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Chapter 2 Pins and Connections
2.2 Recommended System Connections
Figure 2-3 shows pin connections that are common to MC9S08EL32 Series and MC9S08SL16 Series 
application systems.

Figure 2-3. Basic System Connections

2.2.1 Power

VDD and VSS are the primary power supply pins for the MCU. This voltage source supplies power to all 
I/O buffer circuitry and to an internal voltage regulator. The internal voltage regulator provides a regulated 
lower-voltage source to the CPU and other internal circuitry of the MCU.

Typically, application systems have two separate capacitors across the power pins. In this case, there 
should be a bulk electrolytic capacitor, such as a 10-μF tantalum capacitor, to provide bulk charge storage 
for the overall system and a 0.1-μF ceramic bypass capacitor located as near to the MCU power pins as 
practical to suppress high-frequency noise. Each pin must have a bypass capacitor for best noise 
suppression.

VDDA and VSSA are the analog power supply pins for the MCU. This voltage source supplies power to the 
ADC module. A 0.1-μF ceramic bypass capacitor should be located as near to the MCU power pins as 
practical to suppress high-frequency noise. The VREFH and VREFL pins are the voltage reference high and 
voltage reference low inputs, respectively, for the ADC module.
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Chapter 2 Pins and Connections
NOTE
In EMC-sensitive applications, use an external RC filter on RESET. See 
Figure 2-3 for an example.

2.2.4 Background / Mode Select (BKGD/MS)

While in reset, the BKGD/MS pin functions as a mode select pin. Immediately after reset rises, the pin 
functions as the background pin and can be used for background debug communication. While functioning 
as a background or mode select pin, the pin includes an internal pull-up device, input hysteresis, a standard 
output driver, and no output slew rate control. 

If nothing is connected to this pin, the MCU will enter normal operating mode at the rising edge of reset. 
If a debug system is connected to the 6-pin standard background debug header, it can hold BKGD low 
during the rising edge of reset which forces the MCU to active background mode.

The BKGD/MS pin is used primarily for background debug controller (BDC) communications using a 
custom protocol that uses 16 clock cycles of the target MCU’s BDC clock per bit time. The target MCU’s 
BDC clock could be as fast as the bus clock rate, so there should never be any significant capacitance 
connected to the BKGD/MS pin that could interfere with background serial communications.

Although the BKGD/MS pin is a pseudo open-drain pin, the background debug communication protocol 
provides brief, actively driven, high speedup pulses to ensure fast rise times. Small capacitances from 
cables and the absolute value of the internal pull-up device play almost no role in determining rise and fall 
times on the BKGD/MS pin.

2.2.5 General-Purpose I/O and Peripheral Ports

The MC9S08EL32 Series and MC9S08SL16 Series of MCUs support up to 22 general-purpose I/O pins 
which are shared with on-chip peripheral functions (timers, serial I/O, ADC, etc.).

When a port pin is configured as a general-purpose output or a peripheral uses the port pin as an output, 
software can select one of two drive strengths and enable or disable slew rate control. When a port pin is 
configured as a general-purpose input or a peripheral uses the port pin as an input, software can enable a 
pull-up device. Immediately after reset, all of these pins are configured as high-impedance 
general-purpose inputs with internal pull-up devices disabled.

When an on-chip peripheral system is controlling a pin, data direction control bits still determine what is 
read from port data registers even though the peripheral module controls the pin direction by controlling 
the enable for the pin’s output buffer. For information about controlling these pins as general-purpose I/O 
pins, see Chapter 6, “Parallel Input/Output Control.”

NOTE
To avoid extra current drain from floating input pins, the reset initialization 
routine in the application program should either enable on-chip pull-up 
devices or change the direction of unused or non-bonded pins to outputs so 
they do not float.
MC9S08EL32 Series and MC9S08SL16 Series Data Sheet, Rev. 3
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Chapter 4 Memory
4.5 FLASH and EEPROM
The MC9S08EL32 Series and MC9S08SL16 Series includes FLASH and EEPROM memory intended 
primarily for program and data storage. In-circuit programming allows the operating program and data to 
be loaded into FLASH and EEPROM, respectively, after final assembly of the application product. It is 
possible to program the arrays through the single-wire background debug interface. Because no special 
voltages are needed for erase and programming operations, in-application programming is also possible 
through other software-controlled communication paths. For a more detailed discussion of in-circuit and 
in-application programming, refer to the HCS08 Family Reference Manual, Volume I, Freescale 
Semiconductor document order number HCS08RMv1/D.

4.5.1 Features

Features of the FLASH and EEPROM memory include:
• Array size

— MC9S08EL32: 32,768 bytes of FLASH, 512 bytes of EEPROM
— MC9S08EL16: 16,384 bytes of FLASH, 512 bytes of EEPROM
— MC9S08SL16: 16,384 bytes of FLASH, 256 bytes of EEPROM
— MC9S08SL8: 8,192 bytes of FLASH, 256 bytes of EEPROM

• Sector size: 512 bytes for FLASH, 8 bytes for EEPROM
• Single power supply program and erase
• Command interface for fast program and erase operation
• Up to 100,000 program/erase cycles at typical voltage and temperature
• Flexible block protection and vector redirection
• Security feature for FLASH, EEPROM, and RAM

4.5.2 Program and Erase Times

Before any program or erase command can be accepted, the FLASH and EEPROM clock divider register 
(FCDIV) must be written to set the internal clock for the FLASH and EEPROM module to a frequency 
(fFCLK) between 150 kHz and 200 kHz (see Section 4.5.11.1, “FLASH and EEPROM Clock Divider 
Register (FCDIV)”). This register can be written only once, so normally this write is performed during 
reset initialization. FCDIV cannot be written if the access error flag, FACCERR in FSTAT, is set. The user 
must ensure that FACCERR is not set before writing to the FCDIV register. One period of the resulting 
clock (1/fFCLK) is used by the command processor to time program and erase pulses. An integer number 
of these timing pulses is used by the command processor to complete a program or erase command.

Table 4-5 shows program and erase times. The bus clock frequency and FCDIV determine the frequency 
of FCLK (fFCLK). The time for one cycle of FCLK is tFCLK = 1/fFCLK. The times are shown as a number 
of cycles of FCLK and as an absolute time for the case where tFCLK = 5 μs. Program and erase times 
shown include overhead for the command state machine and enabling and disabling of program and erase 
voltages.
MC9S08EL32 Series and MC9S08SL16 Series Data Sheet, Rev. 3
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Chapter 5 Resets, Interrupts, and General System Control
The COP counter is initialized by the first writes to the SOPT1 and SOPT2 registers after any system reset. 
Subsequent writes to SOPT1 and SOPT2 have no effect on COP operation. Even if the application will use 
the reset default settings of COPT, COPCLKS, and COPW bits, the user should write to the write-once 
SOPT1 and SOPT2 registers during reset initialization to lock in the settings. This will prevent accidental 
changes if the application program gets lost.

