can be manually reset by writing to the channel status/control register
(TPMxCnSC).

An output compare event sets a flag bit (CHnF) which may optionally generate a CPU-interrupt request.

16.4.2.3 Edge-Aligned PWM Mode

This type of PWM output uses the normal up-counting mode of the timer counter (CPWMS=0) and can
be used when other channels in the same TPM are configured for input capture or output compare
functions. The period of this PWM signal is determined by the value of the modulus register
(TPMxMODH:TPMxMODL) plus 1. The duty cycle is determined by the setting in the timer channel
register (TPMxCnVH:TPMxCnVL). The polarity of this PWM signal is determined by the setting in the
ELSnA control bit. 0% and 100% duty cycle cases are possible.

The output compare value in the TPM channel registers determines the pulse width (duty cycle) of the
PWM signal (Figure 16-15). The time between the modulus overflow and the output compare is the pulse
width. If ELSnA=0, the counter overflow forces the PWM signal high, and the output compare forces the
PWM signal low. If ELSnA=1, the counter overflow forces the PWM signal low, and the output compare
forces the PWM signal high.

Figure 16-15. PWM Period and Pulse Width (ELSnA=0)

When the channel value register is set to 0x0000, the duty cycle is 0%. 100% duty cycle can be achieved
by setting the timer-channel register (TPMxCnVH:TPMxCnVL) to a value greater than the modulus
setting. This implies that the modulus setting must be less than 0xFFFF in order to get 100% duty cycle.

Because the TPM may be used in an 8-bit MCU, the settings in the timer channel registers are buffered to
ensure coherent 16-bit updates and to avoid unexpected PWM pulse widths. Writes to any of the registers
TPMxCnVH and TPMxCnVL, actually write to buffer registers. In edge-aligned PWM mode, values are
transferred to the corresponding timer-channel registers according to the value of CLKSB:CLKSA bits, so:

• If (CLKSB:CLKSA = 0:0), the registers are updated when the second byte is written
• If (CLKSB:CLKSA not = 0:0), the registers are updated after the both bytes were written, and the

TPM counter changes from (TPMxMODH:TPMxMODL - 1) to (TPMxMODH:TPMxMODL). If

PERIOD

PULSE
WIDTH

OVERFLOW OVERFLOW OVERFLOW

OUTPUT
COMPARE

OUTPUT
COMPARE

OUTPUT
COMPARE

TPMxCHn
MC9S08EL32 Series and MC9S08SL16 Series Data Sheet, Rev. 3

298 Freescale Semiconductor

Timer/PWM Module (S08TPMV3)
BDM mode returns the latched value of TPMxCNTH:L from the read buffer instead of the
frozen TPM counter value.

— This read coherency mechanism is cleared in TPM v3 in BDM mode if there is a write to
TPMxSC, TPMxCNTH or TPMxCNTL. Instead, in these conditions the TPM v2 does not clear
this read coherency mechanism.

3. Read of TPMxCnVH:L registers (Section 16.3.5, “TPM Channel Value Registers
(TPMxCnVH:TPMxCnVL))
— In TPM v3, any read of TPMxCnVH:L registers during BDM mode returns the value of the

TPMxCnVH:L register. In TPM v2, if only one byte of the TPMxCnVH:L registers was read
before the BDM mode became active, then any read of TPMxCnVH:L registers during BDM
mode returns the latched value of TPMxCNTH:L from the read buffer instead of the value in
the TPMxCnVH:L registers.

— This read coherency mechanism is cleared in TPM v3 in BDM mode if there is a write to
TPMxCnSC. Instead, in this condition the TPM v2 does not clear this read coherency
mechanism.

4. Write to TPMxCnVH:L registers
— Input Capture Mode (Section 16.4.2.1, “Input Capture Mode)

In this mode the TPM v3 does not allow the writes to TPMxCnVH:L registers. Instead, the
TPM v2 allows these writes.

