

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

ĿXFl

Product Status	Active
Core Processor	ARM® Cortex®-M4F
Core Size	32-Bit Single-Core
Speed	160MHz
Connectivity	CANbus, CSIO, EBI/EMI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	100
Program Memory Size	288KB (288K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	121-TFBGA
Supplier Device Package	121-FBGA (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/s6e2h44g0agb3000a

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4. Pin Description

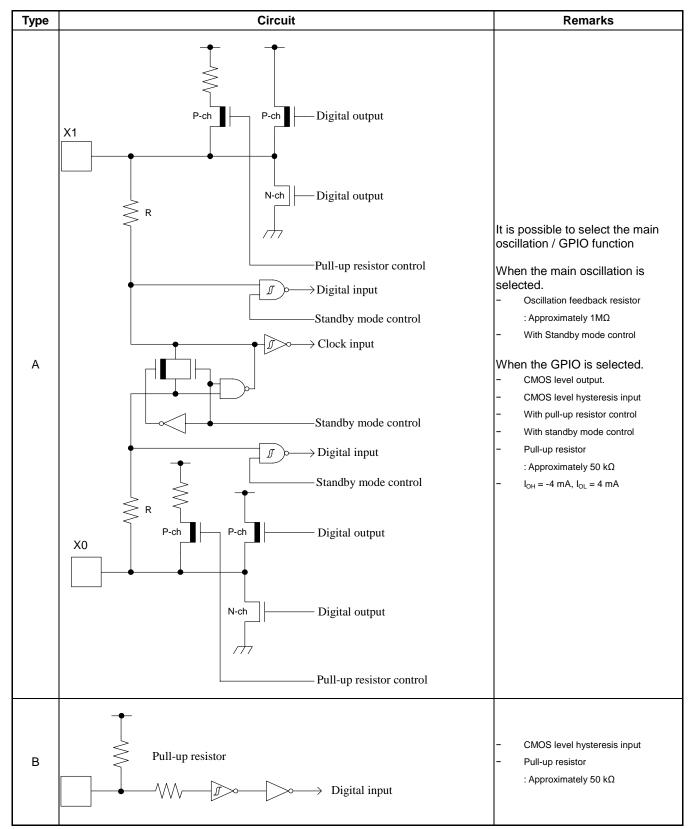
List of Pin Numbers

The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to select the pin.

	Pin Nu	mber		Pin Name	I/O Circuit	Pin State		
LQFP120	LQFP100	LQFP80	FBGA121	r in Name	Туре	Туре		
1	1	1	B1	VCC	-	-		
				P50	_			
				CTS4_0	_			
				AIN0_2	_			
2	2	2	C1	RTO10_0 (PPG10_0)	E	К		
				INT00_0				
				MADATA00_0				
				P51	_			
				RTS4_0				
				BIN0_2	-			
3	3	3	C2	RTO11_0 (PPG10_0)	E	к		
				INT01_0				
				MADATA01_0				
				P52	-			
				SCK4_0 (SCL4_0)				
4	4	4	4	4	D1	ZIN0_2	E	I
			-	RTO12_0 (PPG12_0)				
				MADATA02_0				
				P53				
				TIOA1_2				
5	5	5	D2	SOT4_0 (SDA4_0)	E	I		
				RTO13_0 (PPG12_0)				
			-	MADATA03_0	-			
				P54		1		
	6 6 6			TIOB1_2	1			
				SIN4_0	1			
6		6 D3		RTO14_0 (PPG14_0)	E	К		
			INT02_0	1				
				 MADATA04_0		1		

Din				Pir	ו No	
Pin Function	Pin Name	Function Description	LQFP 120	LQFP 100	LQFP 80	FBGA 121
	P30		14	9	9	E1
	P31		15	10	10	F4
	P32		16	11	11	F3
	P33		17	12	12	F2
	P34		18	13	-	F1
	P35		19	14	-	G1
	P36		20	15	-	G2
	P37		21	16	-	G3
	P38	General-purpose I/O port 3	22	17	-	G4
	P39		23	18	13	H1
	P3A		24	19	14	H2
	P3B		25	20	15	H3
	P3C		26	21	16	H4
	P3D		27	22	17	J1
	P3E]	28	23	18	J2
	P3F		29	24	19	K2
	P40		32	27	-	L2
	P41		33	28	-	J3
	P42		34	29	-	J5
	P43		35	30	-	H5
	P44		36	31	21	K3
GPIO	P45		37	32	22	J4
	P46		39	34	24	L4
	P47	General-purpose I/O port 4	40	35	25	K4
	P48		41	36	26	K5
	P49		42	37	27	K6
	P4B		47	42	32	J6
	P4C		48	43	33	J7
	P4D		49	44	34	J8
F F	P4E		50	45	35	K8
	P50		2	2	2	C1
	P51		3	3	3	C2
F F	P52		4	4	4	D1
	P53		5	5	5	D2
l f	P54		6	6	6	D3
	P55		7	7	7	E2
	P56	General-purpose I/O port 5	8	8	8	E3
	P57		9	-	-	E4
	P58		10	-	-	F5
	P59		11	-	-	F6
	P5A		12	-	-	G5
l f	P5B		13	-	-	G6

