

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4F
Core Size	32-Bit Single-Core
Speed	160MHz
Connectivity	CANbus, CSIO, EBI/EMI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	63
Program Memory Size	544KB (544K x 8)
Program Memory Type	FLASH
EEPROM Size	<u>.</u>
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	80-LQFP
Supplier Device Package	80-LQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/s6e2h46e0agv20000

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

□ Various error detect functions available (parity errors, framing errors, and overrun errors)

■CSIO

- □ Full-duplex double buffer
- Built-in dedicated baud rate generator
- \square Overrun error detect function available
- □ Serial chip select function (ch.6 and ch.7 only)
- □ Supports high-speed SPI (ch.4 and ch.6 only)
- □ Data length 5 to 16-bit

■LIN

- □ LIN protocol Rev.2.1 supported
- □ Full-duplex double buffer
- □ Master/Slave mode supported
- □ LIN break field generation (can change to 13 to 16-bit length)
- □ LIN break delimiter generation (can change to 1 to 4-bit length)
- □ Various error detect functions available (parity errors, framing errors, and overrun errors)

■I²C

- □ Standard mode (Max 100 kbps) / High-speed mode (Max 400 kbps) supported
- □ Fast mode Plus (Fm+) (Max 1000 kbps, only for ch.3=ch.A and ch.7=ch.B) supported

DMA Controller (8 channels)

DMA Controller has an independent bus for CPU, so CPU and DMA Controller can process simultaneously.

- ■8 independently configured and operated channels
- Transfer can be started by software or request from the built-in peripherals
- Transfer address area: 32-bit (4 Gbytes)
- Transfer mode: Block transfer/Burst transfer/Demand transfer
- Transfer data type: bytes/half-word/word
- Transfer block count: 1 to 16
- ■Number of transfers: 1 to 65536

DSTC (Descriptor System data Transfer Controller) (256 channels)

The DSTC can transfer data at high-speed without going via the CPU. The DSTC adopts the Descriptor system and, following the specified contents of the Descriptor which has already been constructed on the memory, can access directly the memory /peripheral device and performs the data transfer operation.

It supports the software activation, the hardware activation and the chain activation functions.

A/D Converter (Max 24 channels) [12-bit A/D Converter]

- Successive Approximation type
- Built-in 3 units
- ■Conversion time: 0.5 µs @ 5 V

- Priority conversion available (priority at 2 levels)
- Scanning conversion mode
- Built-in FIFO for conversion data storage (for SCAN conversion: 16 steps, for Priority conversion: 4 steps)

DA Converter (Max 2 channels)

- ■R-2R type
- ■12-bit resolution

Base Timer (Max 8 channels)

Operation mode is selectable from the followings for each channel.

- ■16-bit PWM timer
- ■16-bit PPG timer
- ■16-/32-bit reload timer
- ■16-/32-bit PWC timer
- Event counter mode (external clock mode)

General Purpose I/O Port

This series can use its pins as general purpose I/O ports when they are not used for external bus or peripherals. Moreover, the port relocate function is built in. It can set which I/O port the peripheral function can be allocated.

- Capable of pull-up control per pin
- Capable of reading pin level directly
- ■Built-in the port relocate function
- Up to 100 high-speed general-purpose I/O ports @ 120 pin Package

Some pin is 5 V tolerant I/O. See 4. Pin Description and 5. I/O Circuit Type for the corresponding pins.

Multi-function Timer (Max 3 units)

The Multi-function timer is composed of the following blocks.

