E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	S08
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, LINbus, SCI, SPI
Peripherals	LVD, POR, PWM, WDT
Number of I/O	22
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	28-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/s9s08sl8f1ctl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Chapter 2 Pins and Connections

2.2 Recommended System Connections

Figure 2-3 shows pin connections that are common to MC9S08EL32 Series and MC9S08SL16 Series application systems.

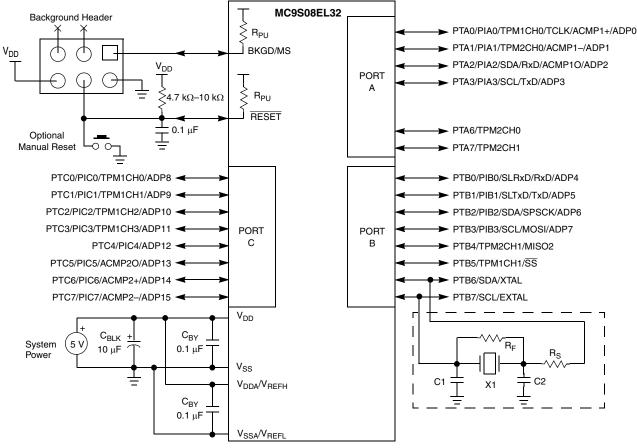


Figure 2-3. Basic System Connections

2.2.1 Power

 V_{DD} and V_{SS} are the primary power supply pins for the MCU. This voltage source supplies power to all I/O buffer circuitry and to an internal voltage regulator. The internal voltage regulator provides a regulated lower-voltage source to the CPU and other internal circuitry of the MCU.

Typically, application systems have two separate capacitors across the power pins. In this case, there should be a bulk electrolytic capacitor, such as a $10-\mu$ F tantalum capacitor, to provide bulk charge storage for the overall system and a $0.1-\mu$ F ceramic bypass capacitor located as near to the MCU power pins as practical to suppress high-frequency noise. Each pin must have a bypass capacitor for best noise suppression.

 V_{DDA} and V_{SSA} are the analog power supply pins for the MCU. This voltage source supplies power to the ADC module. A 0.1- μ F ceramic bypass capacitor should be located as near to the MCU power pins as practical to suppress high-frequency noise. The V_{REFH} and V_{REFL} pins are the voltage reference high and voltage reference low inputs, respectively, for the ADC module.

Chapter 2 Pins and Connections

NOTE

In EMC-sensitive applications, use an external RC filter on $\overline{\text{RESET}}$. See Figure 2-3 for an example.

2.2.4 Background / Mode Select (BKGD/MS)

While in reset, the BKGD/MS pin functions as a mode select pin. Immediately after reset rises, the pin functions as the background pin and can be used for background debug communication. While functioning as a background or mode select pin, the pin includes an internal pull-up device, input hysteresis, a standard output driver, and no output slew rate control.

If nothing is connected to this pin, the MCU will enter normal operating mode at the rising edge of reset. If a debug system is connected to the 6-pin standard background debug header, it can hold BKGD low during the rising edge of reset which forces the MCU to active background mode.

The BKGD/MS pin is used primarily for background debug controller (BDC) communications using a custom protocol that uses 16 clock cycles of the target MCU's BDC clock per bit time. The target MCU's BDC clock could be as fast as the bus clock rate, so there should never be any significant capacitance connected to the BKGD/MS pin that could interfere with background serial communications.

Although the BKGD/MS pin is a pseudo open-drain pin, the background debug communication protocol provides brief, actively driven, high speedup pulses to ensure fast rise times. Small capacitances from cables and the absolute value of the internal pull-up device play almost no role in determining rise and fall times on the BKGD/MS pin.

2.2.5 General-Purpose I/O and Peripheral Ports

The MC9S08EL32 Series and MC9S08SL16 Series of MCUs support up to 22 general-purpose I/O pins which are shared with on-chip peripheral functions (timers, serial I/O, ADC, etc.).

When a port pin is configured as a general-purpose output or a peripheral uses the port pin as an output, software can select one of two drive strengths and enable or disable slew rate control. When a port pin is configured as a general-purpose input or a peripheral uses the port pin as an input, software can enable a pull-up device. Immediately after reset, all of these pins are configured as high-impedance general-purpose inputs with internal pull-up devices disabled.

When an on-chip peripheral system is controlling a pin, data direction control bits still determine what is read from port data registers even though the peripheral module controls the pin direction by controlling the enable for the pin's output buffer. For information about controlling these pins as general-purpose I/O pins, see Chapter 6, "Parallel Input/Output Control."

NOTE

To avoid extra current drain from floating input pins, the reset initialization routine in the application program should either enable on-chip pull-up devices or change the direction of unused or non-bonded pins to outputs so they do not float.

4.5 FLASH and EEPROM

The MC9S08EL32 Series and MC9S08SL16 Series includes FLASH and EEPROM memory intended primarily for program and data storage. In-circuit programming allows the operating program and data to be loaded into FLASH and EEPROM, respectively, after final assembly of the application product. It is possible to program the arrays through the single-wire background debug interface. Because no special voltages are needed for erase and programming operations, in-application programming is also possible through other software-controlled communication paths. For a more detailed discussion of in-circuit and in-application programming, refer to the *HCS08 Family Reference Manual, Volume I*, Freescale Semiconductor document order number HCS08RMv1/D.

4.5.1 Features

Features of the FLASH and EEPROM memory include:

- Array size
 - MC9S08EL32: 32,768 bytes of FLASH, 512 bytes of EEPROM
 - MC9S08EL16: 16,384 bytes of FLASH, 512 bytes of EEPROM
 - MC9S08SL16: 16,384 bytes of FLASH, 256 bytes of EEPROM
 - MC9S08SL8: 8,192 bytes of FLASH, 256 bytes of EEPROM
- Sector size: 512 bytes for FLASH, 8 bytes for EEPROM
- Single power supply program and erase
- Command interface for fast program and erase operation
- Up to 100,000 program/erase cycles at typical voltage and temperature
- Flexible block protection and vector redirection
- Security feature for FLASH, EEPROM, and RAM

4.5.2 **Program and Erase Times**

Before any program or erase command can be accepted, the FLASH and EEPROM clock divider register (FCDIV) must be written to set the internal clock for the FLASH and EEPROM module to a frequency (f_{FCLK}) between 150 kHz and 200 kHz (see Section 4.5.11.1, "FLASH and EEPROM Clock Divider Register (FCDIV)"). This register can be written only once, so normally this write is performed during reset initialization. FCDIV cannot be written if the access error flag, FACCERR in FSTAT, is set. The user must ensure that FACCERR is not set before writing to the FCDIV register. One period of the resulting clock ($1/f_{FCLK}$) is used by the command processor to time program and erase pulses. An integer number of these timing pulses is used by the command processor to complete a program or erase command.