Pin				Pir	Pin No				
Function	Pin Name	Function Description	LQFP 120	LQFP 100	LQFP 80	FBGA 121			
	P60		116	96	76	B2			
	P61		115	95	75	B3			
_	P62		114	94	74	C3			
_	P63		113	93	73	B4			
_	P64	General-purpose I/O port 6	112	-	-	C4			
	P65		111	-	-	D4			
	P66		110	-	-	D5			
	P67		109	-	-	E5			
	P68		108	-	-	E6			
GPIO	P70		51	-	-	H6			
	P71		52	-	-	H7			
	P72	General-purpose I/O port 7	53	-	-	G7			
	P73		54	-	-	H8			
	P74		55	-	-	J9			
	P80	Conoral purpose I/O port 8	118	98	78	A3			
	P81	General-purpose I/O port 8	119	99	79	A2			
	PE0		56	46	36	L8			
	PE2	General-purpose I/O port E	58	48	38	L9			
	PE3		59	49	39	L10			
	SIN0_0		88	73	59	C11			
	SIN0_1	-Multi-function serial interface ch.0 input pin	65	55	44	G10			
_	SOT0_0 (SDA0_0)	Multi-function serial interface ch.0 output pin. This pin operates as SOT0 when it is used in a UART/CSIO/LIN (operation modes 0 to	87	72	58	C10			
Multi- function Serial 0	SOT0_1 (SDA0_1)	3) and as SDA0 when it is used in an I2C (operation mode 4).	66	56	45	G9			
	SCK0_0 (SCL0_0)	Multi-function serial interface ch.0 clock I/O pin. This pin operates as SCK0 when it is used	86	71	57	D11			
	SCK0_1 (SCL0_1)	in a UART/CSIO/LIN (operation modes 0 to 3) and as SCL0 when it is used in an I2C (operation mode 4).	67	57	46	G8			
	SIN1_0	Multi-function parial interface ch-4 input nin	96	81	66	A8			
	SIN1_1	-Multi-function serial interface ch.1 input pin	62	52	41	J10			
-	SOT1_0 (SDA1_0)	Multi-function serial interface ch.1 output pin. This pin operates as SOT1 when it is used	97	82	67	D7			
Multi- function	SOT1_1 (SDA1_1)	in a UART/CSIO/LIN (operation modes 0 to 3) and as SDA1 when it is used in an I2C (operation mode 4).	63	53	42	H10			
Serial 1 -	SCK1_0 (SCL1_0)	Multi-function serial interface ch.1 clock I/O pin. This pin operates as SCK1 when it is used	98	83	-	C7			
	SCK1_1 (SCL1_1)	in a CSIO (operation modes 2) and as SCL1 when it is used in an I2C (operation mode 4).	64	54	43	H9			



