E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	CIP-51 8051
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, SMBus, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	17
Program Memory Size	40KB (40K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3.25K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 5.5V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	24-SSOP (0.154", 3.90mm Width)
Supplier Device Package	24-QSOP
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm8ub31f40g-a-qsop24

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.	Feature List	. 2
2.	Ordering Information	. 3
3.	System Overview	. 6
	3.1 Introduction.	. 6
	3.2 Power	. 7
	3.3 I/O	. 7
	3.4 Clocking	. 8
	3.5 Counters/Timers and PWM	. 8
	3.6 Communications and Other Digital Peripherals	.10
	3.7 Analog	12
		13
		13
		. 13
_		. 14
4.	Electrical Specifications	. 16
	4.1 Electrical Characteristics	.16
	4.1.1 Recommended Operating Conditions	.16
	4.1.2 Power Consumption.	.17
	4.1.3 Reset and Supply Monitor.	.19
	4.1.4 Flash Memory	.20
	4.1.5 Power Management Timing	.20
	4.1.6 Internal Oscillators	.21
	4.1.7 External Clock Input.	.21
	4.1.8 ADC	.22
	4.1.9 Voltage Reference	.23
	4.1.10 Temperature Sensor	.24
	4.1.11 5 V Voltage Regulator.	.24
	4.1.12 1.8 V Internal LDO Voltage Regulator	.24
	4 1 13 Comparators	25
	4 1 14 Configurable Logic	26
	4 1 15 Port I/O	.20
		.27
		.20
		.29
		.31
	4.3 Absolute Maximum Ratings	.32
5.	Typical Connection Diagrams	33
	5.1 Power	.33
	5.2 USB	.35
	5.3 Debug	.37
	5.4 Other Connections	.37

3.4 Clocking

The CPU core and peripheral subsystem may be clocked by both internal and external oscillator resources. By default, the system clock comes up running from the 24.5 MHz oscillator divided by 8.

The clock control system offers the following features:

- Provides clock to core and peripherals.
- 24.5 MHz internal oscillator (HFOSC0), accurate to ±2% over supply and temperature corners.
- 48 MHz internal oscillator (HFOSC1), accurate to ±1.5% over supply and temperature corners.
- 80 kHz low-frequency oscillator (LFOSC0).
- External CMOS clock input (EXTCLK).
- · Clock divider with eight settings for flexible clock scaling:
 - Divide the selected clock source by 1, 2, 4, 8, 16, 32, 64, or 128.
 - HFOSC0 and HFOSC1 include 1.5x pre-scalers for further flexibility.

3.5 Counters/Timers and PWM

Programmable Counter Array (PCA0)

The programmable counter array (PCA) provides multiple channels of enhanced timer and PWM functionality while requiring less CPU intervention than standard counter/timers. The PCA consists of a dedicated 16-bit counter/timer and one 16-bit capture/compare module for each channel. The counter/timer is driven by a programmable timebase that has flexible external and internal clocking options. Each capture/compare module may be configured to operate independently in one of five modes: Edge-Triggered Capture, Software Timer, High-Speed Output, Frequency Output, or Pulse-Width Modulated (PWM) Output. Each capture/compare module has its own associated I/O line (CEXn) which is routed through the crossbar to port I/O when enabled.

- 16-bit time base
- Programmable clock divisor and clock source selection
- · Up to three independently-configurable channels
- 8, 9, 10, 11 and 16-bit PWM modes (center or edge-aligned operation)
- Output polarity control
- Frequency output mode
- · Capture on rising, falling or any edge
- · Compare function for arbitrary waveform generation
- · Software timer (internal compare) mode
- · Can accept hardware "kill" signal from comparator 0 or comparator 1

Timers (Timer 0, Timer 1, Timer 2, Timer 3, Timer 4, and Timer 5)

Several counter/timers are included in the device: two are 16-bit counter/timers compatible with those found in the standard 8051, and the rest are 16-bit auto-reload timers for timing peripherals or for general purpose use. These timers can be used to measure time intervals, count external events and generate periodic interrupt requests. Timer 0 and Timer 1 are nearly identical and have four primary modes of operation. The other timers offer both 16-bit and split 8-bit timer functionality with auto-reload and capture capabilities.