Table 4-5 shows program and erase times. The bus clock frequency and FCDIV determine the frequency of FCLK (f_{FCLK}). The time for one cycle of FCLK is $t_{FCLK} = 1/f_{FCLK}$. The times are shown as a number of cycles of FCLK and as an absolute time for the case where $t_{FCLK} = 5 \ \mu$ s. Program and erase times shown include overhead for the command state machine and enabling and disabling of program and erase voltages.

The COP counter is initialized by the first writes to the SOPT1 and SOPT2 registers after any system reset. Subsequent writes to SOPT1 and SOPT2 have no effect on COP operation. Even if the application will use the reset default settings of COPT, COPCLKS, and COPW bits, the user should write to the write-once SOPT1 and SOPT2 registers during reset initialization to lock in the settings. This will prevent accidental changes if the application program gets lost.

The write to SRS that services (clears) the COP counter should not be placed in an interrupt service routine (ISR) because the ISR could continue to be executed periodically even if the main application program fails.

If the bus clock source is selected, the COP counter does not increment while the MCU is in background debug mode or while the system is in stop mode. The COP counter resumes when the MCU exits background debug mode or stop mode.

If the 1-kHz clock source is selected, the COP counter is re-initialized to zero upon entry to either background debug mode or stop mode and begins from zero upon exit from background debug mode or stop mode.

5.5 Interrupts

Interrupts provide a way to save the current CPU status and registers, execute an interrupt service routine (ISR), and then restore the CPU status so processing resumes where it left off before the interrupt. Other than the software interrupt (SWI), which is a program instruction, interrupts are caused by hardware events such as an edge on an external interrupt pin or a timer-overflow event. The debug module can also generate an SWI under certain circumstances.

If an event occurs in an enabled interrupt source, an associated read-only status flag will become set. The CPU will not respond unless the local interrupt enable is a 1 to enable the interrupt and the I bit in the CCR is 0 to allow interrupts. The global interrupt mask (I bit) in the CCR is initially set after reset which prevents all maskable interrupt sources. The user program initializes the stack pointer and performs other system setup before clearing the I bit to allow the CPU to respond to interrupts.

When the CPU receives a qualified interrupt request, it completes the current instruction before responding to the interrupt. The interrupt sequence obeys the same cycle-by-cycle sequence as the SWI instruction and consists of:

- Saving the CPU registers on the stack
- Setting the I bit in the CCR to mask further interrupts
- Fetching the interrupt vector for the highest-priority interrupt that is currently pending
- Filling the instruction queue with the first three bytes of program information starting from the address fetched from the interrupt vector locations

While the CPU is responding to the interrupt, the I bit is automatically set to avoid the possibility of another interrupt interrupting the ISR itself (this is called nesting of interrupts). Normally, the I bit is restored to 0 when the CCR is restored from the value stacked on entry to the ISR. In rare cases, the I bit can be cleared inside an ISR (after clearing the status flag that generated the interrupt) so that other interrupts can be serviced without waiting for the first service routine to finish. This practice is not

The status flag corresponding to the interrupt source must be acknowledged (cleared) before returning from the ISR. Typically, the flag is cleared at the beginning of the ISR so that if another interrupt is generated by this same source, it will be registered so it can be serviced after completion of the current ISR.

5.5.2 Interrupt Vectors, Sources, and Local Masks

Table 5-2 provides a summary of all interrupt sources. Higher-priority sources are located toward the bottom of the table. The high-order byte of the address for the interrupt service routine is located at the first address in the vector address column, and the low-order byte of the address for the interrupt service routine is located at the next higher address.

When an interrupt condition occurs, an associated flag bit becomes set. If the associated local interrupt enable is 1, an interrupt request is sent to the CPU. Within the CPU, if the global interrupt mask (I bit in the CCR) is 0, the CPU will finish the current instruction; stack the PCL, PCH, X, A, and CCR CPU registers; set the I bit; and then fetch the interrupt vector for the highest priority pending interrupt. Processing then continues in the interrupt service routine.

Source Form	Operation	dress ode	Saupo Dobject Code	Cycles	Cyc-by-Cyc Details	Affect on CCR		
1 Onn		Pd M		Ś	Details	V 1 1 H	INZC	
BLE rel	Branch if Less Than or Equal To (if Z I (N \oplus V) = 1) (Signed)	REL	93 rr	3	ppp	- 1 1 -		
BLO <i>rel</i>	Branch if Lower (if $C = 1$) (Same as BCS)	REL	25 rr	3	ррр	- 1 1 -		
BLS rel	Branch if Lower or Same (if $C \mid Z = 1$)	REL	23 rr	3	ррр	- 1 1 -		
BLT <i>rel</i>	Branch if Less Than (if $N \oplus V = 1$) (Signed)	REL	91 rr	3	ррр	-11-		
BMC rel	Branch if Interrupt Mask Clear (if I = 0)	REL	2C rr	3	ppp	-11-		
BMI <i>rel</i>	Branch if Minus (if N = 1)	REL	2B rr	3	ppp	-11-		
BMS rel	Branch if Interrupt Mask Set (if I = 1)	REL	2D rr	3	ppp	-11-		
BNE rel	Branch if Not Equal (if Z = 0)	REL	26 rr	3	ppp	-11-		
BPL rel	Branch if Plus (if N = 0)	REL	2A rr	3	ppp	-11-		
BRA rel	Branch Always (if I = 1)	REL	20 rr	3	ppp	-11-		
BRCLR n,opr8a,rel	Branch if Bit <i>n</i> in Memory Clear (if (Mn) = 0)	DIR (b0) DIR (b1) DIR (b2) DIR (b3) DIR (b3) DIR (b4) DIR (b5) DIR (b6) DIR (b7)	01 dd rr 03 dd rr 05 dd rr 07 dd rr 09 dd rr 0B dd rr 0D dd rr 0F dd rr	5 5 5 5 5 5 5 5 5 5	rpppp rpppp rpppp rpppp rpppp rpppp rpppp rpppp	- 1 1 -	‡	
BRN rel	Branch Never (if I = 0)	REL	21 rr	3	ppp	- 1 1 -		
BRSET n,opr8a,rel	Branch if Bit <i>n</i> in Memory Set (if (Mn) = 1)	DIR (b0) DIR (b1) DIR (b2) DIR (b3) DIR (b3) DIR (b4) DIR (b5) DIR (b6) DIR (b7)	00 dd rr 02 dd rr 04 dd rr 06 dd rr 08 dd rr 0A dd rr 0C dd rr 0E dd rr	5 5 5 5 5 5 5 5 5 5	rpppp rpppp rpppp rpppp rpppp rpppp rpppp rpppp	- 1 1 -	t	
BSET <i>n,opr8a</i>	Set Bit <i>n</i> in Memory (Mn ← 1)	DIR (b0) DIR (b1) DIR (b2) DIR (b3) DIR (b4) DIR (b5) DIR (b6) DIR (b7)	10 dd 12 dd 14 dd 16 dd 18 dd 1A dd 1C dd 1E dd	5 5 5 5 5 5 5 5 5 5 5	rfwpp rfwpp rfwpp rfwpp rfwpp rfwpp rfwpp rfwpp rfwpp	- 1 1 -		
BSR <i>rel</i>	$\begin{array}{c} \text{Branch to Subroutine} \\ \text{PC} \leftarrow (\text{PC}) + \$0002 \\ \text{push (PCL); SP} \leftarrow (\text{SP}) - \$0001 \\ \text{push (PCH); SP} \leftarrow (\text{SP}) - \$0001 \\ \text{PC} \leftarrow (\text{PC}) + rel \end{array}$	REL	AD rr	5	ssppp	- 1 1 -		
CBEQ opr8a,rel CBEQA #opr8i,rel CBEQX #opr8i,rel CBEQ oprx8,X+,rel CBEQ ,X+,rel CBEQ oprx8,SP,rel	Compare and Branch if $(A) = (M)$ Branch if $(A) = (M)$ Branch if $(X) = (M)$ Branch if $(A) = (M)$ Branch if $(A) = (M)$ Branch if $(A) = (M)$	DIR IMM IX1+ IX+ SP1	31 dd rr 41 ii rr 51 ii rr 61 ff rr 71 rr 9E 61 ff rr	5 4 5 5 6	rpppp pppp rppp rfppp prpppp	- 1 1 -		