				Pir	n No	
Pin Function	Pin Name	Function Description	LQFP 120	LQFP 100	LQFP 80	FBGA 121
	SIN6_0	Multi-function serial interface ch.6 input pin	7	7	7	E2
	SIN6_1	- Multi-function senai intenace ch.6 input pin	95	80	65	B8
	SOT6_0 (SDA6_0)	Multi-function serial interface ch.6 output pin. This pin operates as SOT6 when it is used	8	8	8	E3
Multi-	SOT6_1 (SDA6_1)	in a UART/CSIO/LIN (operation modes 0 to 3) and as SDA6 when it is used in an I2C (operation mode 4).	94	79	64	C8
function Serial 6	SCK6_0 (SCL6_0)	Multi-function serial interface ch.6 clock I/O pin. This pin operates as SCK6 when it is used	9	-	-	E4
	SCK6_1 (SCL6_1)	in a CSIO (operation modes 2) and as SCL6 when it is used in an I2C (operation mode 4).	93	78	63	A9
SCS6_1		Multi-function serial interface ch.6 serial chip select pin	92	77	62	B9
	SIN7_0	Multi function parial interface of 7 input pin	101	86	-	D6
	SIN7_1	Multi-function serial interface ch.7 input pin	50	45	35	K8
	SOT7_0 (SDA7_0)	Multi-function serial interface ch.7 output pin. This pin operates as SOT7 when it is used	100	85	-	A7
Multi-	SOT7_1 (SDA7_1)	in a UART/CSIO/LIN (operation modes 0 to 3) and as SDA7 when it is used in an I2C (operation mode 4).	49	44	34	J8
function Serial 7	SCK7_0 (SCL7_0)	Multi-function serial interface ch.7 clock I/O pin. This pin operates as SCK7 when it is used	99	84	-	B7
	SCK7_1 (SCL7_1)	in a CSIO (operation modes 2) and as SCL7 when it is used in an I2C (operation mode 4).	48	43	33	J7
	SCS7_1	Multi-function serial interface ch.7 serial chip select pin	47	42	32	J6

5. I/O Circuit Type

Latch-up

Semiconductor devices are constructed by the formation of P-type and N-type areas on a substrate. When subjected to abnormally high voltages, internal parasitic PNPN junctions (called thyristor structures) may be formed, causing large current levels in excess of several hundred mA to flow continuously at the power supply pin. This condition is called latch-up.

CAUTION: The occurrence of latch-up not only causes loss of reliability in the semiconductor device, but can cause injury or damage from high heat, smoke or flame. To prevent this from happening, do the following:

(1) Be sure that voltages applied to pins do not exceed the absolute maximum ratings. This should include attention to abnormal noise, surge levels, etc.

(2) Be sure that abnormal current flows do not occur during the power-on sequence.

Observance of Safety Regulations and Standards

Most countries in the world have established standards and regulations regarding safety, protection from electromagnetic interference, etc. Customers are requested to observe applicable regulations and standards in the design of products.

Fail-Safe Design

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

Precautions Related to Usage of Devices

Cypress semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).

CAUTION: Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

6.2 Precautions for Package Mounting

Package mounting may be either lead insertion type or surface mount type. In either case, for heat resistance during soldering, you should only mount under Cypress's recommended conditions. For detailed information about mount conditions, contact your sales representative.

Lead Insertion Type

Mounting of lead insertion type packages onto printed circuit boards may be done by two methods: direct soldering on the board, or mounting by using a socket.

Direct mounting onto boards normally involves processes for inserting leads into through-holes on the board and using the flow soldering (wave soldering) method of applying liquid solder. In this case, the soldering process usually causes leads to be subjected to thermal stress in excess of the absolute ratings for storage temperature. Mounting processes should conform to Cypress recommended mounting conditions.

If socket mounting is used, differences in surface treatment of the socket contacts and IC lead surfaces can lead to contact deterioration after long periods. For this reason it is recommended that the surface treatment of socket contacts and IC leads be verified before mounting.

Surface Mount Type

Surface mount packaging has longer and thinner leads than lead-insertion packaging, and therefore leads are more easily deformed or bent. The use of packages with higher pin counts and narrower pin pitch results in increased susceptibility to open connections caused by deformed pins, or shorting due to solder bridges.

You must use appropriate mounting techniques. Cypress recommends the solder reflow method, and has established a ranking of mounting conditions for each product. Users are advised to mount packages in accordance with Cypress ranking of recommended conditions.

Lead-Free Packaging

CAUTION: When ball grid array (FBGA) packages with Sn-Ag-Cu balls are mounted using Sn-Pb eutectic soldering, junction strength may be reduced under some conditions of use.

Storage of Semiconductor Devices

Because plastic chip packages are formed from plastic resins, exposure to natural environmental conditions will cause absorption of moisture. During mounting, the application of heat to a package that has absorbed moisture can cause surfaces to peel, reducing moisture resistance and causing packages to crack. To prevent, do the following:

(1) Avoid exposure to rapid temperature changes, which cause moisture to condense inside the product. Store products in locations where temperature changes are slight.

(2) Use dry boxes for product storage. Products should be stored below 70% relative humidity, and at temperatures between 5°C and 30°C.

When you open Dry Package that recommends humidity 40% to 70% relative humidity.