— Output Compare Mode (Section 16.4.2.2, “Output Compare Mode)
In this mode and if (CLKSB:CLKSA not = 0:0), the TPM v3 updates the TPMxCnVH:L
registers with the value of their write buffer at the next change of the TPM counter (end of the
prescaler counting) after the second byte is written. Instead, the TPM v2 always updates these
registers when their second byte is written.
The following procedure can be used in the TPM v3 to verify if the TPMxCnVH:L registers
were updated with the new value that was written to these registers (value in their write buffer).
...
write the new value to TPMxCnVH:L;
read TPMxCnVH and TPMxCnVL registers;
while (the read value of TPMxCnVH:L is different from the new value written to
TPMxCnVH:L)
begin
 read again TPMxCnVH and TPMxCnVL;
end
...
In this point, the TPMxCnVH:L registers were updated, so the program can continue and, for
example, write to TPMxC0SC without cancelling the previous write to TPMxCnVH:L
registers.

— Edge-Aligned PWM (Section 16.4.2.3, “Edge-Aligned PWM Mode)
In this mode and if (CLKSB:CLKSA not = 00), the TPM v3 updates the TPMxCnVH:L
registers with the value of their write buffer after that the both bytes were written and when the
MC9S08EL32 Series and MC9S08SL16 Series Data Sheet, Rev. 3

Freescale Semiconductor 303

Development SupportChapter 17 Development Support
MC9S08EL32 Series and MC9S08SL16 Series Data Sheet, Rev. 3

Freescale Semiconductor 309

Development Support
Figure 17-5 shows the host receiving a logic 0 from the target HCS08 MCU. Because the host is
asynchronous to the target MCU, there is a 0-to-1 cycle delay from the host-generated falling edge on
BKGD to the start of the bit time as perceived by the target MCU. The host initiates the bit time but the
target HCS08 finishes it. Because the target wants the host to receive a logic 0, it drives the BKGD pin low
for 13 BDC clock cycles, then briefly drives it high to speed up the rising edge. The host samples the bit
level about 10 cycles after starting the bit time.

Figure 17-5. BDM Target-to-Host Serial Bit Timing (Logic 0)

10 CYCLES

BDC CLOCK
(TARGET MCU)

HOST DRIVE
TO BKGD PIN

TARGET MCU
DRIVE AND

PERCEIVED START
OF BIT TIME

HIGH-IMPEDANCE

BKGD PIN

10 CYCLES

SPEED-UP PULSE

SPEEDUP
PULSE

EARLIEST START
OF NEXT BIT

HOST SAMPLES BKGD PIN
MC9S08EL32 Series and MC9S08SL16 Series Data Sheet, Rev. 3

Freescale Semiconductor 315

Development Support
The SYNC command is unlike other BDC commands because the host does not necessarily know the
correct communications speed to use for BDC communications until after it has analyzed the response to
the SYNC command.

To issue a SYNC command, the host:
• Drives the BKGD pin low for at least 128 cycles of the slowest possible BDC clock (The slowest

clock is normally the reference oscillator/64 or the self-clocked rate/64.)
• Drives BKGD high for a brief speedup pulse to get a fast rise time (This speedup pulse is typically

one cycle of the fastest clock in the system.)
• Removes all drive to the BKGD pin so it reverts to high impedance
• Monitors the BKGD pin for the sync response pulse

The target, upon detecting the SYNC request from the host (which is a much longer low time than would
ever occur during normal BDC communications):

• Waits for BKGD to return to a logic high
• Delays 16 cycles to allow the host to stop driving the high speedup pulse
• Drives BKGD low for 128 BDC clock cycles
• Drives a 1-cycle high speedup pulse to force a fast rise time on BKGD
• Removes all drive to the BKGD pin so it reverts to high impedance

The host measures the low time of this 128-cycle sync response pulse and determines the correct speed for
subsequent BDC communications. Typically, the host can determine the correct communication speed
within a few percent of the actual target speed and the communication protocol can easily tolerate speed
errors of several percent.

17.2.4 BDC Hardware Breakpoint

The BDC includes one relatively simple hardware breakpoint that compares the CPU address bus to a
16-bit match value in the BDCBKPT register. This breakpoint can generate a forced breakpoint or a tagged
breakpoint. A forced breakpoint causes the CPU to enter active background mode at the first instruction
boundary following any access to the breakpoint address. The tagged breakpoint causes the instruction
opcode at the breakpoint address to be tagged so that the CPU will enter active background mode rather
than executing that instruction if and when it reaches the end of the instruction queue. This implies that
tagged breakpoints can only be placed at the address of an instruction opcode while forced breakpoints can
be set at any address.