The write to SRS that services (clears) the COP counter should not be placed in an interrupt service routine 
(ISR) because the ISR could continue to be executed periodically even if the main application program 
fails.

If the bus clock source is selected, the COP counter does not increment while the MCU is in background 
debug mode or while the system is in stop mode. The COP counter resumes when the MCU exits 
background debug mode or stop mode.

If the 1-kHz clock source is selected, the COP counter is re-initialized to zero upon entry to either 
background debug mode or stop mode and begins from zero upon exit from background debug mode or 
stop mode.

5.5 Interrupts
Interrupts provide a way to save the current CPU status and registers, execute an interrupt service routine 
(ISR), and then restore the CPU status so processing resumes where it left off before the interrupt. Other 
than the software interrupt (SWI), which is a program instruction, interrupts are caused by hardware events 
such as an edge on an external interrupt pin or a timer-overflow event. The debug module can also generate 
an SWI under certain circumstances.

If an event occurs in an enabled interrupt source, an associated read-only status flag will become set. The 
CPU will not respond unless the local interrupt enable is a 1 to enable the interrupt and the I bit in the CCR 
is 0 to allow interrupts. The global interrupt mask (I bit) in the CCR is initially set after reset which 
prevents all maskable interrupt sources. The user program initializes the stack pointer and performs other 
system setup before clearing the I bit to allow the CPU to respond to interrupts.

When the CPU receives a qualified interrupt request, it completes the current instruction before responding 
to the interrupt. The interrupt sequence obeys the same cycle-by-cycle sequence as the SWI instruction 
and consists of:

• Saving the CPU registers on the stack
• Setting the I bit in the CCR to mask further interrupts
• Fetching the interrupt vector for the highest-priority interrupt that is currently pending
• Filling the instruction queue with the first three bytes of program information starting from the 

address fetched from the interrupt vector locations

While the CPU is responding to the interrupt, the I bit is automatically set to avoid the possibility of 
another interrupt interrupting the ISR itself (this is called nesting of interrupts). Normally, the I bit is 
restored to 0 when the CCR is restored from the value stacked on entry to the ISR. In rare cases, the I bit 
can be cleared inside an ISR (after clearing the status flag that generated the interrupt) so that other 
interrupts can be serviced without waiting for the first service routine to finish. This practice is not 
MC9S08EL32 Series and MC9S08SL16 Series Data Sheet, Rev. 3
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Chapter 5 Resets, Interrupts, and General System Control
The status flag corresponding to the interrupt source must be acknowledged (cleared) before returning 
from the ISR. Typically, the flag is cleared at the beginning of the ISR so that if another interrupt is 
generated by this same source, it will be registered so it can be serviced after completion of the current ISR.

5.5.2 Interrupt Vectors, Sources, and Local Masks

Table 5-2 provides a summary of all interrupt sources. Higher-priority sources are located toward the 
bottom of the table. The high-order byte of the address for the interrupt service routine is located at the 
first address in the vector address column, and the low-order byte of the address for the interrupt service 
routine is located at the next higher address.

When an interrupt condition occurs, an associated flag bit becomes set. If the associated local interrupt 
enable is 1, an interrupt request is sent to the CPU. Within the CPU, if the global interrupt mask (I bit in 
the CCR) is 0, the CPU will finish the current instruction; stack the PCL, PCH, X, A, and CCR CPU 
registers; set the I bit; and then fetch the interrupt vector for the highest priority pending interrupt. 
Processing then continues in the interrupt service routine.
MC9S08EL32 Series and MC9S08SL16 Series Data Sheet, Rev. 3
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Chapter 7 Central Processor Unit (S08CPUV3)
BLE rel
Branch if Less Than or Equal To 
(if Z | (N ⊕ V) = 1) (Signed)

REL 93 rr 3 ppp – 1 1 – – – – –

BLO rel Branch if Lower (if C = 1) (Same as BCS) REL 25 rr 3 ppp – 1 1 – – – – –

BLS rel Branch if Lower or Same (if C | Z = 1) REL 23 rr 3 ppp – 1 1 – – – – –

BLT rel Branch if Less Than (if N ⊕ V = 1) (Signed) REL 91 rr 3 ppp – 1 1 – – – – –

BMC rel Branch if Interrupt Mask Clear (if I = 0) REL 2C rr 3 ppp – 1 1 – – – – –

BMI rel Branch if Minus (if N = 1) REL 2B rr 3 ppp – 1 1 – – – – –

BMS rel Branch if Interrupt Mask Set (if I = 1) REL 2D rr 3 ppp – 1 1 – – – – –

BNE rel Branch if Not Equal (if Z = 0) REL 26 rr 3 ppp – 1 1 – – – – –

BPL rel Branch if Plus (if N = 0) REL 2A rr 3 ppp – 1 1 – – – – –

BRA rel Branch Always (if I = 1) REL 20 rr 3 ppp – 1 1 – – – – –

BRCLR n,opr8a,rel Branch if Bit n in Memory Clear (if (Mn) = 0)

DIR (b0)
DIR (b1)
DIR (b2)
DIR (b3)
DIR (b4)
DIR (b5)
DIR (b6)
DIR (b7)

01
03
05
07
09
0B
0D
0F

dd rr
dd rr
dd rr
dd rr
dd rr
dd rr
dd rr
dd rr

5
5
5
5
5
5
5
5

rpppp
rpppp
rpppp
rpppp
rpppp
rpppp
rpppp
rpppp

– 1 1 – – – –

BRN rel Branch Never (if I = 0) REL 21 rr 3 ppp – 1 1 – – – – –

BRSET n,opr8a,rel Branch if Bit n in Memory Set (if (Mn) = 1)

DIR (b0)
DIR (b1)
DIR (b2)
DIR (b3)
DIR (b4)
DIR (b5)
DIR (b6)
DIR (b7)

00
02
04
06
08
0A
0C
0E

dd rr
dd rr
dd rr
dd rr
dd rr
dd rr
dd rr
dd rr

5
5
5
5
5
5
5
5

rpppp
rpppp
rpppp
rpppp
rpppp
rpppp
rpppp
rpppp

– 1 1 – – – –

BSET n,opr8a Set Bit n in Memory (Mn ← 1)

DIR (b0)
DIR (b1)
DIR (b2)
DIR (b3)
DIR (b4)
DIR (b5)
DIR (b6)
DIR (b7)

10
12
14
16
18
1A
1C
1E

dd
dd
dd
dd
dd
dd
dd
dd

5
5
5
5
5
5
5
5

rfwpp
rfwpp
rfwpp
rfwpp
rfwpp
rfwpp
rfwpp
rfwpp

– 1 1 – – – – –

BSR rel

Branch to Subroutine
PC ← (PC) + $0002

 push (PCL); SP ← (SP) – $0001
push (PCH); SP ← (SP) – $0001

PC ← (PC) + rel

REL AD rr 5 ssppp – 1 1 – – – – –

CBEQ opr8a,rel
CBEQA #opr8i,rel
CBEQX #opr8i,rel
CBEQ oprx8,X+,rel
CBEQ ,X+,rel
CBEQ oprx8,SP,rel