Timer 0 and Timer 1 include the following features:

- Standard 8051 timers, supporting backwards-compatibility with firmware and hardware.
- Clock sources include SYSCLK, SYSCLK divided by 12, 4, or 48, the External Clock divided by 8, or an external pin.
- 8-bit auto-reload counter/timer mode
- 13-bit counter/timer mode
- 16-bit counter/timer mode
- Dual 8-bit counter/timer mode (Timer 0)

Timer 2, Timer 3, Timer 4, and Timer 5 are 16-bit timers including the following features:

- Clock sources for all timers include SYSCLK, SYSCLK divided by 12, or the External Clock divided by 8
- · LFOSC0 divided by 8 may be used to clock Timer 3 and Timer 4 in active or suspend/snooze power modes
- Timer 4 is a low-power wake source, and can be chained together with Timer 3
- 16-bit auto-reload timer mode
- Dual 8-bit auto-reload timer mode
- External pin capture
- LFOSC0 capture
- Comparator 0 capture
- USB Start-of-Frame (SOF) capture
- Configurable Logic output capture

Watchdog Timer (WDT0)

The device includes a programmable watchdog timer (WDT) running off the low-frequency oscillator. A WDT overflow forces the MCU into the reset state. To prevent the reset, the WDT must be restarted by application software before overflow. If the system experiences a software or hardware malfunction preventing the software from restarting the WDT, the WDT overflows and causes a reset. Following a reset, the WDT is automatically enabled and running with the default maximum time interval. If needed, the WDT can be disabled by system software or locked on to prevent accidental disabling. Once locked, the WDT cannot be disabled until the next system reset. The state of the RST pin is unaffected by this reset.

The Watchdog Timer has the following features:

- Programmable timeout interval
- Runs from the low-frequency oscillator
- · Lock-out feature to prevent any modification until a system reset

3.10 Bootloader

All devices come pre-programmed with a USB bootloader. This bootloader resides in the code security page and last pages of code flash; it can be erased if it is not needed.

The byte before the Lock Byte is the Bootloader Signature Byte. Setting this byte to a value of 0xA5 indicates the presence of the bootloader in the system. Any other value in this location indicates that the bootloader is not present in flash.

When a bootloader is present, the device will jump to the bootloader vector after any reset, allowing the bootloader to run. The bootloader then determines if the device should stay in bootload mode or jump to the reset vector located at 0x0000. When the bootloader is not present, the device will jump to the reset vector of 0x0000 after any reset.

More information about the bootloader protocol and usage can be found in *AN945: EFM8 Factory Bootloader User Guide*. Application notes can be found on the Silicon Labs website (www.silabs.com/8bit-appnotes) or within Simplicity Studio in the [Documentation] area.

Figure 3.2. Flash Memory Map with Bootloader—40 KB Devices

Table 3.2.	Summary	of Pins	for	Bootloader	Communication
------------	---------	---------	-----	------------	---------------

Bootloader	Pins for Bootload Communication
USB	VBUS
	D+
	D-

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
ADC0 Always-on ⁴	I _{ADC}	800 ksps, 10-bit conversions or	—	850	1085	μA
		200 ksps, 12-bit conversions				
		Normal bias settings				
		V _{DD} = 3.0 V				
		250 ksps, 10-bit conversions or	_	420	545	μA
		62.5 ksps 12-bit conversions				
		Low power bias settings				
		V _{DD} = 3.0 V				
ADC0 Burst Mode, 10-bit single	I _{ADC}	200 ksps, V _{DD} = 3.0 V	—	385	—	μA
conversions, external reference		100 ksps, V _{DD} = 3.0 V	—	193	_	μA
		10 ksps, V _{DD} = 3.0 V		20		μA
ADC0 Burst Mode, 10-bit single	I _{ADC}	200 ksps, V _{DD} = 3.0 V	_	495		μA
Low power bias settings		100 ksps, V _{DD} = 3.0 V	_	250		μA
		10 ksps, V _{DD} = 3.0 V	_	25.5	_	μA
ADC0 Burst Mode, 12-bit single	I _{ADC}	100 ksps, V _{DD} = 3.0 V	_	520	_	μA
conversions, external reference		50 ksps, V _{DD} = 3.0 V		260		μA
		10 ksps, V _{DD} = 3.0 V	_	53		μA
ADC0 Burst Mode, 12-bit single	I _{ADC}	100 ksps, V _{DD} = 3.0 V,	_	970		μA
conversions, internal reference		Normal bias				
		50 ksps, V _{DD} = 3.0 V,	_	425	_	μA
		Low power bias				
		10 ksps, V _{DD} = 3.0 V,	_	86		μA
		Low power bias				
Internal ADC0 Reference, Always-	I _{VREFFS}	Normal Power Mode	_	690	765	μA
on ⁵		Low Power Mode	_	166	195	μA
Temperature Sensor	I _{TSENSE}		_	68	110	μA
Comparator 0 (CMP0, CMP1)	I _{CMP}	CPMD = 11	_	0.5	_	μA
		CPMD = 10	_	3		μA
		CPMD = 01	_	9.1	_	μA
		CPMD = 00		24.2		μA
Comparator Reference ⁶	I _{CPREF}		_	25.3		μA
Voltage Supply Monitor (VMON0)	I _{VMON}		_	14	20	μA