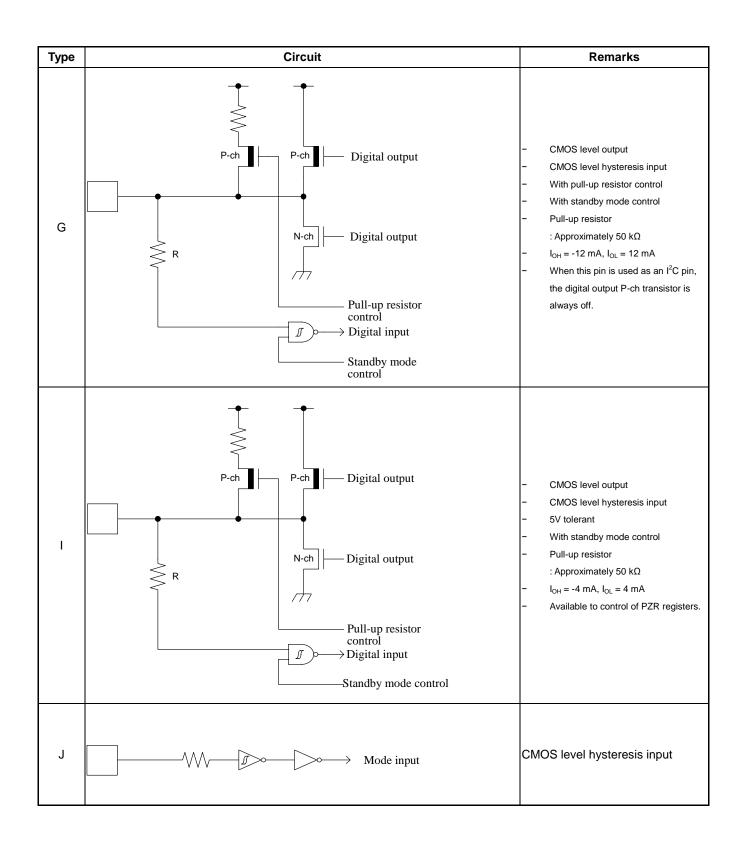
Minimum resolution: 6.25 ns

- ■16-bit free-run timer × 3ch./unit
- ■Input capture × 4ch./unit
- ■Output compare × 6ch./unit
- A/D activation compare × 6ch./unit
- ■Waveform generator × 3ch./unit
- ■16-bit PPG timer × 3ch./unit

The following function can be used to achieve the motor control.


- ■PWM signal output function
- ■DC chopper waveform output function
- Dead time function
- ■Input capture function

Document Number: 001-98941 Rev.*B


Di			Pin No					
Pin Function	Pin Name	Function Description	LQFP 120	LQFP 100	LQFP 80	FBGA 121		
MSDCLK_0		SDRAM interface SDRAM clock output pin	23	18	-	H1		
	MSDCKE_0	SDRAM interface SDRAM clock enable pin	24	19	-	H2		
External Bus	MRASX_0	SDRAM interface SDRAM row address strobe pin	25	20	-	H3		
	MCASX_0	SDRAM interface SDRAM column address strobe pin	26	21	-	H4		
	MSDWEX_0	SDRAM interface SDRAM write enable pin	34	29	-	J5		
	INT00_0		2	2	2	C1		
	INT00_1	External interrupt request 00 input pin	95	80	65	B8		
	INT00_2		108	-	-	E6		
	INT01_0		3	3	3	C2		
	INT01_1	External interrupt request 01 input pin	101	86	-	D6		
ſ	INT01_2		85	-	-	B10		
	INT02_0		6	6	6	D3		
	INT02_1	External interrupt request 02 input pin	62	52	41	J10		
INT02_2 INT03_0 INT03_1		82	-	-	E7			
	INT03_0		113	93	73	B4		
	External interrupt request 03 input pin	65	55	44	G10			
	INT03_2		54	-	-	H8		
•	INT04_0		17	12	12	F2		
	INT04_1	External interrupt request 04 input pin	114	94	74	C3		
	INT04_2		10	-	-	F5		
-	INT05_0		89	74	-	B11		
-	INT05_1	External interrupt request 05 input pin	75	65	54	E11		
-	INT05_2		21	16	-	G3		
External	INT06_1		88	73	59	C11		
Interrupt	INT06_2	External interrupt request 06 input pin	22	17		G4		
interrupt	INT07_1		11	-		F6		
	INT07_1	External interrupt request 07 input pin	7	7	- 7	E2		
	INT07_2		19	14	-	G1		
	INT08_2	External interrupt request 08 input pin	8	8	8	E3		
	INT09_1		20	15	-	G2		
	INT09_1	External interrupt request 09 input pin	15	10	10	62 F4		
	INT09_2 INT10_1		15	11	10	F4 F3		
	INT10_1 INT10_2	External interrupt request 10 input pin	112			<u>гз</u> С4		
-				-	-			
	INT11_1 INT11_2	External interrupt request 11 input pin	50 110	45 -	35 -	K8 D5		
	INT12_1 INT12_2	External interrupt request 12 input pin	32 96	27 81	- 66	L2 A8		
	INT13_1		33	28	-	J3		
	INT13_2	External interrupt request 13 input pin	49	44	34	 J8		
	INT14_1		68	58	47	F10		
ł	INT14_2	External interrupt request 14 input pin	53	-	-	G7		
•	INT15_1		52	-	-	H7		
-	INT15_1	External interrupt request 15 input pin	14	9	9	E1		