Table 7-2. Instruction Set Summary (Sheet 3 of 9)

Chapter 7 Central Processor Unit (S08CPUV3)

Dia Mara	-Manipulation Branch Read-Modify-Write															
		Branch	Read-Modify-Write 30 5 40 1 50 1 60 5 70 4							Register/Memory 3 A0 2 B0 3 C0 4 D0 4 E0 3 F0						
00 5	10 5	20 3	30 5	40 1	50 1	60 5	70 4	80 9	90 3	A0 2	B0 3	SUB	D0 4	E0 3	50 3	
BRSET0	BSET0	BRA	NEG	NEGA	NEGX	NEG	NEG	RTI	BGE	SUB	SUB		SUB	SUB	SUB	
3 DIR	2 DIR	2 REL	2 DIR	1 INH	1 INH	2 IX1	1 IX	1 INH	2 REL	2 IMM	2 DIR		3 IX2	2 IX1	1 IX	
01 5	11 5	21 3	31 5	41 4	51 4	61 5	71 5	81 6	91 3	A1 2	B1 3	CMP	D1 4	E1 3	F1 3	
BRCLR0	BCLR0	BRN	CBEQ	CBEQA	CBEQX	CBEQ	CBEQ	RTS	BLT	CMP	CMP		CMP	CMP	CMP	
3 DIR	2 DIR	2 REL	3 DIR	3 IMM	3 IMM	3 IX1+	2 IX+	1 INH	2 REL	2 IMM	2 DIR		3 IX2	2 IX1	1 IX	
02 5 BRSET1 3 DIR	12 5 BSET1 2 DIR	22 3 BHI 2 REL	32 5 LDHX	42 5 MUL 1 INH	52 6 DIV	62 1 NSA 1 INH	72 1 DAA 1 INH	82 5+ BGND 1 INH	92 3 BGT 2 REL	A2 2 SBC 2 IMM	B2 3 SBC			E2 3 SBC 2 IX1	F2 3 SBC 1 IX	
03 5	13 5	23 3		43 1	53 1	63 5	73 4	83 11	93 3	A3 2	B3 3	C3 4	D3 4	E3 3	F3 3	
BRCLR1	BCLR1	BLS		COMA	COMX	COM	COM	SWI	BLE	CPX	CPX	CPX	CPX	CPX	CPX	
3 DIR	2 DIR	2 REL		1 INH	1 INH	2 IX1	1 IX	1 INH	2 REL	2 IMM	2 DIR	3 EXT	3 IX2	2 IX1	1 IX	
04 5	14 5	24 3	34 5	44 1	54 1	64 5	74 4	84 1	94 2	A4 2	B4 3	C4 4	D4 4	E4 3	F4 3	
BRSET2	BSET2	BCC	LSR	LSRA	LSRX	LSR	LSR	TAP	TXS	AND	AND	AND	AND	AND	AND	
3 DIR	2 DIR	2 REL	2 DIR	1 INH	1 INH	2 IX1	1 IX	1 INH	1 INH	2 IMM	2 DIR	3 EXT	3 IX2	2 IX1	1 IX	
05 5	15 5	25 3	35 4	45 3	55 4	65 3	75 5	85 1	95 2	A5 2	B5 3	C5 4	D5 4	E5 3	F5 3	
BRCLR2	BCLR2	BCS	STHX	LDHX	LDHX	CPHX	CPHX	TPA	TSX	BIT	BIT	BIT	BIT	BIT	BIT	
3 DIR	2 DIR	2 REL	2 DIR	3 IMM	2 DIR	3 IMM	2 DIR	1 INH	1 INH	2 IMM	2 DIR	3 EXT	3 IX2	2 IX1	1 IX	
06 5	16 5	26 3	36 5	46 1	56 1	66 5	76 4	86 3	96 5	A6 2	B6 3	C6 4	D6 4	E6 3	F6 3	
BRSET3	BSET3	BNE	ROR	RORA	RORX	ROR	ROR	PULA	STHX	LDA	LDA	LDA	LDA	LDA	LDA	
3 DIR	2 DIR	2 REL	2 DIR	1 INH	1 INH	2 IX1	1 IX	1 INH	3 EXT	2 IMM	2 DIR	3 EXT	3 IX2	2 IX1	1 IX	
07 5	17 5	27 3	37 5	47 1	57 1	67 5	77 4	87 2	97 1	A7 2	B7 3	C7 4	D7 4	E7 3	F7 2	
BRCLR3	BCLR3	BEQ	ASR	ASRA	ASRX	ASR	ASR	PSHA	TAX	AIS	STA	STA	STA	STA	STA	
3 DIR	2 DIR	2 REL	2 DIR	1 INH	1 INH	2 IX1	1 IX	1 INH	1 INH	2 IMM	2 DIR	3 EXT	3 IX2	2 IX1	1 IX	
08 5	18 5	28 3	38 5	48 1	58 1	68 5	78 4	88 3	98 1	A8 2	B8 3	C8 4	D8 4	E8 3	F8 3	
BRSET4	BSET4	BHCC	LSL	LSLA	LSLX	LSL	LSL	PULX	CLC	EOR	EOR	EOR	EOR	EOR	EOR	
3 DIR	2 DIR	2 REL	2 DIR	1 INH	1 INH	2 IX1	1 IX	1 INH	1 INH	2 IMM	2 DIR	3 EXT	3 IX2	2 IX1	1 IX	
09 5	19 5	29 3	39 5	49 1	59 1	69 5	⁷⁹ 4	89 2	99 1	A9 2	B9 3	C9 4	D9 4	E9 3	F9 3	
BRCLR4	BCLR4	BHCS	ROL	ROLA	ROLX	ROL	ROL	PSHX	SEC	ADC	ADC	ADC	ADC	ADC	ADC	
3 DIR	2 DIR	2 REL	2 DIR	1 INH	1 INH	2 IX1	1 IX	1 INH	1 INH	2 IMM	2 DIR	3 EXT	3 IX2	2 IX1	1 IX	
0A 5	1A 5	2A 3	3A 5	4A 1	5A 1	6A 5	7A 4	8A 3	9A 1	AA 2	BA 3	CA 4	DA 4	EA 3	FA 3	
BRSET5	BSET5	BPL	DEC	DECA	DECX	DEC	DEC	PULH	CLI	ORA	ORA	ORA	ORA	ORA	ORA	
3 DIR	2 DIR	2 REL	2 DIR	1 INH	1 INH	2 IX1	1 IX	1 INH	1 INH	2 IMM	2 DIR	3 EXT	3 IX2	2 IX1	1 IX	
0B 5		2B 3	3B 7	4B 4	5B 4	6B 7	7B 6	8B 2	9B 1	AB 2	BB 3	CB 4	DB 4	EB 3	FB 3	
BRCLR5		BMI	DBNZ	DBNZA	DBNZX	DBNZ	DBNZ	PSHH	SEI	ADD	ADD	ADD	ADD	ADD	ADD	
3 DIR		2 REL	3 DIR	2 INH	2 INH	3 IX1	2 IX	1 INH	1 INH	2 IMM	2 DIR	3 EXT	3 IX2	2 IX1	1 IX	
0C 5	1C 5	2C 3	3C 5	4C 1	5C 1	6C 5	7C 4	8C 1	9C 1		BC 3	CC 4	DC 4	EC 3	FC 3	
BRSET6	BSET6	BMC	INC	INCA	INCX	INC	INC	CLRH	RSP		JMP	JMP	JMP	JMP	JMP	
3 DIR	2 DIR	2 REL	2 DIR	1 INH	1 INH	2 IX1	1 IX	1 INH	1 INH		2 DIR	3 EXT	3 IX2	2 IX1	1 IX	
0D 5 BRCLR6 3 DIR	1D 5 BCLR6 2 DIR	2D 3 BMS 2 REL	3D 4 TST 2 DIR	4D 1 TSTA 1 INH	5D 1 TSTX 1 INH	6D 4 TST 2 IX1	7D 3 TST 1 IX		9D 1 NOP 1 INH	AD 5 BSR 2 REL		CD 6 JSR 3 EXT	DD 6 JSR 3 IX2	ED 5 JSR 2 IX1	FD 5 JSR 1 IX	
0E 5 BRSET7 3 DIR	BSET7 2 DIR	2E 3 BIL 2 REL	3E 6 CPHX 3 EXT	4E 5 MOV 3 DD	5E 5 MOV 2 DIX+	6E 4 MOV 3 IMD	7E 5 MOV 2 IX+D	8E 2+ STOP 1 INH	9E Page 2	AE 2 LDX 2 IMM	BE 3 LDX 2 DIR	LDX 3 EXT	LDX 3 IX2	EE 3 LDX 2 IX1	FE 3 LDX 1 IX	
0F 5	1F 5	2F 3	3F 5	4F 1	5F 1	6F 5	7F 4	8F 2+	9F 1	AF 2	BF 3	CF 4	DF 4	EF 3	FF 2	
BRCLR7	BCLR7	BIH	CLR	CLRA	CLRX	CLR	CLR	WAIT	TXA	AIX	STX	STX	STX	STX	STX	
3 DIR	2 DIR	2 REL	2 DIR	1 INH	1 INH	2 IX1	1 IX	1 INH	1 INH	2 IMM	2 DIR	3 EXT	3 IX2	2 IX1	1 IX	