Compare and... Branch if (A) = (M)
Branch if (A) = (M)
Branch if (X) = (M)
Branch if (A) = (M)
Branch if (A) = (M)
Branch if (A) = (M)

DIR
IMM
IMM
IX1+
IX+
SP1

31
41
51
61
71

9E 61

dd rr
ii rr
ii rr
ff rr
rr
ff rr

5
4
4
5
5
6

rpppp
pppp
pppp
rpppp
rfppp
prpppp

– 1 1 – – – – –

Table 7-2. Instruction Set Summary (Sheet 3 of 9)

Source
Form Operation

A
d

d
re

ss
M

o
d

e

Object Code

C
yc

le
s

Cyc-by-Cyc 
Details

Affect
on CCR

V 1 1 H I N Z C
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Chapter 7 Central Processor Unit (S08CPUV3)
Table 7-3. Opcode Map (Sheet 1 of 2)
Bit-Manipulation Branch Read-Modify-Write Control Register/Memory

00 5
BRSET0
3 DIR

10 5
BSET0

2 DIR

20 3
BRA

2 REL

30 5
NEG

2 DIR

40 1
NEGA

1 INH

50 1
NEGX

1 INH

60 5
NEG

2 IX1

70 4
NEG

1 IX

80 9
RTI

1 INH

90 3
BGE

2 REL

A0 2
SUB

2 IMM

B0 3
SUB

2 DIR

C0 4
SUB

3 EXT

D0 4
SUB

3 IX2

E0 3
SUB

2 IX1

F0 3
SUB

1 IX
01 5
BRCLR0
3 DIR

11 5
BCLR0

2 DIR

21 3
BRN

2 REL

31 5
CBEQ

3 DIR

41 4
CBEQA

3 IMM

51 4
CBEQX

3 IMM

61 5
CBEQ

3 IX1+

71 5
CBEQ

2 IX+

81 6
RTS

1 INH

91 3
BLT

2 REL

A1 2
CMP

2 IMM

B1 3
CMP

2 DIR

C1 4
CMP

3 EXT

D1 4
CMP

3 IX2

E1 3
CMP

2 IX1

F1 3
CMP

1 IX
02 5
BRSET1
3 DIR

12 5
BSET1

2 DIR

22 3
BHI

2 REL

32 5
LDHX

3 EXT

42 5
MUL

1 INH

52 6
DIV

1 INH

62 1
NSA

1 INH

72 1
DAA

1 INH

82 5+
BGND

1 INH

92 3
BGT

2 REL

A2 2
SBC

2 IMM

B2 3
SBC

2 DIR

C2 4
SBC

3 EXT

D2 4
SBC

3 IX2

E2 3
SBC

2 IX1

F2 3
SBC

1 IX
03 5
BRCLR1
3 DIR

13 5
BCLR1

2 DIR

23 3
BLS

2 REL

33 5
COM

2 DIR

43 1
COMA

1 INH

53 1
COMX

1 INH

63 5
COM

2 IX1

73 4
COM

1 IX

83 11
SWI

1 INH

93 3
BLE

2 REL

A3 2
CPX

2 IMM

B3 3
CPX

2 DIR

C3 4
CPX

3 EXT

D3 4
CPX

3 IX2

E3 3
CPX

2 IX1

F3 3
CPX

1 IX
04 5
BRSET2
3 DIR

14 5
BSET2

2 DIR

24 3
BCC

2 REL

34 5
LSR

2 DIR

44 1
LSRA

1 INH

54 1
LSRX

1 INH

64 5
LSR

2 IX1

74 4
LSR

1 IX

84 1
TAP

1 INH

94 2
TXS

1 INH

A4 2
AND

2 IMM

B4 3
AND

2 DIR

C4 4
AND

3 EXT

D4 4
AND

3 IX2

E4 3
AND

2 IX1

F4 3
AND

1 IX
05 5
BRCLR2
3 DIR

15 5
BCLR2

2 DIR

25 3
BCS

2 REL

35 4
STHX

2 DIR

45 3
LDHX

3 IMM

55 4
LDHX

2 DIR

65 3
CPHX

3 IMM

75 5
CPHX

2 DIR

85 1
TPA

1 INH

95 2
TSX

1 INH

A5 2
BIT

2 IMM

B5 3
BIT

2 DIR

C5 4
BIT

3 EXT

D5 4
BIT

3 IX2

E5 3
BIT

2 IX1

F5 3
BIT

1 IX
06 5
BRSET3
3 DIR

16 5
BSET3

2 DIR

26 3
BNE

2 REL

36 5
ROR

2 DIR

46 1
RORA

1 INH

56 1
RORX

1 INH

66 5
ROR

2 IX1

76 4
ROR

1 IX

86 3
PULA

1 INH

96 5
STHX

3 EXT

A6 2
LDA

2 IMM

B6 3
LDA

2 DIR

C6 4
LDA

3 EXT

D6 4
LDA

3 IX2

E6 3
LDA

2 IX1

F6 3
LDA

1 IX
07 5
BRCLR3
3 DIR

17 5
BCLR3

2 DIR

27 3
BEQ

2 REL

37 5
ASR

2 DIR

47 1
ASRA

1 INH

57 1
ASRX

1 INH

67 5
ASR

2 IX1

77 4
ASR

1 IX

87 2
PSHA

1 INH

97 1
TAX

1 INH

A7 2
AIS

2 IMM

B7 3
STA

2 DIR

C7 4
STA

3 EXT

D7 4
STA

3 IX2

E7 3
STA

2 IX1

F7 2
STA

1 IX
08 5
BRSET4
3 DIR

18 5
BSET4

2 DIR

28 3
BHCC

2 REL

38 5
LSL

2 DIR

48 1
LSLA

1 INH

58 1
LSLX

1 INH

68 5
LSL

2 IX1

78 4
LSL

1 IX

88 3
PULX

1 INH

98 1
CLC

1 INH

A8 2
EOR

2 IMM

B8 3
EOR

2 DIR

C8 4
EOR

3 EXT

D8 4
EOR

3 IX2

E8 3
EOR

2 IX1

F8 3
EOR

1 IX
09 5
BRCLR4
3 DIR

19 5
BCLR4

2 DIR

29 3
BHCS

2 REL

39 5
ROL

2 DIR

49 1
ROLA

1 INH

59 1
ROLX

1 INH

69 5
ROL

2 IX1

79 4
ROL

1 IX

89 2
PSHX

1 INH

99 1
SEC

1 INH

A9 2
ADC

2 IMM

B9 3
ADC

2 DIR

C9 4
ADC

3 EXT

D9 4
ADC

3 IX2

E9 3
ADC

2 IX1

F9 3
ADC

1 IX
0A 5
BRSET5
3 DIR

1A 5
BSET5