Table 4.8. ADC

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Resolution	N _{bits}	12 Bit Mode		12		Bits
		10 Bit Mode	10			Bits
Throughput Rate	f _S	12 Bit Mode	_	—	200	ksps
(High Speed Mode)		10 Bit Mode	—	_	800	ksps
Throughput Rate	f _S	12 Bit Mode	_	_	62.5	ksps
(Low Power Mode)		10 Bit Mode	_	_	250	ksps
Tracking Time	t _{TRK}	High Speed Mode	230	—	_	ns
		Low Power Mode	450	_	_	ns
Power-On Time	t _{PWR}		1.2	—	_	μs
SAR Clock Frequency	f _{SAR}	High Speed Mode,		_	6.25	MHz
		Reference is 2.4 V internal				
		High Speed Mode,	_	_	12.5	MHz
		Reference is not 2.4 V internal				
		Low Power Mode	_	_	4	MHz
Conversion Time	t _{CNV}	10-Bit Conversion,		1.1		μs
		SAR Clock = 12.25 MHz,				
		System Clock = 24.5 MHz.				
Sample/Hold Capacitor	C _{SAR}	Gain = 1	_	5	_	pF
		Gain = 0.5	_	2.5	_	pF
Input Pin Capacitance	C _{IN}		—	20	—	pF
Input Mux Impedance	R _{MUX}		_	550	_	Ω
Voltage Reference Range	V _{REF}		1	—	V _{DD}	V
Input Voltage Range ¹	V _{IN}	Gain = 1	0	_	V _{REF}	V
		Gain = 0.5	0	_	2xV _{REF}	V
Power Supply Rejection Ratio	PSRR _{ADC}		—	70	—	dB
DC Performance					1	
Integral Nonlinearity	INL	12 Bit Mode	_	±1	±2.3	LSB
		10 Bit Mode	—	±0.2	±0.6	LSB
Differential Nonlinearity (Guaran-	DNL	12 Bit Mode	-1	±0.7	1.9	LSB
		10 Bit Mode	_	±0.2	±0.6	LSB
Offset Error	E _{OFF}	12 Bit Mode, VREF = 1.65 V	-3	0	3	LSB
		10 Bit Mode, VREF = 1.65 V	-2	0	2	LSB
Offset Temperature Coefficient	TC _{OFF}		_	0.004	_	LSB/°C

4.1.10 Temperature Sensor

Table 4.10. Temperature Sensor

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit	
Offset	V _{OFF}	T _A = 0 °C	_	757	_	mV	
Offset Error ¹	E _{OFF}	T _A = 0 °C	_	17	_	mV	
Slope	М		_	2.85	_	mV/°C	
Slope Error ¹	E _M		_	70	_	μV/°	
Linearity			_	0.5	_	°C	
Turn-on Time			_	1.8	_	μs	
Note: 1. Represents one standard deviation from the mean.							

4.1.11 5 V Voltage Regulator

Table 4.11. 5V Voltage Regulator

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Input Voltage Range ¹	V _{REGIN}	USB in use	3.7	_	5.5	V
		USB not in use	3.0	—	5.5	V
Output Voltage on VDD ²	V _{REGOUT}	Regulation range (VREGIN ≥ 4.1V)	3.1	3.4	3.6	V
		Dropout range (VREGIN < 4.1V)	—	V _{REGIN} – V _{DROPOUT}	—	V
Output Current ²	I _{REGOUT}		_	_	100	mA
Dropout Voltage	V _{DROPOUT}	Output Current = 100 mA	—	—	0.7	V

Note:

1. Input range to meet the Output Voltage on VDD specification. If the 5 V voltage regulator is not used, VREGIN should be tied to VDD.