Table 7-3. Opcode Map (Sheet 1 of 2)

Relative Indexed, No Offset Indexed, 8-Bit Offset Indexed, 16-Bit Offset IMM to DIR DIR to IX+ REL IX IX1 IX2 IMD DIX+

SP1 SP2 IX+

IX1+

Stack Pointer, 8-Bit Offset Stack Pointer, 16-Bit Offset Indexed, No Offset with Post Increment Indexed, 1-Byte Offset with Post Increment

Opcode in Hexadecimal F0 3 SUB Instruction Mnemonic 1 IX Addressing Mode Number of Bytes

Bit-Manipulation	Branch	Rea	d-Modify-W	rite	•	Con	,		Register	/Memory		
				9E60 6 NEG 3 SP1 9E61 6						9ED0 5 SUB 4 SP2 9ED1 5 CMP 4 SP2 9ED2 5 SBC 4 SP2	9EE0 4 SUB 3 SP1	
				9E61 6 CBEQ 4 SP1						9ED1 5 CMP 4 SP2	9EE1 4 CMP 3 SP1	
										9ED2 5 SBC 4 SP2	9EE2 4 SBC 3 SP1	
				9E63 6 COM 3 SP1						4 SP2 9ED3 5 CPX 4 SP2	9EE3 4 CPX 3 SP1	9EF3 6 CPHX 3 SP1
				9E64 6 LSR 3 SP1						9ED4 5 AND 4 SP2	9EE4 4 AND 3 SP1	
										9ED4 5 AND 4 SP2 9ED5 5 BIT 4 SP2	9EE5 4 BIT 3 SP1	
				9E66 6 ROR 3 SP1						9ED6 5 LDA 4 SP2	9EE6 4 LDA 3 SP1	
				9E67 6 ASR 3 SP1						9ED7 5 STA 4 SP2	9EE7 4 STA 3 SP1	
				9E68 6 LSL 3 SP1						9ED8 5 EOR 4 SP2	EOR 3 SP1	
				9E69 6 ROL 3 SP1						9ED9 5 ADC 4 SP2	ADC 3 SP1	
				9E6A 6 DEC 3 SP1						9EDA 5 ORA 4 SP2	ORA 3 SP1	
				9E6B 8 DBNZ 4 SP1						9EDB 5 ADD 4 SP2	9EEB 4 ADD 3 SP1	
				9E6C 6 INC 3 SP1								
				9E6D 5 TST 3 SP1								
							9EAE 5 LDHX 2 IX	9EBE 6 LDHX 4 IX2	9ECE 5 LDHX 3 IX1	9EDE 5 LDX 4 SP2	9EEE 4 LDX 3 SP1	9EFE 5 LDHX 3 SP1 9EFF 5
				9E6F 6 CLR 3 SP1						9EDF 5 STX 4 SP2	9EEF 4 STX 3 SP1	9EFF 5 STHX 3 SP1