(3) When necessary, Cypress packages semiconductor devices in highly moisture-resistant aluminum laminate bags, with a silica gel desiccant. Devices should be sealed in their aluminum laminate bags for storage.

(4) Avoid storing packages where they are exposed to corrosive gases or high levels of dust.

Baking

Packages that have absorbed moisture may be de-moisturized by baking (heat drying). Follow the Cypress recommended conditions for baking.

Condition: 125°C/24 h

Static Electricity

Because semiconductor devices are particularly susceptible to damage by static electricity, you must take the following precautions:

(1) Maintain relative humidity in the working environment between 40% and 70%. Use of an apparatus for ion generation may be needed to remove electricity.

(2) Electrically ground all conveyors, solder vessels, soldering irons and peripheral equipment.

(3) Eliminate static body electricity by the use of rings or bracelets connected to ground through high resistance (on the level of 1 $M\Omega$).

Wearing of conductive clothing and shoes, use of conductive floor mats and other measures to minimize shock loads is recommended.

(4) Ground all fixtures and instruments, or protect with anti-static measures.

(5) Avoid the use of styrofoam or other highly static-prone materials for storage of completed board assemblies.

Parameter	Symbol	Pin Name	Conditions	Frequency*4	Va	lue	Unit	Remarks			
Farameter	Symbol	Fin Name	Conditions	Frequency	Typ* ¹	Max* ²	Unit	Rellidiks			
			Sleep operation *5 (main oscillation)		2.1	22	mA	*3 When all peripheral clocks are ON			
				4MHz -	1.3	22	mA	*3 When all peripheral clocks are OFF			
Power supply I _{CCS} VCC		Sleep operation (built-in high-speed CR)	operation 4 MHz	1.3	22	mA	*3 When all peripheral clocks are ON				
	VCC			0.8	21	mA	*3 When all peripheral clocks are OFF				
current	1003		Sleep operation (sub oscillation)		0.28	21	mA	*3 When all peripheral clocks are ON			
						32 kHz	0.27	21	mA	*3 When all peripheral clocks are OFF	
			Sleep operation		operation	operation	tion 100 kHz	0.29	21	mA	*3 When all peripheral clocks are ON
			low-speed CR)		0.28	21	mA	*3 When all peripheral clocks are OFF			

Table 12-7 Typical and Maximum Current Consumption in Sleep Operation(other than PLL), when PCLK0 = PCLK1 = PCLK2 = HCLK/2

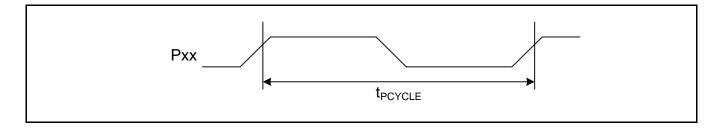
*1: T_A=+25°C, V_{CC}=3.3 V

*2: T_J=+125°C, V_{CC}=5.5 V

*3: When all ports are fixed.

*4: Frequency is a value of HCLK. PCLK0=PCLK1=PCLK2=HCLK/2

*5: When using the crystal oscillator of 4 M Hz (including the current consumption of the oscillation circuit)

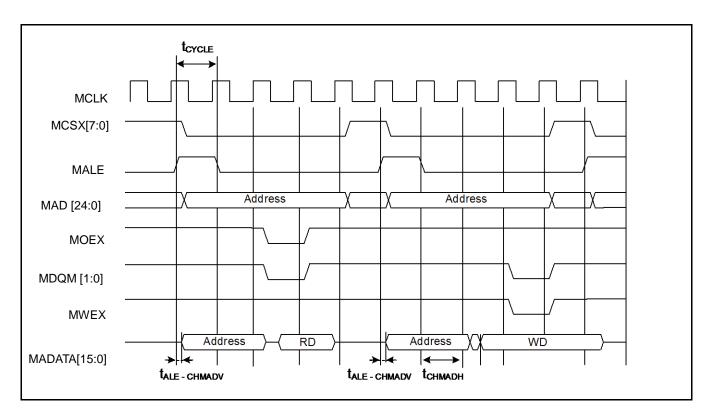


12.4.8 GPIO Output Characteristics

(V_{CC} = 2.7V to 5.5V, V_{SS} = 0V)

Parameter	Symbol	Pin Name	Conditions	Va	lue	Unit	
Falalletei			Conditions	Min	Max	Onit	
Output frequency	+	Dvv*	$V_{CC} \ge 4.5 V$	-	50	MHz	
Output frequency	TPCYCLE	Pxx*	V_{CC} < 4.5 V	-	32	MHz	

*: GPIO is a target.