2 DIR

2A 3
BPL

2 REL

3A 5
DEC

2 DIR

4A 1
DECA

1 INH

5A 1
DECX

1 INH

6A 5
DEC

2 IX1

7A 4
DEC

1 IX

8A 3
PULH

1 INH

9A 1
CLI

1 INH

AA 2
ORA

2 IMM

BA 3
ORA

2 DIR

CA 4
ORA

3 EXT

DA 4
ORA

3 IX2

EA 3
ORA

2 IX1

FA 3
ORA

1 IX
0B 5
BRCLR5
3 DIR

1B 5
BCLR5

2 DIR

2B 3
BMI

2 REL

3B 7
DBNZ

3 DIR

4B 4
DBNZA

2 INH

5B 4
DBNZX

2 INH

6B 7
DBNZ

3 IX1

7B 6
DBNZ

2 IX

8B 2
PSHH

1 INH

9B 1
SEI

1 INH

AB 2
ADD

2 IMM

BB 3
ADD

2 DIR

CB 4
ADD

3 EXT

DB 4
ADD

3 IX2

EB 3
ADD

2 IX1

FB 3
ADD

1 IX
0C 5
BRSET6
3 DIR

1C 5
BSET6

2 DIR

2C 3
BMC

2 REL

3C 5
INC

2 DIR

4C 1
INCA

1 INH

5C 1
INCX

1 INH

6C 5
INC

2 IX1

7C 4
INC

1 IX

8C 1
CLRH

1 INH

9C 1
RSP

1 INH

BC 3
JMP

2 DIR

CC 4
JMP

3 EXT

DC 4
JMP

3 IX2

EC 3
JMP

2 IX1

FC 3
JMP

1 IX
0D 5
BRCLR6
3 DIR

1D 5
BCLR6

2 DIR

2D 3
BMS

2 REL

3D 4
TST

2 DIR

4D 1
TSTA

1 INH

5D 1
TSTX

1 INH

6D 4
TST

2 IX1

7D 3
TST

1 IX

9D 1
NOP

1 INH

AD 5
BSR

2 REL

BD 5
JSR

2 DIR

CD 6
JSR

3 EXT

DD 6
JSR

3 IX2

ED 5
JSR

2 IX1

FD 5
JSR

1 IX
0E 5
BRSET7
3 DIR

1E 5
BSET7

2 DIR

2E 3
BIL

2 REL

3E 6
CPHX

3 EXT

4E 5
MOV

3 DD

5E 5
MOV

2 DIX+

6E 4
MOV

3 IMD

7E 5
MOV

2 IX+D

8E 2+
STOP

1 INH

9E
Page 2

AE 2
LDX

2 IMM

BE 3
LDX

2 DIR

CE 4
LDX

3 EXT

DE 4
LDX

3 IX2

EE 3
LDX

2 IX1

FE 3
LDX

1 IX
0F 5
BRCLR7
3 DIR

1F 5
BCLR7

2 DIR

2F 3
BIH

2 REL

3F 5
CLR

2 DIR

4F 1
CLRA

1 INH

5F 1
CLRX

1 INH

6F 5
CLR

2 IX1

7F 4
CLR

1 IX

8F 2+
WAIT

1 INH

9F 1
TXA

1 INH

AF 2
AIX

2 IMM

BF 3
STX

2 DIR

CF 4
STX

3 EXT

DF 4
STX

3 IX2

EF 3
STX

2 IX1

FF 2
STX

1 IX

INH Inherent REL Relative SP1 Stack Pointer, 8-Bit Offset
IMM Immediate IX Indexed, No Offset SP2 Stack Pointer, 16-Bit Offset
DIR Direct IX1 Indexed, 8-Bit Offset IX+ Indexed, No Offset with 
EXT Extended IX2 Indexed, 16-Bit Offset Post Increment
DD DIR to DIR IMD IMM to DIR IX1+ Indexed, 1-Byte Offset with 
IX+D IX+ to DIR DIX+ DIR to IX+ Post Increment Opcode in

Hexadecimal

Number of Bytes

F0 3
SUB

1 IX

HCS08 Cycles
Instruction Mnemonic
Addressing Mode
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Chapter 7 Central Processor Unit (S08CPUV3)
Bit-Manipulation Branch Read-Modify-Write Control Register/Memory
9E60 6

NEG
3 SP1

9ED0 5
SUB

4 SP2

9EE0 4
SUB

3 SP1
9E61 6

CBEQ
4 SP1

9ED1 5
CMP

4 SP2

9EE1 4
CMP

3 SP1
9ED2 5

SBC
4 SP2

9EE2 4
SBC

3 SP1
9E63 6

COM
3 SP1

9ED3 5
CPX

4 SP2

9EE3 4
CPX

3 SP1

9EF3 6
CPHX

3 SP1
9E64 6

LSR
3 SP1

9ED4 5
AND

4 SP2

9EE4 4
AND

3 SP1
9ED5 5

BIT
4 SP2

9EE5 4
BIT

3 SP1
9E66 6

ROR
3 SP1

9ED6 5
LDA

4 SP2

9EE6 4
LDA

3 SP1
9E67 6

ASR
3 SP1

9ED7 5
STA

4 SP2

9EE7 4
STA

3 SP1
9E68 6

LSL
3 SP1

9ED8 5
EOR

4 SP2

9EE8 4
EOR

3 SP1
9E69 6

ROL
3 SP1

9ED9 5
ADC

4 SP2

9EE9 4
ADC

3 SP1
9E6A 6

DEC
3 SP1

9EDA 5
ORA

4 SP2

9EEA 4
ORA

3 SP1
9E6B 8

DBNZ
4 SP1

9EDB 5
ADD

4 SP2

9EEB 4
ADD

3 SP1
9E6C 6

INC
3 SP1
9E6D 5

TST
3 SP1

9EAE 5
LDHX

2 IX

9EBE 6
LDHX

4 IX2

9ECE 5
LDHX

3 IX1

9EDE 5
LDX

4 SP2

9EEE 4
LDX

3 SP1

9EFE 5
LDHX

3 SP1
9E6F 6

CLR
3 SP1

9EDF 5
STX

4 SP2

9EEF 4
STX

3 SP1

9EFF 5
STHX

3 SP1

INH Inherent REL Relative SP1 Stack Pointer, 8-Bit Offset
IMM Immediate IX Indexed, No Offset SP2 Stack Pointer, 16-Bit Offset
DIR Direct IX1 Indexed, 8-Bit Offset IX+ Indexed, No Offset with 
EXT Extended IX2 Indexed, 16-Bit Offset Post Increment
DD DIR to DIR IMD IMM to DIR IX1+ Indexed, 1-Byte Offset with 
IX+D IX+ to DIR DIX+ DIR to IX+ Post Increment