			Pin No				
Pin Function	Pin Name	Function Description	LQFP 120	LQFP 100	LQFP 80	FBGA 121	
	SIN2_0		53	-	-	G7	
	SIN2_1	Multi-function serial interface ch.2 input pin	85	-	-	B10	
_	SIN2_2		68	58	47	F10	
	SOT2_0 (SDA2_0)	Multi-function serial interface ch.2 output pin.	54	-	-	H8	
Multi-	SOT2_1 (SDA2_1)	This pin operates as SOT2 when it is used in a UART/CSIO/LIN (operation modes 0 to	84	-	-	C9	
function Serial 2	SOT2_2 (SDA2_2)	3) and as SDA2 when it is used in an I2C (operation mode 4).	69	59	48	F9	
	SCK2_0 (SCL2_0)	Multi-function serial interface ch.2 clock I/O pin.	55	-	-	J9	
	SCK2_1 (SCL2_1)	This pin operates as SCK2 when it is used in a CSIO (operation modes 2) and as	83	-	-	D8	
	SCK2_2 (SCL2_2)	SCL2 when it is used in an I2C (operation mode 4).	74	64	53	F8	
	SIN3_0	Multi-function serial interface ch.3 input pin	110	-	-	D5	
	SIN3_1	-Multi-function senai internace cn.s input pin	15	10	10	F4	
	SOT3_0 (SDA3_0)	Multi-function serial interface ch.3 output pin. This pin operates as SOT3 when it is used	109	-	-	E5	
Multi- function Serial 3	SOT3_1 (SDA3_1)	in a UART/CSIO/LIN (operation modes 0 to 3) and as SDA3 when it is used in an I2C (operation mode 4).	16	11	11	F3	
	SCK3_0 (SCL3_0)	Multi-function serial interface ch.3 clock I/O pin. This pin operates as SCK3 when it is used	108	-	-	E6	
	SCK3_1 (SCL3_1)	in a CSIO (operation modes 2) and as SCL3 when it is used in an I2C (operation mode 4).	17	12	12	F2	

Latch-up

Semiconductor devices are constructed by the formation of P-type and N-type areas on a substrate. When subjected to abnormally high voltages, internal parasitic PNPN junctions (called thyristor structures) may be formed, causing large current levels in excess of several hundred mA to flow continuously at the power supply pin. This condition is called latch-up.

CAUTION: The occurrence of latch-up not only causes loss of reliability in the semiconductor device, but can cause injury or damage from high heat, smoke or flame. To prevent this from happening, do the following:

(1) Be sure that voltages applied to pins do not exceed the absolute maximum ratings. This should include attention to abnormal noise, surge levels, etc.

(2) Be sure that abnormal current flows do not occur during the power-on sequence.

Observance of Safety Regulations and Standards

Most countries in the world have established standards and regulations regarding safety, protection from electromagnetic interference, etc. Customers are requested to observe applicable regulations and standards in the design of products.