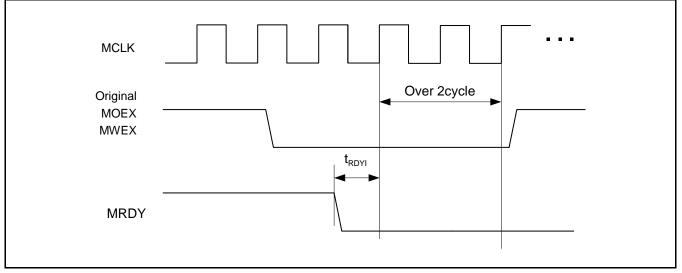

Multiplexed Bus Access Asynchronous SRAM Mode

(V_{CC} = 2.7V to 5.5V, V_{SS} = 0V)

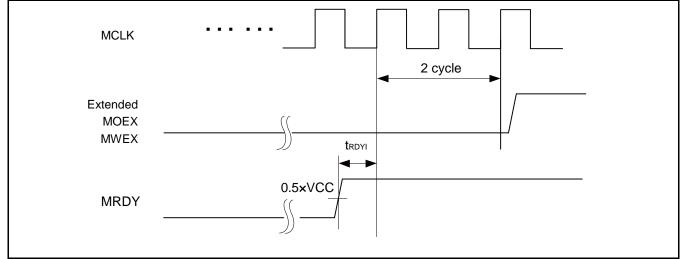
Parameter	Symbol	Pin Name	Conditions	Va	lue	Unit
Farameter	Symbol		Conditions	Min	Max	Unit
Multiplexed address delay		MALE, MADATA[15:0]	$V_{CC} \ge 4.5 V$	0	10	ns
time	t _{ALE-CHMADV}		V_{CC} < 4.5 V	0	20	
Multiplexed address hold	t _{CHMADH}		$V_{CC} \ge 4.5 V$	MCLK×n+0	MCLK×n+10	ns
time			$V_{CC} < 4.5 V$	MCLK×n+0	MCLK×n+20	-

Note:

- When the external load capacitance $C_L = 30 \text{ pF}$ (m=0 to 15, n=1 to 16)



External Ready Input Timing


(V_{CC} = 2.7V to 5.5V, V_{SS} = 0V)

Demonstern	Querry has h	Dia Maria	O an allition a	Va	lue	L Inchi	Demerles
Parameter	Symbol	Pin Name	Name Conditions	Min	Max	Unit	Remarks
MCLK↑ MRDY input	+	MCLK,	V _{CC} ≥ 4.5 V	19		ns	
setup time	t _{RDYI}	MRDY	V _{CC} < 4.5 V	37			

■When RDY is input

When RDY is released

When Using Synchronous Serial Chip Select (SPI = 1, SCINV = 0, MS=0, CSLVL=1)

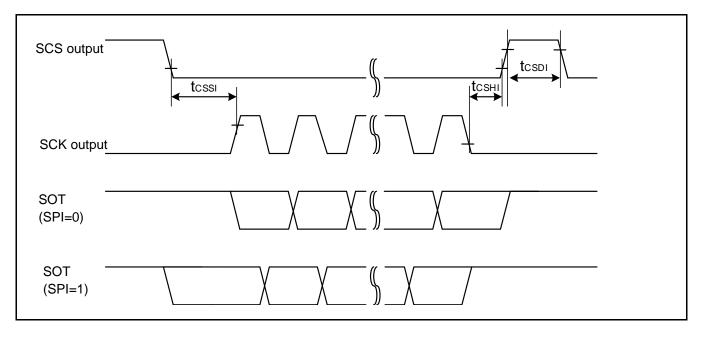
 $(V_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = 0V)$