Note: All Sheet 2 Opcodes are Preceded by the Page 2 Prebyte (9E) Prebyte (9E) and Opcode in
Hexadecimal

Number of Bytes

9E60 6
NEG

3 SP1

HCS08 Cycles
Instruction Mnemonic
Addressing Mode

Table 7-3. Opcode Map (Sheet 2 of 2)
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Internal Clock Source (S08ICSV2) 
8.3.1 ICS Control Register 1 (ICSC1)

 7 6 5 4 3 2 1 0

R
CLKS RDIV IREFS IRCLKEN IREFSTEN

W

Reset: 0 0 0 0 0 1 0 0

Figure 8-3. ICS Control Register 1 (ICSC1)

Table 8-2. ICS Control Register 1 Field Descriptions

Field Description

7:6
CLKS

Clock Source Select — Selects the clock source that controls the bus frequency. The actual bus frequency 
depends on the value of the BDIV bits.
00 Output of FLL is selected.
01 Internal reference clock is selected.
10 External reference clock is selected.
11 Reserved, defaults to 00.

5:3
RDIV

Reference Divider — Selects the amount to divide down the FLL reference clock selected by the IREFS bits. 
Resulting frequency must be in the range 31.25 kHz to 39.0625 kHz.
000 Encoding 0 — Divides reference clock by 1 (reset default)
001 Encoding 1 — Divides reference clock by 2
010 Encoding 2 — Divides reference clock by 4
011 Encoding 3 — Divides reference clock by 8
100 Encoding 4 — Divides reference clock by 16
101 Encoding 5 — Divides reference clock by 32
110 Encoding 6 — Divides reference clock by 64
111 Encoding 7 — Divides reference clock by 128

2
IREFS

Internal Reference Select — The IREFS bit selects the reference clock source for the FLL.
1 Internal reference clock selected
0 External reference clock selected

1
IRCLKEN

Internal Reference Clock Enable — The IRCLKEN bit enables the internal reference clock for use as 
ICSIRCLK.
1 ICSIRCLK active
0 ICSIRCLK inactive

0
IREFSTEN

Internal Reference Stop Enable — The IREFSTEN bit controls whether or not the internal reference clock 
remains enabled when the ICS enters stop mode.
1 Internal reference clock stays enabled in stop if IRCLKEN is set or if ICS is in FEI, FBI, or FBILP mode before 

entering stop
0 Internal reference clock is disabled in stop
MC9S08EL32 Series and MC9S08SL16 Series Data Sheet, Rev. 3
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Internal Clock Source (S08ICSV2)
8.4.1.5 FLL Bypassed External (FBE)

The FLL bypassed external (FBE) mode is entered when all the following conditions occur:
• CLKS bits are written to 10.
• IREFS bit is written to 0.
• BDM mode is active or LP bit is written to 0.

In FLL bypassed external mode, the ICSOUT clock is derived from the external reference clock. The FLL 
clock is controlled by the external reference clock, and the FLL loop will lock the FLL frequency to 1024 
times the reference frequency, as selected by the RDIV bits, so that the ICSLCLK will be available for 
BDC communications, and the external reference clock is enabled.

8.4.1.6 FLL Bypassed External Low Power (FBELP)

The FLL bypassed external low power (FBELP) mode is entered when all the following conditions occur:
• CLKS bits are written to 10.
• IREFS bit is written to 0.
• BDM mode is not active and LP bit is written to 1.

In FLL bypassed external low power mode, the ICSOUT clock is derived from the external reference clock 
and the FLL is disabled. The ICSLCLK will be not be available for BDC communications. The external 
reference clock is enabled.

8.4.1.7 Stop

Stop mode is entered whenever the MCU enters a STOP state. In this mode, all ICS clock signals are static 
except in the following cases:

ICSIRCLK will be active in stop mode when all the following conditions occur:
• IRCLKEN bit is written to 1
• IREFSTEN bit is written to 1

ICSERCLK will be active in stop mode when all the following conditions occur:
• ERCLKEN bit is written to 1
• EREFSTEN bit is written to 1

8.4.2 Mode Switching

When switching between FLL engaged internal (FEI) and FLL engaged external (FEE) modes the IREFS 
bit can be changed at anytime, but the RDIV bits must be changed simultaneously so that the resulting 
frequency stays in the range of 31.25 kHz to 39.0625 kHz. After a change in the IREFS value the FLL will 
begin locking again after a few full cycles of the resulting divided reference frequency. The completion of 
the switch is shown by the IREFST bit.
MC9S08EL32 Series and MC9S08SL16 Series Data Sheet, Rev. 3
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Analog-to-Digital Converter (S08ADC10V1) 
 

7 6 5 4 3 2 1 0

R COCO
AIEN ADCO ADCH

W

Reset: 0 0 0 1 1 1 1 1

= Unimplemented or Reserved

Figure 10-3.  Status and Control Register (ADCSC1)

Table 10-3. ADCSC1 Register Field Descriptions

Field Description

7
COCO

Conversion Complete Flag — The COCO flag is a read-only bit which is set each time a conversion is 
completed when the compare function is disabled (ACFE = 0). When the compare function is enabled (ACFE = 
1) the COCO flag is set upon completion of a conversion only if the compare result is true. This bit is cleared 
whenever ADCSC1 is written or whenever ADCRL is read.
0 Conversion not completed
1 Conversion completed

6
AIEN

Interrupt Enable — AIEN is used to enable conversion complete interrupts. When COCO becomes set while 
AIEN is high, an interrupt is asserted.
0 Conversion complete interrupt disabled
1 Conversion complete interrupt enabled

5
ADCO

Continuous Conversion Enable — ADCO is used to enable continuous conversions.
0 One conversion following a write to the ADCSC1 when software triggered operation is selected, or one 

conversion following assertion of ADHWT when hardware triggered operation is selected.
1 Continuous conversions initiated following a write to ADCSC1 when software triggered operation is selected. 

Continuous conversions are initiated by an ADHWT event when hardware triggered operation is selected.

4:0
ADCH

Input Channel Select — The ADCH bits form a 5-bit field which is used to select one of the input channels. The 
input channels are detailed in Figure 10-4.
The successive approximation converter subsystem is turned off when the channel select bits are all set to 1. 
This feature allows for explicit disabling of the ADC and isolation of the input channel from all sources. 
Terminating continuous conversions this way will prevent an additional, single conversion from being performed. 
It is not necessary to set the channel select bits to all 1s to place the ADC in a low-power state when continuous 
conversions are not enabled because the module automatically enters a low-power state when a conversion 
completes.