Fail-Safe Design

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

Precautions Related to Usage of Devices

Cypress semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).

CAUTION: Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

6.2 Precautions for Package Mounting

Package mounting may be either lead insertion type or surface mount type. In either case, for heat resistance during soldering, you should only mount under Cypress's recommended conditions. For detailed information about mount conditions, contact your sales representative.

Lead Insertion Type

Mounting of lead insertion type packages onto printed circuit boards may be done by two methods: direct soldering on the board, or mounting by using a socket.

Direct mounting onto boards normally involves processes for inserting leads into through-holes on the board and using the flow soldering (wave soldering) method of applying liquid solder. In this case, the soldering process usually causes leads to be subjected to thermal stress in excess of the absolute ratings for storage temperature. Mounting processes should conform to Cypress recommended mounting conditions.

If socket mounting is used, differences in surface treatment of the socket contacts and IC lead surfaces can lead to contact deterioration after long periods. For this reason it is recommended that the surface treatment of socket contacts and IC leads be verified before mounting.

Surface Mount Type

Surface mount packaging has longer and thinner leads than lead-insertion packaging, and therefore leads are more easily deformed or bent. The use of packages with higher pin counts and narrower pin pitch results in increased susceptibility to open connections caused by deformed pins, or shorting due to solder bridges.

You must use appropriate mounting techniques. Cypress recommends the solder reflow method, and has established a ranking of mounting conditions for each product. Users are advised to mount packages in accordance with Cypress ranking of recommended conditions.

7. Handling Devices

Power Supply Pins

In products with multiple VCC and VSS pins, respective pins at the same potential are interconnected within the device in order to prevent malfunctions such as latch-up. However, all of these pins should be connected externally to the power supply or ground lines in order to reduce electromagnetic emission levels, to prevent abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total output current rating.

Moreover, connect the current supply source with each POWER pins and GND pins of this device at low impedance. It is also advisable that a ceramic capacitor of approximately 0.1 µF be connected as a bypass capacitor between VCC and VSS near this device.

Power Supply Pins

A malfunction may occur when the power supply voltage fluctuates rapidly even though the fluctuation is within the guaranteed operating range of the VCC power supply voltage. As a rule of voltage stabilization, suppress voltage fluctuation so that the fluctuation in VCC ripple (peak-to-peak value) at the commercial frequency (50 Hz/60 Hz) does not exceed 10% of the standard VCC value, and the transient fluctuation rate does not exceed 0.1 V/µs at a momentary fluctuation such as switching the power supply.

Crystal Oscillator Circuit

Noise near the X0/X1 and X0A/X1A pins may cause the device to malfunction. Design the printed circuit board so that X0/X1, X0A/X1A pins, the crystal oscillator (or ceramic oscillator), and the bypass capacitor to ground are located as close to the device as possible.

It is strongly recommended that the PC board artwork be designed such that the X0/X1 and X0A/X1A pins are surrounded by ground plane as this is expected to produce stable operation.

Evaluate oscillation of your using crystal oscillator by your mount board.

Sub Crystal Oscillator

This series sub oscillator circuit is low gain to keep the low current consumption.

The crystal oscillator to fill the following conditions is recommended for sub crystal oscillator to stabilize the oscillation.

Surface mount type	
Size:	More than 3.2 mm x 1.5 mm
Load capacitance:	Approximately 6 pF to 7 pF
□ Lead type	
Load capacitance:	Approximately 6 pF to 7 pF

11. Pin Status in Each CPU State

The terms used for pin status have the following meanings.

This is the period when the INITX pin is the L level. ■INITX=1

This is the period when the INITX pin is the H level.

■SPL=0

■INITX=0

This is the status that the standby pin level setting bit (SPL) in the standby mode control register (STB_CTL) is set to 0.

■SPL=1

This is the status that the standby pin level setting bit (SPL) in the standby mode control register (STB_CTL) is set to 1.