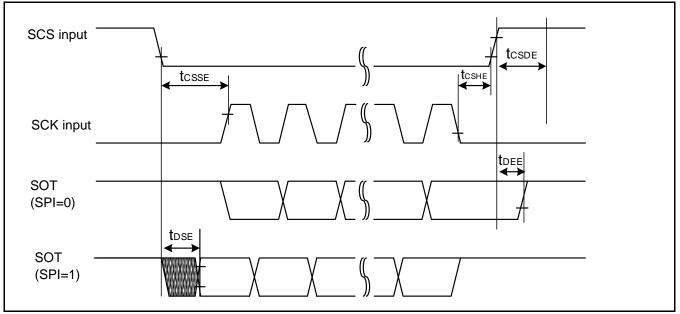
Parameter	Symbol	Conditions	V _{cc} <	4.5 V	V _{cc} ≥	4.5 V	Unit
Farameter	Symbol	Conditions	Min	Max	Min	Мах	Unit
SCS↓→SCK↓setup time	t _{CSSI}	Internal shift - clock _ operation	(*1)-50	(*1)+0	(*1)-50	(*1)+0	ns
SCK↑→SCS↑ hold time	t _{CSHI}		(*2)+0	(*2)+50	(*2)+0	(*2)+50	ns
SCS deselect time	t _{CSDI}		(*3)-50 +5t _{CYCP}	(*3)+50 +5t _{CYCP}	(*3)-50 +5t _{CYCP}	(*3)+50 +5t _{CYCP}	ns
SCS↓→SCK↓setup time	t _{CSSE}		3t _{CYCP} +30	-	3t _{CYCP} +30	-	ns
SCK↑→SCS↑ hold time	t _{CSHE}	External shift	0	-	0	-	ns
SCS deselect time	t _{CSDE}	clock	3t _{CYCP} +30	-	3tC _{YCP} +30	-	ns
SCS↓→SUT delay time	t _{DSE}	operation	-	40	-	40	ns
SCS↑→SUT delay time	t _{DEE}	-	0	-	0	-	ns

(*1): CSSU bit valuexserial chip select timing operating clock cycle [ns]

(*2): CSHD bit valuexserial chip select timing operating clock cycle [ns]

(*3): CSDS bit valuexserial chip select timing operating clock cycle [ns]


Notes:


t_{CYCP} indicates the APB bus clock cycle time.
About the APB bus number which multi-function serial is connected to, see 8. Block Diagram in this data sheet.


 About CSSU, CSHD, CSDS, serial chip select timing operating clock, see FM4 Family Peripheral Manual Main part(MN709-00001).

- When the external load capacitance $C_L = 30 \text{ pF}$.

When Using Synchronous Serial Chip Select (SPI = 1, SCINV = 1, MS=0, CSLVL=0)

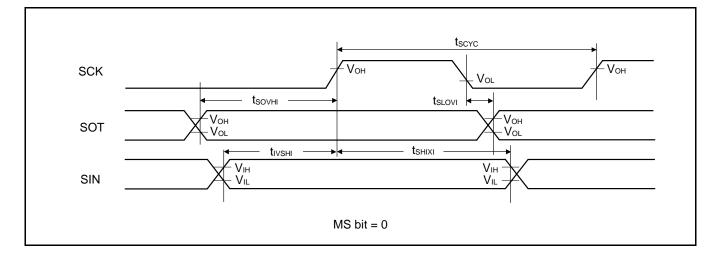
 $(V_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = 0V)$

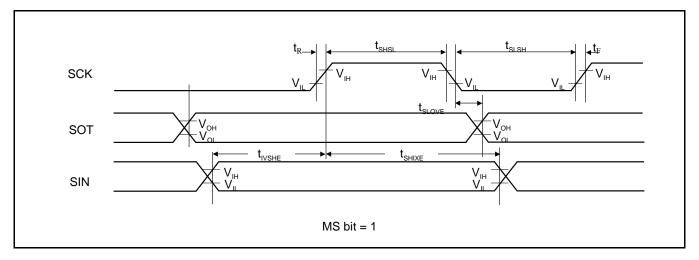
Deremeter	Symphol	Conditions	V _{cc} <	4.5 V	V _{cc} ≥	4.5 V	l lmit
Parameter	Symbol	Conditions	Min	Max	Min	Max	Unit
SCS↑→SCK↑setup time	t _{CSSI}	listerin el elsitt	(*1)-50	(*1)+0	(*1)-50	(*1)+0	ns
SCK↓→SCS↓ hold time	t _{сsнi}	Internal shift clock	(*2)+0	(*2)+50	(*2)+0	(*2)+50	ns
SCS deselect time	t _{CSDI}	operation	(*3)-50 +5t _{CYCP}	(*3)+50 +5t _{CYCP}	(*3)-50 +5t _{CYCP}	(*3)+50 +5t _{CYCP}	ns
SCS↑→SCK↑setup time	t _{CSSE}		3t _{CYCP} +30	-	3t _{CYCP} +30	-	ns
SCK↓→SCS↓ hold time	t _{CSHE}	External shift	0	-	0	-	ns
SCS deselect time	t _{CSDE}	clock	3t _{CYCP} +30	-	3t _{CYCP} +30	-	ns
SCS↑→SOT delay time	t _{DSE}	operation	-	40	-	40	ns
SCS↓→SOT delay time	t _{DEE}]	0	-	0	-	ns