Figure 10-4. Input Channel Select

ADCH Input Select ADCH Input Select

00000 AD0 10000 AD16

00001 AD1 10001 AD17

00010 AD2 10010 AD18

00011 AD3 10011 AD19

00100 AD4 10100 AD20

00101 AD5 10101 AD21

00110 AD6 10110 AD22

00111 AD7 10111 AD23
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Analog-to-Digital Converter (S08ADC10V1)
10.3.5 Compare Value High Register (ADCCVH)

This register holds the upper two bits of the 10-bit compare value. These bits are compared to the upper 
two bits of the result following a conversion in 10-bit mode when the compare function is enabled.In 8-bit 
operation, ADCCVH is not used during compare.

10.3.6 Compare Value Low Register (ADCCVL)

This register holds the lower 8 bits of the 10-bit compare value, or all 8 bits of the 8-bit compare value. 
Bits ADCV7:ADCV0 are compared to the lower 8 bits of the result following a conversion in either 10-bit 
or 8-bit mode.

10.3.7 Configuration Register (ADCCFG)

ADCCFG is used to select the mode of operation, clock source, clock divide, and configure for low power 
or long sample time.

7 6 5 4 3 2 1 0

R ADR7 ADR6 ADR5 ADR4 ADR3 ADR2 ADR1 ADR0

W

Reset: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 10-7.  Data Result Low Register (ADCRL)

7 6 5 4 3 2 1 0

R 0 0 0 0
ADCV9 ADCV8

W

Reset: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 10-8.  Compare Value High Register (ADCCVH)

7 6 5 4 3 2 1 0

R
ADCV7 ADCV6 ADCV5 ADCV4 ADCV3 ADCV2 ADCV1 ADCV0

W

Reset: 0 0 0 0 0 0 0 0

Figure 10-9.  Compare Value Low Register(ADCCVL)
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Analog-to-Digital Converter (S08ADC10V1)
10.6.2 Sources of Error

Several sources of error exist for A/D conversions. These are discussed in the following sections.

10.6.2.1 Sampling Error

For proper conversions, the input must be sampled long enough to achieve the proper accuracy. Given the 
maximum input resistance of approximately 7kΩ and input capacitance of approximately 5.5 pF, sampling 
to within 1/4LSB (at 10-bit resolution) can be achieved within the minimum sample window (3.5 cycles @ 
8 MHz maximum ADCK frequency) provided the resistance of the external analog source (RAS) is kept 
below 5 kΩ.

Higher source resistances or higher-accuracy sampling is possible by setting ADLSMP (to increase the 
sample window to 23.5 cycles) or decreasing ADCK frequency to increase sample time.

10.6.2.2 Pin Leakage Error

Leakage on the I/O pins can cause conversion error if the external analog source resistance (RAS) is high. 
If this error cannot be tolerated by the application, keep RAS lower than VDDAD / (2N*ILEAK) for less than 
1/4LSB leakage error (N = 8 in 8-bit mode or 10 in 10-bit mode).

10.6.2.3 Noise-Induced Errors

System noise which occurs during the sample or conversion process can affect the accuracy of the 
conversion. The ADC accuracy numbers are guaranteed as specified only if the following conditions are 
met:

• There is a 0.1 μF low-ESR capacitor from VREFH to VREFL.
• There is a 0.1 μF low-ESR capacitor from VDDAD to VSSAD.
• If inductive isolation is used from the primary supply, an additional 1 μF capacitor is placed from 

VDDAD to VSSAD.
• VSSAD (and VREFL, if connected) is connected to VSS at a quiet point in the ground plane.
• Operate the MCU in wait or stop3 mode before initiating (hardware triggered conversions) or 

immediately after initiating (hardware or software triggered conversions) the ADC conversion. 
— For software triggered conversions, immediately follow the write to the ADCSC1 with a WAIT 

instruction or STOP instruction.
— For stop3 mode operation, select ADACK as the clock source. Operation in stop3 reduces VDD 

noise but increases effective conversion time due to stop recovery.
• There is no I/O switching, input or output, on the MCU during the conversion.

There are some situations where external system activity causes radiated or conducted noise emissions or 
excessive VDD noise is coupled into the ADC. In these situations, or when the MCU cannot be placed in 
wait or stop3 or I/O activity cannot be halted, these recommended actions may reduce the effect of noise 
on the accuracy:

• Place a 0.01 μF capacitor (CAS) on the selected input channel to VREFL or VSSAD (this will 
improve noise issues but will affect sample rate based on the external analog source resistance).
MC9S08EL32 Series and MC9S08SL16 Series Data Sheet, Rev. 3
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The above numbers assume a perfect input waveforms into the SLCRX pin, where 1 and 0 bits are of equal 
length and are exactly the correct length for the appropriate speed. Factors such as physical layer wave 
shaping and ground shift can affect the symmetry of these waveforms, causing bits to appear shortened or 
lengthened as seen by the SLIC module. The user must take these factors into account and base the 
maximum speed upon the shortest possible bit time that the SLIC module may observe, factoring in all 
physical layer effects. On some LIN physical layer devices it is possible to turn off wave shaping circuitry 
for high-speed operation, removing this portion of the physical layer error. 

The digital receive filter can also affect high speed operation if it is set too low and begins to filter out valid 
message traffic. Under ideal conditions, this will not happen, as the digital filter maximum speeds 
allowable are higher than the speeds allowed for ±1.5% accuracy. If the digital receive filter prescaler is 
set to divide-by-4; however, the filter delay is very close to the ±1.5% accuracy maximum bit time. 

For example, with a SLIC clock of 4 MHz, the SLIC module is capable of maintaining ±1.5% accuracy up 
to 60,000 bps. If the digital receive filter prescaler is set to divide-by-4, this means that the filter will only 
pass message traffic which is 62,500 bps or slower under ideal circumstances. This is only a difference of 
2,500 bps (4.17% of the nominal valid message traffic speed). In this case, the user must ensure that with 
all errors accounted for, no bit will appear shorter than 16 μs 
(1 bit at 62,500 bps) or the filter will block that bit. This is far too narrow a margin for safe design practices. 
The better solution would be to reduce the filter prescaler, increasing the gap between the filter cut-off 
point and the nominal speed of valid message traffic. Changing the prescaler to divide by 2 in this example 
gives a filter cut-off of 125,000 bps, which is 60,000 bps faster than the nominal speed of the LIN bus and 
much less likely to interfere with valid message traffic. 

To ensure that all valid messages pass the filter stage in high-speed operation, it is best to ensure that the 
filter cut-off point is at least 2 times the nominal speed of the fastest message traffic to appear on the bus. 
Refer to Table 12-13 for a more complete list of the digital receive filter delays as they relate to the 
maximum LIN bus frequency. Table 12-14 repeats much of the data found in Table 12-13; however, the 
filter delay values (cutoff values) are shown in the frequency and time domains. Note that Table 12-14 
shows the filter performance under ideal conditions.