2. Output current is total regulator output, including any current required by the device.

4.1.12 1.8 V Internal LDO Voltage Regulator

Table 4.12. 1.8V Internal LDO Voltage Regulator

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Output Voltage	V _{OUT_1.8V}		1.77	1.84	1.92	V

4.1.14 Configurable Logic

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Propagation Delay through LUT	t _{DLY_LUT}	Through single CLU	_	—	38.7	ns
		Using an external pin				
		Through single CLU	-	1.6	5.0	ns
		Using an internal connection				
Propagation Delay through D flip-	t _{DLY_DFF}	Through single CLU	_	—	38.7	ns
пор сюск		Using an external pin				
		Through single CLU	—	1.4	5.6	ns
		Using an internal connection				
Clocking Frequency F _{CLK}		1 or 2 CLUs Cascaded	—	—	48	MHz
		3 or 4 CLUs Cascaded	_		48	MHz

Table 4.14. Configurable Logic

The figure below shows a typical connection diagram for the power pins of the EFM8UB3 devices when the internal regulator used and USB is connected (self-powered).

Figure 5.2. Connection Diagram with Voltage Regulator Used and USB Connected (Self-Powered)

The figure below shows a typical connection diagram for the power pins of the EFM8UB3 devices when the internal 5 V-to-3.3 V regulator is not used.

Figure 5.3. Connection Diagram with Voltage Regulator Not Used (Self-Powered)

Figure 6.2. EFM8UB3x-QFN24 Pinout

Table 6.2. Pin Definitions for EFM8UB3x-QFN24

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
1	P0.0	Multifunction I/O	Yes	P0MAT.0	ADC0.0
				INT0.0	CMP0P.0
				INT1.0	CMP0N.0
					VREF
2	GND	Ground			ADC0.19

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
18	P0.7	Multifunction I/O	Yes	P0MAT.7	ADC0.7
				INT0.7	CMP0P.7
				INT1.7	CMP0N.7
				CLU1A.7	
				CLU3A.6	
19	P0.6	Multifunction I/O	Yes	P0MAT.6	ADC0.6
				CNVSTR	CMP0P.6
				INT0.6	CMP0N.6
				INT1.6	
				CLU1B.6	
				CLU2OUT	
20	P0.5	Multifunction I/O	Yes	P0MAT.5	ADC0.5
				INT0.5	CMP0P.5
				INT1.5	CMP0N.5
				UART1_RX	
				CLU1B.7	
				CLU2A.6	
21	P0.4	Multifunction I/O	Yes	P0MAT.4	ADC0.4
				INT0.4	CMP0P.4
				INT1.4	CMP0N.4
				CLU0B.7	
				CLU2B.6	
				CLU1OUT	
				UART1_TX	
22	P0.3	Multifunction I/O	Yes	P0MAT.3	ADC0.3
				EXTCLK	CMP0P.3
				INT0.3	CMP0N.3
				INT1.3	
				CLU1A.6	
				CLU3B.7	

Figure 6.3. EFM8UB3x-QFN20 Pinout

Table 6.3. Pin Definitions for EFM8UB3x-QFN20

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
1	P0.1	Multifunction I/O	Yes	P0MAT.1	ADC0.1
				INT0.1	CMP0P.1
				INT1.1	CMP0N.1
				CLU0A.6	AGND
				CLU3A.7	