Input enabled Indicates that the input function can be used.

Internal input fixed at 0 This is the status that the input function cannot be used. Internal input is fixed at L.

■Hi-Z

Indicates that the pin drive transistor is disabled and the pin is put in the Hi-Z state.

Setting disabled Indicates that the setting is disabled.

Maintain previous state

Maintains the state that was immediately prior to entering the current mode. If a built-in peripheral function is operating, the output follows the peripheral function. If the pin is being used as a port, that output is maintained.

Analog input is enabled Indicates that the analog input is enabled.

Trace output Indicates that the trace function can be used.

■GPIO selected

In Deep standby mode, pins switch to the general-purpose I/O port.

Setting prohibition

Prohibition of a setting by specification limitation.

S6E2H4 Series

status Type	Function Group			Device Internal Reset State	Run Mode or Sleep Mode State	RTC M	Mode, ode, or ode State	Deep Sta Mode or De Stop Mo	ndby RTC ep Standby de State	Return from Deep Standby Mode State
Pin		Power Supply Unstable	Power Sta	ble	Power Supply Stable	Sta	Power Supply Stable		Supply ble	Power Supply Stable
		-	INITX=0	INITX=1	INITX=1	SPL=0	X=1 SPL=1	INIT SPL=0	SPL=1	INITX=1
	Mode input pin	- Input enabled	- Input enabled	- Input enabled	- Input enabled	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled
E	GPIO selected	Setting disabled	Setting disabled	Setting disabled	Maintain previous state	Maintain previous state	Hi-Z / Input enabled	GPIO selected	Hi-Z / Input enabled	GPIO selected
	NMIX selected	Setting disabled	Setting disabled	Setting disabled			Maintain previous state			GPIO
F	Resource other than above selected Hi-Z	Hi-Z	Input Inp	Hi-Z / Input	Maintain previous state		Hi-Z / Internal input fixed	WKUP input enabled	Hi-Z / WKUP input enabled	selected
	GPIO selected		enabled	enabled			at 0			Maintain previous state
	JTAG selected	Hi-Z	Pull-up / Input enabled	Pull-up / Input enabled	Maintain previous state	Maintain	Maintain previous state	Maintain previous state	Maintain previous state	Maintain previous state
G	GPIO selected	Setting disabled	Setting disabled	Setting disabled			previous state	Hi-Z / Internal input fixed at 0	GPIO selected Internal input fixed at 0	Hi-Z / Internal input fixed at 0
	JTAG selected	Hi-Z	Pull-up / Input enabled	Pull-up / Input enabled	Maintain	Maintain	Maintain previous state	Maintain previous state	Maintain previous state	Maintain previous state
н	Resource other than above selected GPIO selected	Setting disabled	Setting disabled	Setting disabled	Maintain previous state	Maintain previous state	Hi-Z / Internal input fixed at 0	GPIO selected Internal input fixed at 0	Hi-Z / Internal input fixed at 0	GPIO selected
I	Resource selected GPIO	Hi-Z	Hi-Z / Input enabled	Hi-Z / Input enabled	Maintain previous state	Maintain previous state	Hi-Z / Internal input fixed at 0	GPIO selected Internal input fixed	Hi-Z / Internal input fixed at 0	GPIO selected