When switching between a low-speed (< 4800 bps) to a high-speed (> 40000 bps) LIN message, the master 
node must allow a minimum idle time of eight bit times (of the slowest bit rate) between the messages. 
This prevents a valid message at another frequency from being detected as an invalid message.

1 Bit rates over 120,000 bits per second are not recommended for LIN 
communications, as physical layer delay between the TX and RX pins can cause 
the stop bit of a byte to be mis-sampled as the last data bit. This could result in a 
byte framing error.
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Serial Communications Interface (S08SCIV4) 
status flag is set. If RDRF was already set indicating the receive data register (buffer) was already full, the 
overrun (OR) status flag is set and the new data is lost. Because the SCI receiver is double-buffered, the 
program has one full character time after RDRF is set before the data in the receive data buffer must be 
read to avoid a receiver overrun.

When a program detects that the receive data register is full (RDRF = 1), it gets the data from the receive 
data register by reading SCIxD. The RDRF flag is cleared automatically by a 2-step sequence which is 
normally satisfied in the course of the user’s program that handles receive data. Refer to Section 14.3.4, 
“Interrupts and Status Flags” for more details about flag clearing.

14.3.3.1 Data Sampling Technique

The SCI receiver uses a 16× baud rate clock for sampling. The receiver starts by taking logic level samples 
at 16 times the baud rate to search for a falling edge on the RxD serial data input pin. A falling edge is 
defined as a logic 0 sample after three consecutive logic 1 samples. The 16× baud rate clock is used to 
divide the bit time into 16 segments labeled RT1 through RT16. When a falling edge is located, three more 
samples are taken at RT3, RT5, and RT7 to make sure this was a real start bit and not merely noise. If at 
least two of these three samples are 0, the receiver assumes it is synchronized to a receive character.

The receiver then samples each bit time, including the start and stop bits, at RT8, RT9, and RT10 to 
determine the logic level for that bit. The logic level is interpreted to be that of the majority of the samples 
taken during the bit time. In the case of the start bit, the bit is assumed to be 0 if at least two of the samples 
at RT3, RT5, and RT7 are 0 even if one or all of the samples taken at RT8, RT9, and RT10 are 1s. If any 
sample in any bit time (including the start and stop bits) in a character frame fails to agree with the logic 
level for that bit, the noise flag (NF) will be set when the received character is transferred to the receive 
data buffer.

The falling edge detection logic continuously looks for falling edges, and if an edge is detected, the sample 
clock is resynchronized to bit times. This improves the reliability of the receiver in the presence of noise 
or mismatched baud rates. It does not improve worst case analysis because some characters do not have 
any extra falling edges anywhere in the character frame.

In the case of a framing error, provided the received character was not a break character, the sampling logic 
that searches for a falling edge is filled with three logic 1 samples so that a new start bit can be detected 
almost immediately.

In the case of a framing error, the receiver is inhibited from receiving any new characters until the framing 
error flag is cleared. The receive shift register continues to function, but a complete character cannot 
transfer to the receive data buffer if FE is still set.

14.3.3.2 Receiver Wakeup Operation

Receiver wakeup is a hardware mechanism that allows an SCI receiver to ignore the characters in a 
message that is intended for a different SCI receiver. In such a system, all receivers evaluate the first 
character(s) of each message, and as soon as they determine the message is intended for a different 
receiver, they write logic 1 to the receiver wake up (RWU) control bit in SCIxC2. When RWU bit is set, 
the status flags associated with the receiver (with the exception of the idle bit, IDLE, when RWUID bit is 
set) are inhibited from setting, thus eliminating the software overhead for handling the unimportant 
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Timer/PWM Module (S08TPMV3)
16.3.5 TPM Channel Value Registers (TPMxCnVH:TPMxCnVL)

These read/write registers contain the captured TPM counter value of the input capture function or the 
output compare value for the output compare or PWM functions. The channel registers are cleared by 
reset.

In input capture mode, reading either byte (TPMxCnVH or TPMxCnVL) latches the contents of both bytes 
into a buffer where they remain latched until the other half is read. This latching mechanism also resets 

0 00 01 Input capture Capture on rising edge 
only

10 Capture on falling edge 
only

11 Capture on rising or 
falling edge

01 01 Output compare Toggle output on 
compare

10 Clear output on 
compare

11 Set output on compare

1X 10 Edge-aligned 
PWM

High-true pulses (clear 
output on compare)

X1 Low-true pulses (set 
output on compare)

1 XX 10 Center-aligned 
PWM

High-true pulses (clear 
output on compare-up)

X1 Low-true pulses (set 
output on compare-up)

7 6 5 4 3 2 1 0

R
Bit 15 14 13 12 11 10 9 Bit 8

W

Reset 0 0 0 0 0 0 0 0

Figure 16-13. TPM Channel Value Register High (TPMxCnVH)

7 6 5 4 3 2 1 0

R
Bit 7 6 5 4 3 2 1 Bit 0

W

Reset 0 0 0 0 0 0 0 0

Figure 16-14. TPM Channel Value Register Low (TPMxCnVL)

Table 16-7.  Mode, Edge, and Level Selection

CPWMS MSnB:MSnA ELSnB:ELSnA Mode Configuration
MC9S08EL32 Series and MC9S08SL16 Series Data Sheet, Rev. 3

Freescale Semiconductor 293
 



Timer/PWM Module (S08TPMV3)
16.4.1.3 Counting Modes

The main timer counter has two counting modes. When center-aligned PWM is selected (CPWMS=1), the 
counter operates in up/down counting mode. Otherwise, the counter operates as a simple up counter. As 
an up counter, the timer counter counts from 0x0000 through its terminal count and then continues with 
0x0000. The terminal count is 0xFFFF or a modulus value in TPMxMODH:TPMxMODL.

When center-aligned PWM operation is specified, the counter counts up from 0x0000 through its terminal 
count and then down to 0x0000 where it changes back to up counting. Both 0x0000 and the terminal count 
value are normal length counts (one timer clock period long). In this mode, the timer overflow flag (TOF) 
becomes set at the end of the terminal-count period (as the count changes to the next lower count value).

16.4.1.4 Manual Counter Reset

The main timer counter can be manually reset at any time by writing any value to either half of 
TPMxCNTH or TPMxCNTL. Resetting the counter in this manner also resets the coherency mechanism 
in case only half of the counter was read before resetting the count.

16.4.2 Channel Mode Selection

Provided CPWMS=0, the MSnB and MSnA control bits in the channel n status and control registers 
determine the basic mode of operation for the corresponding channel. Choices include input capture, 
output compare, and edge-aligned PWM.

16.4.2.1 Input Capture Mode

With the input-capture function, the TPM can capture the time at which an external event occurs. When 
an active edge occurs on the pin of an input-capture channel, the TPM latches the contents of the TPM 
counter into the channel-value registers (TPMxCnVH:TPMxCnVL). Rising edges, falling edges, or any 
edge may be chosen as the active edge that triggers an input capture.