Pin	Pin Name	Description	Crossbar Capability	Additional Digital	Analog Functions
Number				Functions	
2	P0.0	Multifunction I/O	Yes	P0MAT.0	ADC0.0
				INT0.0	CMP0P.0
				INT1.0	CMP0N.0
					VREF
3	GND	Ground			ADC0.19
4	D+	USB Data Positive			ADC0.28
5	D-	USB Data Negative			ADC0.29
6	VDD	Supply Power Input /			ADC0.18
		5V Regulator Output			
7	VREGIN	5V Regulator Input			
8	P2.1	Multifunction I/O		VBUS	ADC0.24
					CMP1P.13
					CMP1N.13
9	RSTb /	Active-low Reset /			
	C2CK	C2 Debug Clock			
10	P2.0 /	Multifunction I/O /			
	C2D	C2 Debug Data			
11	P1.2	Multifunction I/O	Yes	P1MAT.2	ADC0.10
					CMP1P.2
					CMP1N.2
12	GND	Ground			
13	P1.1	Multifunction I/O	Yes	P1MAT.1	ADC0.9
					CMP1P.1
					CMP1N.1
14	P1.0	Multifunction I/O	Yes	P1MAT.0	ADC0.8
				CLU0B.6	CMP1P.0
				CLU2A.7	CMP1N.0
				CLU3OUT	
15	P0.7	Multifunction I/O	Yes	P0MAT.7	ADC0.7
				INT0.7	CMP0P.7
				INT1.7	CMP0N.7
				CLU1A.7	
				CLU3A.6	

Pin	Pin Name	Description	Crossbar Capability	Additional Digital	Analog Functions
Number				Functions	
16	P0.6	Multifunction I/O	Yes	P0MAT.6	ADC0.6
				CNVSTR	CMP0P.6
				INT0.6	CMP0N.6
				INT1.6	
				CLU1B.6	
				CLU2OUT	
17	P0.5	Multifunction I/O	Yes	P0MAT.5	ADC0.5
				INT0.5	CMP0P.5
				INT1.5	CMP0N.5
				UART1_RX	
				CLU1B.7	
				CLU2A.6	
18	P0.4	Multifunction I/O	Yes	P0MAT.4	ADC0.4
				INT0.4	CMP0P.4
				INT1.4	CMP0N.4
				CLU0B.7	
				CLU2B.6	
				CLU1OUT	
				UART1_TX	
19	P0.3	Multifunction I/O	Yes	P0MAT.3	ADC0.3
				EXTCLK	CMP0P.3
				INT0.3	CMP0N.3
				INT1.3	
				CLU1A.6	
				CLU3B.7	
20	P0.2	Multifunction I/O	Yes	P0MAT.2	ADC0.2
				INT0.2	CMP0P.2
				INT1.2	CMP0N.2
				CLU2B.7	
				CLU3B.6	
				CLU0OUT	
Center	GND	Ground			

Dimension	Min	Тур	Мах	
Note:				
1. All dimensions shown are in millimeters (mm) unless otherwise noted.				
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.				
3. This drawing conforms to JEDEC Solid State Outline MO-220.				
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components.				

8. QSOP24 Package Specifications

8.1 Package Dimensions

Figure 8.1. Package Drawing

Table 8.1. Package Dimensions

Dimension	Min	Тур	Мах	
A	—	_	1.75	
A1	0.10	_	0.25	
b	0.20	_	0.30	
с	0.10	_	0.25	
D	8.65 BSC			
E	6.00 BSC			
E1	3.90 BSC			
е	0.635 BSC			
L	0.40	40 — 1.27		

Dimension	Min	Тур	Мах	
theta	0°	—	8°	
ааа	0.20			
bbb	0.18			
ссс		0.10		
ddd		0.10		
Note:	•			

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. This drawing conforms to JEDEC outline MO-137, variation AE.

4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

8.3 Package Marking

Figure 8.3. Package Marking

The package marking consists of:

- PPPPPPP The part number designation.
- TTTTTT A trace or manufacturing code.
- YY The last 2 digits of the assembly year.
- WW The 2-digit workweek when the device was assembled.
- # The device revision (A, B, etc.).

Dimension	Min	Тур	Мах	
E2	1.60	1.70	1.80	
f	2.50 BSC			
L	0.30	0.40	0.50	
К	0.25 REF			
R	0.09	0.125	0.15	
ааа	0.15			
bbb	0.10			
ссс	0.10			
ddd	0.05			
eee	0.08			
fff	0.10			

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. The drawing complies with JEDEC MO-220.

4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

Silicon Labs

Simplicity Studio

One-click access to MCU and wireless tools, documentation, software, source code libraries & more. Available for Windows, Mac and Linux!

v Sut

Support and Community community.silabs.com

Disclaimer

Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Labs shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

Trademark Information

Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®, Gecko®, ISOmodem®, Micrium, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress®, Zentri and others are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.

Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA

http://www.silabs.com