(*1): CSSU bit valuexserial chip select timing operating clock cycle [ns]

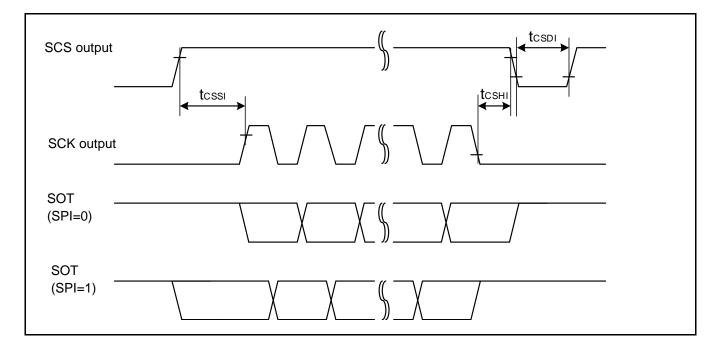
(*2): CSHD bit valuexserial chip select timing operating clock cycle [ns]

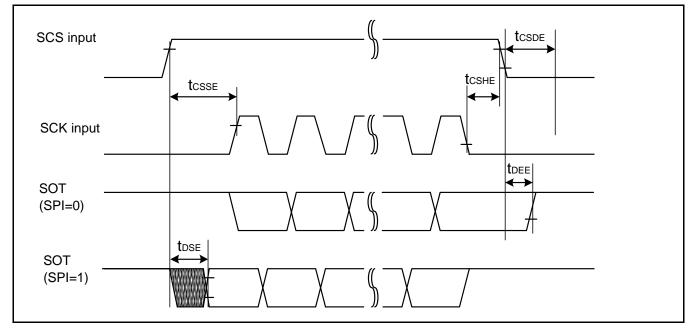
(*3): CSDS bit valuexserial chip select timing operating clock cycle [ns]

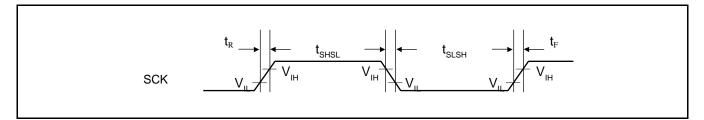

Notes:


t_{CYCP} indicates the APB bus clock cycle time.
About the APB bus number which multi-function serial is connected to, see 8. Block Diagram in this data sheet.

 About CSSU, CSHD, CSDS, serial chip select timing operating clock, see FM4 Family Peripheral Manual Main part(MN709-00001).


- When the external load capacitance $C_L = 30 \text{ pF}$.