Table 7-3. Opcode Map (Sheet 2 of 2)

Inherent Immediate Direct Extended DIR to DIR IX+ to DIR REL IX IX1 IX2 IMD DIX+ INH IMM DIR EXT DD IX+D

Relative Indexed, No Offset Indexed, 8-Bit Offset Indexed, 16-Bit Offset IMM to DIR DIR to IX+

Stack Pointer, 8-Bit Offset Stack Pointer, 16-Bit Offset Indexed, No Offset with Post Increment Indexed, 1-Byte Offset with Post Increment

SP1 SP2 IX+

IX1+

Note: All Sheet 2 Opcodes are Preceded by the Page 2 Prebyte (9E)

Prebyte (9E) and Opcode in Hexadecimal HCS08 Cycles EG SP1 Addressing Mode Number of Bytes 3

Internal Clock Source (S08ICSV2)

8.3.1 ICS Control Register 1 (ICSC1)

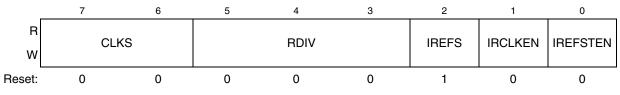


Figure 8-3. ICS Control Register 1 (ICSC1)

Table 8-2. ICS Control Register	1 Field Descriptions
---------------------------------	----------------------

Field	Description
7:6 CLKS	 Clock Source Select — Selects the clock source that controls the bus frequency. The actual bus frequency depends on the value of the BDIV bits. O Output of FLL is selected. O1 Internal reference clock is selected. 10 External reference clock is selected. 11 Reserved, defaults to 00.
5:3 RDIV	Reference Divider — Selects the amount to divide down the FLL reference clock selected by the IREFS bits. Resulting frequency must be in the range 31.25 kHz to 39.0625 kHz. 000 Encoding 0 — Divides reference clock by 1 (reset default) 001 Encoding 1 — Divides reference clock by 2 010 Encoding 2 — Divides reference clock by 4 011 Encoding 3 — Divides reference clock by 8 100 Encoding 4 — Divides reference clock by 16 101 Encoding 5 — Divides reference clock by 32 110 Encoding 6 — Divides reference clock by 64 111 Encoding 7 — Divides reference clock by 128
2 IREFS	Internal Reference Select — The IREFS bit selects the reference clock source for the FLL. 1 Internal reference clock selected 0 External reference clock selected
1 IRCLKEN	Internal Reference Clock Enable — The IRCLKEN bit enables the internal reference clock for use as ICSIRCLK. 1 ICSIRCLK active 0 ICSIRCLK inactive
0 IREFSTEN	 Internal Reference Stop Enable — The IREFSTEN bit controls whether or not the internal reference clock remains enabled when the ICS enters stop mode. 1 Internal reference clock stays enabled in stop if IRCLKEN is set or if ICS is in FEI, FBI, or FBILP mode before entering stop 0 Internal reference clock is disabled in stop

8.4.1.5 FLL Bypassed External (FBE)

The FLL bypassed external (FBE) mode is entered when all the following conditions occur:

- CLKS bits are written to 10.
- IREFS bit is written to 0.
- BDM mode is active or LP bit is written to 0.

In FLL bypassed external mode, the ICSOUT clock is derived from the external reference clock. The FLL clock is controlled by the external reference clock, and the FLL loop will lock the FLL frequency to 1024 times the reference frequency, as selected by the RDIV bits, so that the ICSLCLK will be available for BDC communications, and the external reference clock is enabled.

8.4.1.6 FLL Bypassed External Low Power (FBELP)

The FLL bypassed external low power (FBELP) mode is entered when all the following conditions occur:

- CLKS bits are written to 10.
- IREFS bit is written to 0.
- BDM mode is not active and LP bit is written to 1.

In FLL bypassed external low power mode, the ICSOUT clock is derived from the external reference clock and the FLL is disabled. The ICSLCLK will be not be available for BDC communications. The external reference clock is enabled.

8.4.1.7 Stop

Stop mode is entered whenever the MCU enters a STOP state. In this mode, all ICS clock signals are static except in the following cases:

ICSIRCLK will be active in stop mode when all the following conditions occur:

- IRCLKEN bit is written to 1
- IREFSTEN bit is written to 1

ICSERCLK will be active in stop mode when all the following conditions occur:

- ERCLKEN bit is written to 1
- EREFSTEN bit is written to 1

8.4.2 Mode Switching

When switching between FLL engaged internal (FEI) and FLL engaged external (FEE) modes the IREFS bit can be changed at anytime, but the RDIV bits must be changed simultaneously so that the resulting frequency stays in the range of 31.25 kHz to 39.0625 kHz. After a change in the IREFS value the FLL will begin locking again after a few full cycles of the resulting divided reference frequency. The completion of the switch is shown by the IREFST bit.

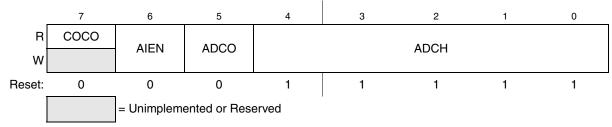


Figure 10-3. Status and Control Register (ADCSC1)

Field	Description
7 COCO	 Conversion Complete Flag — The COCO flag is a read-only bit which is set each time a conversion is completed when the compare function is disabled (ACFE = 0). When the compare function is enabled (ACFE = 1) the COCO flag is set upon completion of a conversion only if the compare result is true. This bit is cleared whenever ADCSC1 is written or whenever ADCRL is read. 0 Conversion not completed 1 Conversion completed
6 AIEN	Interrupt Enable — AIEN is used to enable conversion complete interrupts. When COCO becomes set while AIEN is high, an interrupt is asserted. 0 Conversion complete interrupt disabled 1 Conversion complete interrupt enabled
5 ADCO	 Continuous Conversion Enable — ADCO is used to enable continuous conversions. One conversion following a write to the ADCSC1 when software triggered operation is selected, or one conversion following assertion of ADHWT when hardware triggered operation is selected. Continuous conversions initiated following a write to ADCSC1 when software triggered operation is selected. Continuous conversions are initiated by an ADHWT event when hardware triggered operation is selected.
4:0 ADCH	Input Channel Select — The ADCH bits form a 5-bit field which is used to select one of the input channels. The input channels are detailed in Figure 10-4. The successive approximation converter subsystem is turned off when the channel select bits are all set to 1. This feature allows for explicit disabling of the ADC and isolation of the input channel from all sources. Terminating continuous conversions this way will prevent an additional, single conversion from being performed. It is not necessary to set the channel select bits to all 1s to place the ADC in a low-power state when continuous conversion are not enabled because the module automatically enters a low-power state when a conversion completes.