The breakpoint enable (BKPTEN) control bit in the BDC status and control register (BDCSCR) is used to
enable the breakpoint logic (BKPTEN = 1). When BKPTEN = 0, its default value after reset, the
breakpoint logic is disabled and no BDC breakpoints are requested regardless of the values in other BDC
breakpoint registers and control bits. The force/tag select (FTS) control bit in BDCSCR is used to select
forced (FTS = 1) or tagged (FTS = 0) type breakpoints.

The on-chip debug module (DBG) includes circuitry for two additional hardware breakpoints that are more
flexible than the simple breakpoint in the BDC module.
MC9S08EL32 Series and MC9S08SL16 Series Data Sheet, Rev. 3

318 Freescale Semiconductor

Development Support
17.3 On-Chip Debug System (DBG)
Because HCS08 devices do not have external address and data buses, the most important functions of an
in-circuit emulator have been built onto the chip with the MCU. The debug system consists of an 8-stage
FIFO that can store address or data bus information, and a flexible trigger system to decide when to capture
bus information and what information to capture. The system relies on the single-wire background debug
system to access debug control registers and to read results out of the eight stage FIFO.

The debug module includes control and status registers that are accessible in the user’s memory map.
These registers are located in the high register space to avoid using valuable direct page memory space.

Most of the debug module’s functions are used during development, and user programs rarely access any
of the control and status registers for the debug module. The one exception is that the debug system can
provide the means to implement a form of ROM patching. This topic is discussed in greater detail in
Section 17.3.6, “Hardware Breakpoints.”

17.3.1 Comparators A and B

Two 16-bit comparators (A and B) can optionally be qualified with the R/W signal and an opcode tracking
circuit. Separate control bits allow you to ignore R/W for each comparator. The opcode tracking circuitry
optionally allows you to specify that a trigger will occur only if the opcode at the specified address is
actually executed as opposed to only being read from memory into the instruction queue. The comparators
are also capable of magnitude comparisons to support the inside range and outside range trigger modes.
Comparators are disabled temporarily during all BDC accesses.

The A comparator is always associated with the 16-bit CPU address. The B comparator compares to the
CPU address or the 8-bit CPU data bus, depending on the trigger mode selected. Because the CPU data
bus is separated into a read data bus and a write data bus, the RWAEN and RWA control bits have an
additional purpose, in full address plus data comparisons they are used to decide which of these buses to
use in the comparator B data bus comparisons. If RWAEN = 1 (enabled) and RWA = 0 (write), the CPU’s
write data bus is used. Otherwise, the CPU’s read data bus is used.

The currently selected trigger mode determines what the debugger logic does when a comparator detects
a qualified match condition. A match can cause:

• Generation of a breakpoint to the CPU
• Storage of data bus values into the FIFO
• Starting to store change-of-flow addresses into the FIFO (begin type trace)
• Stopping the storage of change-of-flow addresses into the FIFO (end type trace)

17.3.2 Bus Capture Information and FIFO Operation

The usual way to use the FIFO is to setup the trigger mode and other control options, then arm the
debugger. When the FIFO has filled or the debugger has stopped storing data into the FIFO, you would
read the information out of it in the order it was stored into the FIFO. Status bits indicate the number of
words of valid information that are in the FIFO as data is stored into it. If a trace run is manually halted by
writing 0 to ARM before the FIFO is full (CNT = 1:0:0:0), the information is shifted by one position and
MC9S08EL32 Series and MC9S08SL16 Series Data Sheet, Rev. 3

Freescale Semiconductor 319

Development Support
A force-type breakpoint waits for the current instruction to finish and then acts upon the breakpoint
request. The usual action in response to a breakpoint is to go to active background mode rather than
continuing to the next instruction in the user application program.