In input capture mode, the TPMxCnVH and TPMxCnVL registers are read only.

When either half of the 16-bit capture register is read, the other half is latched into a buffer to support 
coherent 16-bit accesses in big-endian or little-endian order. The coherency sequence can be manually 
reset by writing to the channel status/control register (TPMxCnSC).

An input capture event sets a flag bit (CHnF) which may optionally generate a CPU interrupt request.

While in BDM, the input capture function works as configured by the user. When an external event occurs, 
the TPM latches the contents of the TPM counter (which is frozen because of the BDM mode) into the 
channel value registers and sets the flag bit.

16.4.2.2 Output Compare Mode

With the output-compare function, the TPM can generate timed pulses with programmable position, 
polarity, duration, and frequency. When the counter reaches the value in the channel-value registers of an 
output-compare channel, the TPM can set, clear, or toggle the channel pin.
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When no debugger pod is connected to the 6-pin BDM interface connector, the internal pullup on BKGD 
chooses normal operating mode. When a debug pod is connected to BKGD it is possible to force the MCU 
into active background mode after reset. The specific conditions for forcing active background depend 
upon the HCS08 derivative (refer to the introduction to this Development Support section). It is not 
necessary to reset the target MCU to communicate with it through the background debug interface.

17.2.2 Communication Details

The BDC serial interface requires the external controller to generate a falling edge on the BKGD pin to 
indicate the start of each bit time. The external controller provides this falling edge whether data is 
transmitted or received.

BKGD is a pseudo-open-drain pin that can be driven either by an external controller or by the MCU. Data 
is transferred MSB first at 16 BDC clock cycles per bit (nominal speed). The interface times out if 
512 BDC clock cycles occur between falling edges from the host. Any BDC command that was in progress 
when this timeout occurs is aborted without affecting the memory or operating mode of the target MCU 
system.

The custom serial protocol requires the debug pod to know the target BDC communication clock speed. 

The clock switch (CLKSW) control bit in the BDC status and control register allows the user to select the 
BDC clock source. The BDC clock source can either be the bus or the alternate BDC clock source. 

The BKGD pin can receive a high or low level or transmit a high or low level. The following diagrams 
show timing for each of these cases. Interface timing is synchronous to clocks in the target BDC, but 
asynchronous to the external host. The internal BDC clock signal is shown for reference in counting 
cycles.
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17.3 On-Chip Debug System (DBG)
Because HCS08 devices do not have external address and data buses, the most important functions of an 
in-circuit emulator have been built onto the chip with the MCU. The debug system consists of an 8-stage 
FIFO that can store address or data bus information, and a flexible trigger system to decide when to capture 
bus information and what information to capture. The system relies on the single-wire background debug 
system to access debug control registers and to read results out of the eight stage FIFO.

The debug module includes control and status registers that are accessible in the user’s memory map. 
These registers are located in the high register space to avoid using valuable direct page memory space.

Most of the debug module’s functions are used during development, and user programs rarely access any 
of the control and status registers for the debug module. The one exception is that the debug system can 
provide the means to implement a form of ROM patching. This topic is discussed in greater detail in 
Section 17.3.6, “Hardware Breakpoints.”

17.3.1 Comparators A and B

Two 16-bit comparators (A and B) can optionally be qualified with the R/W signal and an opcode tracking 
circuit. Separate control bits allow you to ignore R/W for each comparator. The opcode tracking circuitry 
optionally allows you to specify that a trigger will occur only if the opcode at the specified address is 
actually executed as opposed to only being read from memory into the instruction queue. The comparators 
are also capable of magnitude comparisons to support the inside range and outside range trigger modes. 
Comparators are disabled temporarily during all BDC accesses.

The A comparator is always associated with the 16-bit CPU address. The B comparator compares to the 
CPU address or the 8-bit CPU data bus, depending on the trigger mode selected. Because the CPU data 
bus is separated into a read data bus and a write data bus, the RWAEN and RWA control bits have an 
additional purpose, in full address plus data comparisons they are used to decide which of these buses to 
use in the comparator B data bus comparisons. If RWAEN = 1 (enabled) and RWA = 0 (write), the CPU’s 
write data bus is used. Otherwise, the CPU’s read data bus is used.

The currently selected trigger mode determines what the debugger logic does when a comparator detects 
a qualified match condition. A match can cause:

• Generation of a breakpoint to the CPU 
• Storage of data bus values into the FIFO
• Starting to store change-of-flow addresses into the FIFO (begin type trace)
• Stopping the storage of change-of-flow addresses into the FIFO (end type trace)

17.3.2 Bus Capture Information and FIFO Operation

The usual way to use the FIFO is to setup the trigger mode and other control options, then arm the 
debugger. When the FIFO has filled or the debugger has stopped storing data into the FIFO, you would 
read the information out of it in the order it was stored into the FIFO. Status bits indicate the number of 
words of valid information that are in the FIFO as data is stored into it. If a trace run is manually halted by 
writing 0 to ARM before the FIFO is full (CNT = 1:0:0:0), the information is shifted by one position and 
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17.4.1.1 BDC Status and Control Register (BDCSCR)

This register can be read or written by serial BDC commands (READ_STATUS and WRITE_CONTROL) 
but is not accessible to user programs because it is not located in the normal memory map of the MCU.
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Figure 17-6. BDC Status and Control Register (BDCSCR)

Table 17-2. BDCSCR Register Field Descriptions

Field Description

7
ENBDM

Enable BDM (Permit Active Background Mode) — Typically, this bit is written to 1 by the debug host shortly 
after the beginning of a debug session or whenever the debug host resets the target and remains 1 until a normal 
reset clears it.
0 BDM cannot be made active (non-intrusive commands still allowed)
1 BDM can be made active to allow active background mode commands

6
BDMACT

Background Mode Active Status — This is a read-only status bit.
0 BDM not active (user application program running)
1 BDM active and waiting for serial commands

5
BKPTEN

BDC Breakpoint Enable — If this bit is clear, the BDC breakpoint is disabled and the FTS (force tag select) 
control bit and BDCBKPT match register are ignored.
0 BDC breakpoint disabled
1 BDC breakpoint enabled

4
FTS

Force/Tag Select — When FTS = 1, a breakpoint is requested whenever the CPU address bus matches the 
BDCBKPT match register. When FTS = 0, a match between the CPU address bus and the BDCBKPT register 
causes the fetched opcode to be tagged. If this tagged opcode ever reaches the end of the instruction queue, 
the CPU enters active background mode rather than executing the tagged opcode.
0 Tag opcode at breakpoint address and enter active background mode if CPU attempts to execute that 

instruction
1 Breakpoint match forces active background mode at next instruction boundary (address need not be an 

opcode)

3
CLKSW

Select Source for BDC Communications Clock — CLKSW defaults to 0, which selects the alternate BDC clock 
source.
0 Alternate BDC clock source
1 MCU bus clock
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