Figure 10-4. Input Channel Select

ADCH	Input Select
00000	AD0
00001	AD1
00010	AD2
00011	AD3
00100	AD4
00101	AD5
00110	AD6
00111	AD7

ADCH	Input Select
10000	AD16
10001	AD17
10010	AD18
10011	AD19
10100	AD20
10101	AD21
10110	AD22
10111	AD23

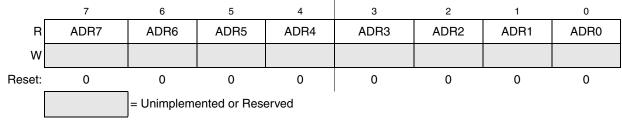


Figure 10-7. Data Result Low Register (ADCRL)

10.3.5 Compare Value High Register (ADCCVH)

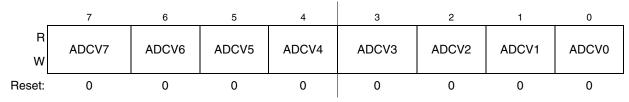

This register holds the upper two bits of the 10-bit compare value. These bits are compared to the upper two bits of the result following a conversion in 10-bit mode when the compare function is enabled. In 8-bit operation, ADCCVH is not used during compare.

Figure 10-8. Compare Value High Register (ADCCVH)

10.3.6 Compare Value Low Register (ADCCVL)

This register holds the lower 8 bits of the 10-bit compare value, or all 8 bits of the 8-bit compare value. Bits ADCV7:ADCV0 are compared to the lower 8 bits of the result following a conversion in either 10-bit or 8-bit mode.

10.3.7 Configuration Register (ADCCFG)

ADCCFG is used to select the mode of operation, clock source, clock divide, and configure for low power or long sample time.

10.6.2 Sources of Error

Several sources of error exist for A/D conversions. These are discussed in the following sections.

10.6.2.1 Sampling Error

For proper conversions, the input must be sampled long enough to achieve the proper accuracy. Given the maximum input resistance of approximately $7k\Omega$ and input capacitance of approximately 5.5 pF, sampling to within 1/4LSB (at 10-bit resolution) can be achieved within the minimum sample window (3.5 cycles @ 8 MHz maximum ADCK frequency) provided the resistance of the external analog source (R_{AS}) is kept below 5 kΩ.

Higher source resistances or higher-accuracy sampling is possible by setting ADLSMP (to increase the sample window to 23.5 cycles) or decreasing ADCK frequency to increase sample time.

10.6.2.2 Pin Leakage Error

Leakage on the I/O pins can cause conversion error if the external analog source resistance (R_{AS}) is high. If this error cannot be tolerated by the application, keep R_{AS} lower than $V_{DDAD} / (2^{N*}I_{LEAK})$ for less than 1/4LSB leakage error (N = 8 in 8-bit mode or 10 in 10-bit mode).

10.6.2.3 Noise-Induced Errors

System noise which occurs during the sample or conversion process can affect the accuracy of the conversion. The ADC accuracy numbers are guaranteed as specified only if the following conditions are met:

- There is a 0.1 μ F low-ESR capacitor from V_{REFH} to V_{REFL}.
- There is a 0.1 μ F low-ESR capacitor from V_{DDAD} to V_{SSAD}.
- If inductive isolation is used from the primary supply, an additional 1 μ F capacitor is placed from V_{DDAD} to V_{SSAD}.
- V_{SSAD} (and V_{REFL} , if connected) is connected to V_{SS} at a quiet point in the ground plane.
- Operate the MCU in wait or stop3 mode before initiating (hardware triggered conversions) or immediately after initiating (hardware or software triggered conversions) the ADC conversion.
 - For software triggered conversions, immediately follow the write to the ADCSC1 with a WAIT instruction or STOP instruction.
 - For stop3 mode operation, select ADACK as the clock source. Operation in stop3 reduces V_{DD} noise but increases effective conversion time due to stop recovery.
- There is no I/O switching, input or output, on the MCU during the conversion.

There are some situations where external system activity causes radiated or conducted noise emissions or excessive V_{DD} noise is coupled into the ADC. In these situations, or when the MCU cannot be placed in wait or stop3 or I/O activity cannot be halted, these recommended actions may reduce the effect of noise on the accuracy:

• Place a 0.01 μ F capacitor (C_{AS}) on the selected input channel to V_{REFL} or V_{SSAD} (this will improve noise issues but will affect sample rate based on the external analog source resistance).

¹ Bit rates over 120,000 bits per second are not recommended for LIN communications, as physical layer delay between the TX and RX pins can cause the stop bit of a byte to be mis-sampled as the last data bit. This could result in a byte framing error.

The above numbers assume a perfect input waveforms into the SLCRX pin, where 1 and 0 bits are of equal length and are exactly the correct length for the appropriate speed. Factors such as physical layer wave shaping and ground shift can affect the symmetry of these waveforms, causing bits to appear shortened or lengthened as seen by the SLIC module. The user must take these factors into account and base the maximum speed upon the shortest possible bit time that the SLIC module may observe, factoring in all physical layer effects. On some LIN physical layer devices it is possible to turn off wave shaping circuitry for high-speed operation, removing this portion of the physical layer error.

The digital receive filter can also affect high speed operation if it is set too low and begins to filter out valid message traffic. Under ideal conditions, this will not happen, as the digital filter maximum speeds allowable are higher than the speeds allowed for $\pm 1.5\%$ accuracy. If the digital receive filter prescaler is set to divide-by-4; however, the filter delay is very close to the $\pm 1.5\%$ accuracy maximum bit time.

For example, with a SLIC clock of 4 MHz, the SLIC module is capable of maintaining $\pm 1.5\%$ accuracy up to 60,000 bps. If the digital receive filter prescaler is set to divide-by-4, this means that the filter will only pass message traffic which is 62,500 bps or slower under ideal circumstances. This is only a difference of 2,500 bps (4.17% of the nominal valid message traffic speed). In this case, the user must ensure that with all errors accounted for, no bit will appear shorter than 16 µs

(1 bit at 62,500 bps) or the filter will block that bit. This is far too narrow a margin for safe design practices. The better solution would be to reduce the filter prescaler, increasing the gap between the filter cut-off point and the nominal speed of valid message traffic. Changing the prescaler to divide by 2 in this example gives a filter cut-off of 125,000 bps, which is 60,000 bps faster than the nominal speed of the LIN bus and much less likely to interfere with valid message traffic.