The tag vs. force terminology is used in two contexts within the debug module. The first context refers to
breakpoint requests from the debug module to the CPU. The second refers to match signals from the
comparators to the debugger control logic. When a tag-type break request is sent to the CPU, a signal is
entered into the instruction queue along with the opcode so that if/when this opcode ever executes, the
CPU will effectively replace the tagged opcode with a BGND opcode so the CPU goes to active
background mode rather than executing the tagged instruction. When the TRGSEL control bit in the DBGT
register is set to select tag-type operation, the output from comparator A or B is qualified by a block of
logic in the debug module that tracks opcodes and only produces a trigger to the debugger if the opcode at
the compare address is actually executed. There is separate opcode tracking logic for each comparator so
more than one compare event can be tracked through the instruction queue at a time.

17.3.5 Trigger Modes

The trigger mode controls the overall behavior of a debug run. The 4-bit TRG field in the DBGT register
selects one of nine trigger modes. When TRGSEL = 1 in the DBGT register, the output of the comparator
must propagate through an opcode tracking circuit before triggering FIFO actions. The BEGIN bit in
DBGT chooses whether the FIFO begins storing data when the qualified trigger is detected (begin trace),
or the FIFO stores data in a circular fashion from the time it is armed until the qualified trigger is detected
(end trigger).

A debug run is started by writing a 1 to the ARM bit in the DBGC register, which sets the ARMF flag and
clears the AF and BF flags and the CNT bits in DBGS. A begin-trace debug run ends when the FIFO gets
full. An end-trace run ends when the selected trigger event occurs. Any debug run can be stopped manually
by writing a 0 to ARM or DBGEN in DBGC.

In all trigger modes except event-only modes, the FIFO stores change-of-flow addresses. In event-only
trigger modes, the FIFO stores data in the low-order eight bits of the FIFO.

The BEGIN control bit is ignored in event-only trigger modes and all such debug runs are begin type
traces. When TRGSEL = 1 to select opcode fetch triggers, it is not necessary to use R/W in comparisons
because opcode tags would only apply to opcode fetches that are always read cycles. It would also be
unusual to specify TRGSEL = 1 while using a full mode trigger because the opcode value is normally
known at a particular address.

The following trigger mode descriptions only state the primary comparator conditions that lead to a trigger.
Either comparator can usually be further qualified with R/W by setting RWAEN (RWBEN) and the
corresponding RWA (RWB) value to be matched against R/W. The signal from the comparator with
optional R/W qualification is used to request a CPU breakpoint if BRKEN = 1 and TAG determines
whether the CPU request will be a tag request or a force request.
MC9S08EL32 Series and MC9S08SL16 Series Data Sheet, Rev. 3

Freescale Semiconductor 321

Appendix A Electrical Characteristics
Figure A-7. Typical Stop IDD vs. Temperature (VDD = 5V)

A.8 External Oscillator (XOSC) Characteristics

Table A-8. Oscillator Electrical Specifications
(Temperature Range = –40 to 125°C Ambient)

Num C Rating Symbol Min Typ1 Max Unit

1 C

Oscillator crystal or resonator (EREFS = 1, ERCLKEN = 1)

 Low range (RANGE = 0) flo 32 — 38.4 kHz

 High range (RANGE = 1) FEE or FBE mode 2 fhi 1 — 5 MHz

 High range (RANGE = 1, HGO = 1) FBELP mode fhi-hgo 1 — 16 MHz

 High range (RANGE = 1, HGO = 0) FBELP mode fhi-lp 1 — 8 MHz

2 —
Load capacitors C1, C2

See crystal or resonator
manufacturer’s recommendation.

3 —

Feedback resistor

RF MΩLow range (32 kHz to 100 kHz) — 10 —

High range (1 MHz to 16 MHz) — 1 —

4 —

Series resistor

RS kΩ

Low range, low gain (RANGE = 0, HGO = 0) — 0 —

Low range, high gain (RANGE = 0, HGO = 1) — 100 —

High range, low gain (RANGE = 1, HGO = 0) — 0 —

High range, high gain (RANGE = 1, HGO = 1)

≥ 8 MHz — 0 0

4 MHz — 0 10

1 MHz — 0 20

S
TO

P
 I D

D
 (

μA
)

Temperature (°C)
85250–40 105

0

10

20

50

125

30

40

60
STOP2
STOP3
MC9S08EL32 Series and MC9S08SL16 Series Data Sheet, Rev. 3

Freescale Semiconductor 341