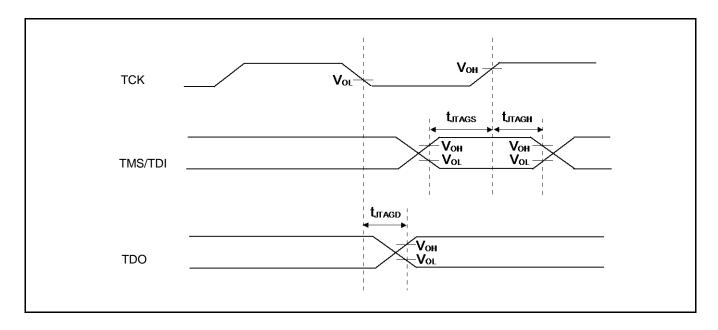




External Clock (EXT = 1): when in Asynchronous Mode Only

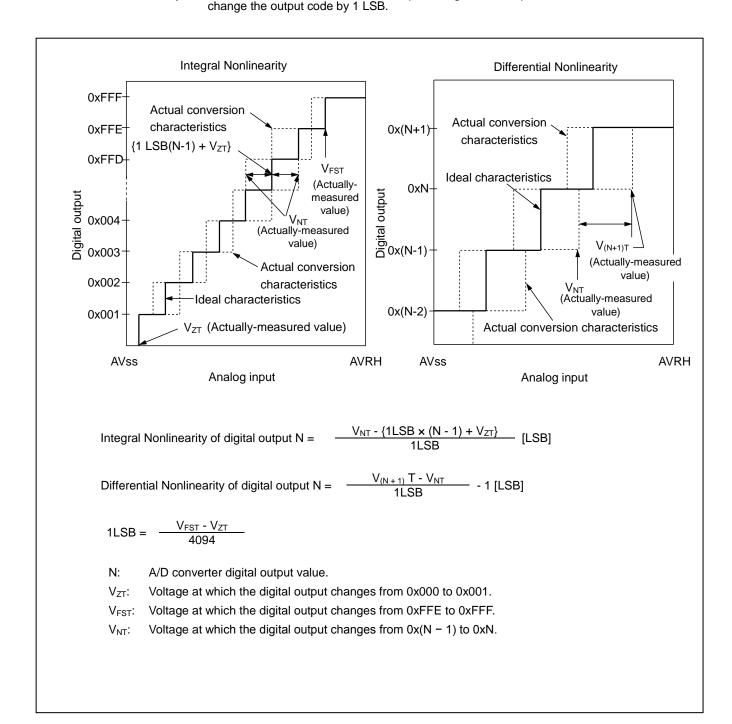
 $(V_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = 0V)$

Baramatar	Cumphiel	Condition	Val	ue	11	Remarks
Parameter	Symbol	Condition	Min	Max	Unit	
Serial clock L pulse width	t _{SLSH}		t _{CYCP} + 10	-	ns	
Serial clock H pulse width	t _{SHSL}	C _L = 30 pF	t _{CYCP} + 10	-	ns	
SCK falling time	t _F	$C_L = 30 \text{ pr}$	-	5	ns	
SCK rising time	t _R		-	5	ns	

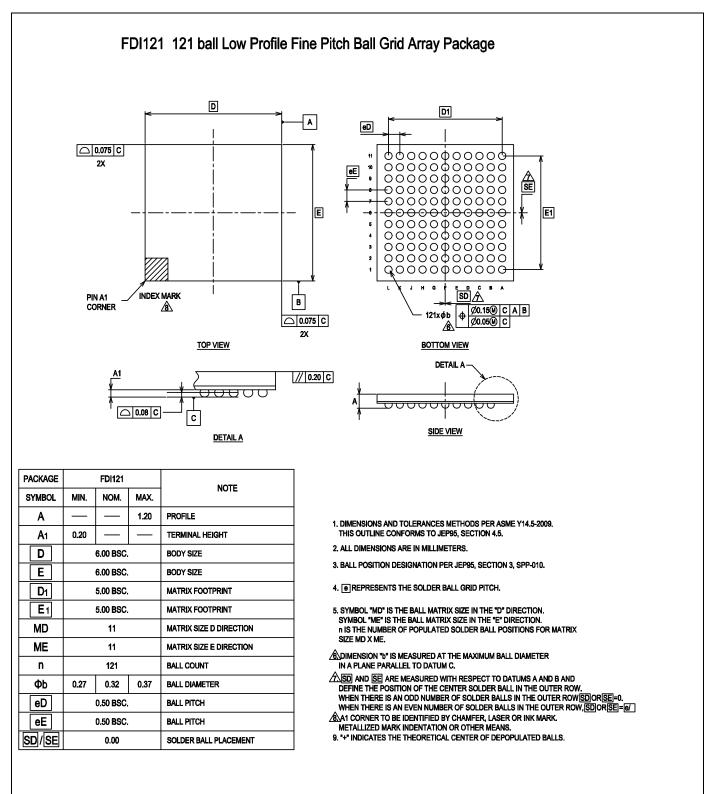

12.4.16 JTAG Timing

(V_{CC} = 2.7V to 5.5V, V_{SS} = 0V)

Parameter	Symbol	Pin Name	Conditions	Value		Unit	Remarks
				Min	Max	Unit	Remarks
TMS, TDI setup time	t _{JTAGS}	TCK,	$V_{CC} \ge 4.5 V$	15	-	ns	
		TMS, TDI	$V_{CC} < 4.5 V$				
TMS, TDI hold time	t _{JTAGH}	TCK,	$V_{CC} \ge 4.5 V$	15	-	ns	
		TMS, TDI	V _{CC} < 4.5 V				
TDO delay time	t _{JTAGD}	TCK, TDO	$V_{CC} \ge 4.5 V$	-	25	ns	
			$V_{CC} < 4.5 V$	-	45	115	


Note:

- When the external load capacitance C_L = 30 pF.


Definition of 12-bit A/D Converter Terms

Package Type	Package Code
FBGA 121	FDI121