To ensure that all valid messages pass the filter stage in high-speed operation, it is best to ensure that the filter cut-off point is at least 2 times the nominal speed of the fastest message traffic to appear on the bus. Refer to Table 12-13 for a more complete list of the digital receive filter delays as they relate to the maximum LIN bus frequency. Table 12-14 repeats much of the data found in Table 12-13; however, the filter delay values (cutoff values) are shown in the frequency and time domains. Note that Table 12-14 shows the filter performance under ideal conditions.

When switching between a low-speed (< 4800 bps) to a high-speed (> 40000 bps) LIN message, the master node must allow a minimum idle time of eight bit times (of the slowest bit rate) between the messages. This prevents a valid message at another frequency from being detected as an invalid message.

Serial Communications Interface (S08SCIV4)

status flag is set. If RDRF was already set indicating the receive data register (buffer) was already full, the overrun (OR) status flag is set and the new data is lost. Because the SCI receiver is double-buffered, the program has one full character time after RDRF is set before the data in the receive data buffer must be read to avoid a receiver overrun.

When a program detects that the receive data register is full (RDRF = 1), it gets the data from the receive data register by reading SCIxD. The RDRF flag is cleared automatically by a 2-step sequence which is normally satisfied in the course of the user's program that handles receive data. Refer to Section 14.3.4, "Interrupts and Status Flags" for more details about flag clearing.

14.3.3.1 Data Sampling Technique

The SCI receiver uses a 16× baud rate clock for sampling. The receiver starts by taking logic level samples at 16 times the baud rate to search for a falling edge on the RxD serial data input pin. A falling edge is defined as a logic 0 sample after three consecutive logic 1 samples. The 16× baud rate clock is used to divide the bit time into 16 segments labeled RT1 through RT16. When a falling edge is located, three more samples are taken at RT3, RT5, and RT7 to make sure this was a real start bit and not merely noise. If at least two of these three samples are 0, the receiver assumes it is synchronized to a receive character.

The receiver then samples each bit time, including the start and stop bits, at RT8, RT9, and RT10 to determine the logic level for that bit. The logic level is interpreted to be that of the majority of the samples taken during the bit time. In the case of the start bit, the bit is assumed to be 0 if at least two of the samples at RT3, RT5, and RT7 are 0 even if one or all of the samples taken at RT8, RT9, and RT10 are 1s. If any sample in any bit time (including the start and stop bits) in a character frame fails to agree with the logic level for that bit, the noise flag (NF) will be set when the received character is transferred to the receive data buffer.

The falling edge detection logic continuously looks for falling edges, and if an edge is detected, the sample clock is resynchronized to bit times. This improves the reliability of the receiver in the presence of noise or mismatched baud rates. It does not improve worst case analysis because some characters do not have any extra falling edges anywhere in the character frame.

In the case of a framing error, provided the received character was not a break character, the sampling logic that searches for a falling edge is filled with three logic 1 samples so that a new start bit can be detected almost immediately.

In the case of a framing error, the receiver is inhibited from receiving any new characters until the framing error flag is cleared. The receive shift register continues to function, but a complete character cannot transfer to the receive data buffer if FE is still set.

14.3.3.2 Receiver Wakeup Operation

Receiver wakeup is a hardware mechanism that allows an SCI receiver to ignore the characters in a message that is intended for a different SCI receiver. In such a system, all receivers evaluate the first character(s) of each message, and as soon as they determine the message is intended for a different receiver, they write logic 1 to the receiver wake up (RWU) control bit in SCIxC2. When RWU bit is set, the status flags associated with the receiver (with the exception of the idle bit, IDLE, when RWUID bit is set) are inhibited from setting, thus eliminating the software overhead for handling the unimportant

CPWMS	MSnB:MSnA	ELSnB:ELSnA	Mode	Configuration
0	00	01	Input capture	Capture on rising edge only
		10		Capture on falling edge only
		11		Capture on rising or falling edge
	01	01	Output compare	Toggle output on compare
		10		Clear output on compare
		11	-	Set output on compare
	1X	10	Edge-aligned PWM	High-true pulses (clear output on compare)
		X1		Low-true pulses (set output on compare)
1	XX	10	Center-aligned PWM	High-true pulses (clear output on compare-up)
		X1		Low-true pulses (set output on compare-up)

16.3.5 TPM Channel Value Registers (TPMxCnVH:TPMxCnVL)

These read/write registers contain the captured TPM counter value of the input capture function or the output compare value for the output compare or PWM functions. The channel registers are cleared by reset.

	7	6	5	4	3	2	1	0
R W	Bit 15	14	13	12	11	10	9	Bit 8
Reset	0	0	0	0	0	0	0	0

	7	6	5	4	3	2	1	0
R W	Bit 7	6	5	4	3	2	1	Bit 0
Reset	0	0	0	0	0	0	0	0

Figure 16-14. TPM Channel Value Register Low (TPMxCnVL)

In input capture mode, reading either byte (TPMxCnVH or TPMxCnVL) latches the contents of both bytes into a buffer where they remain latched until the other half is read. This latching mechanism also resets

16.4.1.3 Counting Modes

The main timer counter has two counting modes. When center-aligned PWM is selected (CPWMS=1), the counter operates in up/down counting mode. Otherwise, the counter operates as a simple up counter. As an up counter, the timer counter counts from 0x0000 through its terminal count and then continues with 0x0000. The terminal count is 0xFFFF or a modulus value in TPMxMODH:TPMxMODL.

When center-aligned PWM operation is specified, the counter counts up from 0x0000 through its terminal count and then down to 0x0000 where it changes back to up counting. Both 0x0000 and the terminal count value are normal length counts (one timer clock period long). In this mode, the timer overflow flag (TOF) becomes set at the end of the terminal-count period (as the count changes to the next lower count value).

16.4.1.4 Manual Counter Reset

The main timer counter can be manually reset at any time by writing any value to either half of TPMxCNTH or TPMxCNTL. Resetting the counter in this manner also resets the coherency mechanism in case only half of the counter was read before resetting the count.

16.4.2 Channel Mode Selection

Provided CPWMS=0, the MSnB and MSnA control bits in the channel n status and control registers determine the basic mode of operation for the corresponding channel. Choices include input capture, output compare, and edge-aligned PWM.

16.4.2.1 Input Capture Mode

With the input-capture function, the TPM can capture the time at which an external event occurs. When an active edge occurs on the pin of an input-capture channel, the TPM latches the contents of the TPM counter into the channel-value registers (TPMxCnVH:TPMxCnVL). Rising edges, falling edges, or any edge may be chosen as the active edge that triggers an input capture.

In input capture mode, the TPMxCnVH and TPMxCnVL registers are read only.

When either half of the 16-bit capture register is read, the other half is latched into a buffer to support coherent 16-bit accesses in big-endian or little-endian order. The coherency sequence can be manually reset by writing to the channel status/control register (TPMxCnSC).

An input capture event sets a flag bit (CHnF) which may optionally generate a CPU interrupt request.

While in BDM, the input capture function works as configured by the user. When an external event occurs, the TPM latches the contents of the TPM counter (which is frozen because of the BDM mode) into the channel value registers and sets the flag bit.

16.4.2.2 Output Compare Mode

With the output-compare function, the TPM can generate timed pulses with programmable position, polarity, duration, and frequency. When the counter reaches the value in the channel-value registers of an output-compare channel, the TPM can set, clear, or toggle the channel pin.

Development Support

When no debugger pod is connected to the 6-pin BDM interface connector, the internal pullup on BKGD chooses normal operating mode. When a debug pod is connected to BKGD it is possible to force the MCU into active background mode after reset. The specific conditions for forcing active background depend upon the HCS08 derivative (refer to the introduction to this Development Support section). It is not necessary to reset the target MCU to communicate with it through the background debug interface.

17.2.2 Communication Details

The BDC serial interface requires the external controller to generate a falling edge on the BKGD pin to indicate the start of each bit time. The external controller provides this falling edge whether data is transmitted or received.

BKGD is a pseudo-open-drain pin that can be driven either by an external controller or by the MCU. Data is transferred MSB first at 16 BDC clock cycles per bit (nominal speed). The interface times out if 512 BDC clock cycles occur between falling edges from the host. Any BDC command that was in progress when this timeout occurs is aborted without affecting the memory or operating mode of the target MCU system.

The custom serial protocol requires the debug pod to know the target BDC communication clock speed.

The clock switch (CLKSW) control bit in the BDC status and control register allows the user to select the BDC clock source. The BDC clock source can either be the bus or the alternate BDC clock source.

The BKGD pin can receive a high or low level or transmit a high or low level. The following diagrams show timing for each of these cases. Interface timing is synchronous to clocks in the target BDC, but asynchronous to the external host. The internal BDC clock signal is shown for reference in counting cycles.

17.3 On-Chip Debug System (DBG)

Because HCS08 devices do not have external address and data buses, the most important functions of an in-circuit emulator have been built onto the chip with the MCU. The debug system consists of an 8-stage FIFO that can store address or data bus information, and a flexible trigger system to decide when to capture bus information and what information to capture. The system relies on the single-wire background debug system to access debug control registers and to read results out of the eight stage FIFO.

The debug module includes control and status registers that are accessible in the user's memory map. These registers are located in the high register space to avoid using valuable direct page memory space.

Most of the debug module's functions are used during development, and user programs rarely access any of the control and status registers for the debug module. The one exception is that the debug system can provide the means to implement a form of ROM patching. This topic is discussed in greater detail in Section 17.3.6, "Hardware Breakpoints."

17.3.1 Comparators A and B

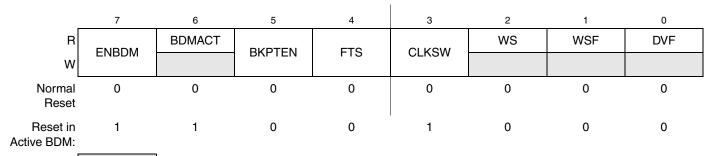
Two 16-bit comparators (A and B) can optionally be qualified with the R/W signal and an opcode tracking circuit. Separate control bits allow you to ignore R/W for each comparator. The opcode tracking circuitry optionally allows you to specify that a trigger will occur only if the opcode at the specified address is actually executed as opposed to only being read from memory into the instruction queue. The comparators are also capable of magnitude comparisons to support the inside range and outside range trigger modes. Comparators are disabled temporarily during all BDC accesses.

The A comparator is always associated with the 16-bit CPU address. The B comparator compares to the CPU address or the 8-bit CPU data bus, depending on the trigger mode selected. Because the CPU data bus is separated into a read data bus and a write data bus, the RWAEN and RWA control bits have an additional purpose, in full address plus data comparisons they are used to decide which of these buses to use in the comparator B data bus comparisons. If RWAEN = 1 (enabled) and RWA = 0 (write), the CPU's write data bus is used. Otherwise, the CPU's read data bus is used.

The currently selected trigger mode determines what the debugger logic does when a comparator detects a qualified match condition. A match can cause:

- Generation of a breakpoint to the CPU
- Storage of data bus values into the FIFO
- Starting to store change-of-flow addresses into the FIFO (begin type trace)
- Stopping the storage of change-of-flow addresses into the FIFO (end type trace)

17.3.2 Bus Capture Information and FIFO Operation


The usual way to use the FIFO is to setup the trigger mode and other control options, then arm the debugger. When the FIFO has filled or the debugger has stopped storing data into the FIFO, you would read the information out of it in the order it was stored into the FIFO. Status bits indicate the number of words of valid information that are in the FIFO as data is stored into it. If a trace run is manually halted by writing 0 to ARM before the FIFO is full (CNT = 1:0:0:0), the information is shifted by one position and

Development Support

17.4.1.1 BDC Status and Control Register (BDCSCR)

This register can be read or written by serial BDC commands (READ_STATUS and WRITE_CONTROL) but is not accessible to user programs because it is not located in the normal memory map of the MCU.

= Unimplemented or Reserved

Figure 17-6. BDC Status and Control Register (BDCSCR)

Table 17-2. BDCSCR Register Field Descriptions

Field	Description
7 ENBDM	 Enable BDM (Permit Active Background Mode) — Typically, this bit is written to 1 by the debug host shortly after the beginning of a debug session or whenever the debug host resets the target and remains 1 until a normal reset clears it. 0 BDM cannot be made active (non-intrusive commands still allowed) 1 BDM can be made active to allow active background mode commands
6 BDMACT	Background Mode Active Status — This is a read-only status bit.0BDM not active (user application program running)1BDM active and waiting for serial commands
5 BKPTEN	 BDC Breakpoint Enable — If this bit is clear, the BDC breakpoint is disabled and the FTS (force tag select) control bit and BDCBKPT match register are ignored. 0 BDC breakpoint disabled 1 BDC breakpoint enabled
4 FTS	 Force/Tag Select — When FTS = 1, a breakpoint is requested whenever the CPU address bus matches the BDCBKPT match register. When FTS = 0, a match between the CPU address bus and the BDCBKPT register causes the fetched opcode to be tagged. If this tagged opcode ever reaches the end of the instruction queue, the CPU enters active background mode rather than executing the tagged opcode. 0 Tag opcode at breakpoint address and enter active background mode if CPU attempts to execute that instruction 1 Breakpoint match forces active background mode at next instruction boundary (address need not be an opcode)
3 CLKSW	Select Source for BDC Communications Clock — CLKSW defaults to 0, which selects the alternate BDC clock source. 0 Alternate BDC clock source 1 MCU bus clock