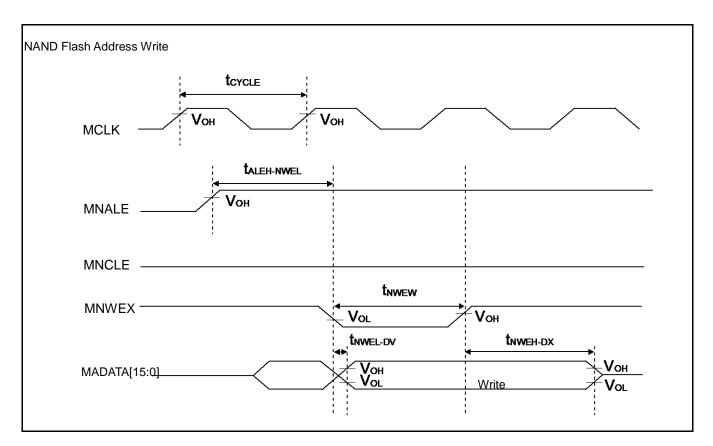
List of VBAT Domain Pin Status

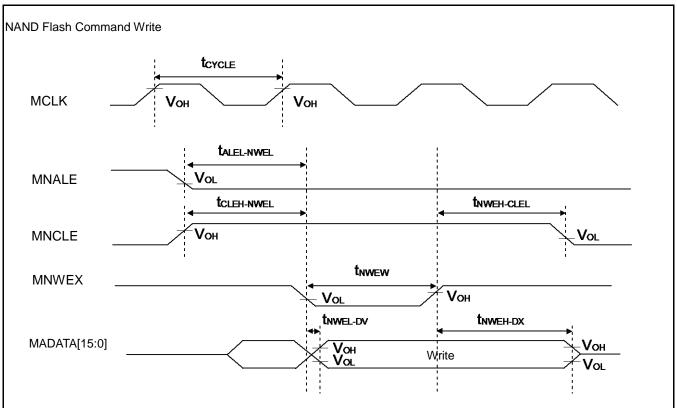
Pin Status Type	Function Group	VBAT Power-on reset	INITX Input State	Device Internal Reset State	Run Mode or Sleep Mode State	RTC M	Mode, ode, or ode State	Deep S RTC Sode Standby S Sta	e or Deep stop Mode	Return from Deep Standby Mode State	VBAT RTC Mode State	Return from VBAT RTC Mode State
VBAT F		Power Supply Unstable	Sta	Supply able	Power Supply Stable	Sta	Supply able	Power Sta	ble	Power Supply Stable	Power Supply Stable	Power Supply Stable
-		-	INITX=0	INITX=1	INITX=1		⁻ X=1	INIT		INITX=1	-	-
		-	-	-	-	SPL=0	SPL=1	SPL=0	SPL=1	-	-	-
	GPIO selected	Setting disabled	Maintain previous state	Maintain previous state	Maintain previous state	Maintain previous state	Maintain previous state	Maintain previous state	Maintain previous state	GPIO selected	Setting prohibitio n	-
S	Sub crystal oscillator input pin / External sub clock input selected	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled	Maintain previous state	Maintain previous state
	GPIO selected	Setting disabled	Maintain previous state	Maintain previous state	Maintain previous state	Maintain previous state	Maintain previous state	Maintain previous state	Maintain previous state	GPIO selected	Setting prohibitio n	-
	External sub clock input selected	Setting disabled	Maintain previous state	Maintain previous state	Maintain previous state	Maintain previous state	Maintain previous state	Maintain previous state	Maintain previous state	Maintain previous state	Maintain previous state	Maintain previous state
Т	Sub crystal oscillator output pin	Hi-Z / Internal input fixed at 0/ or Input enabled	Maintain previous state	Maintain previous state	Maintain previous state	Maintain previous state /When oscillatio n stops, Hi-Z*	Maintain previous state /When oscillation stops, Hi-Z*	Maintain previous state /When oscillation stops, Hi-Z*	Maintain previous state /When oscillation stops, Hi-Z*	Maintain previous state	Maintain previous state	Maintain previous state
U	Resource selected	Hi-Z	Maintain previous	Maintain previous	Maintain previous	Maintain previous	Maintain previous	Maintain previous	Maintain previous	Maintain previous	Maintain previous	Maintain previous
	GPIO selected		state	state	state	state	state	state	state	state	state	state

*: When The SOSCNTL bit in the WTOSCCNT Register is 0, Sub crystal oscillator output pin is maintain previous state. When The SOSCNTL bit in the WTOSCCNT Register is 1, Oscillation is stopped at Stop mode and Deep standby Stop mode.

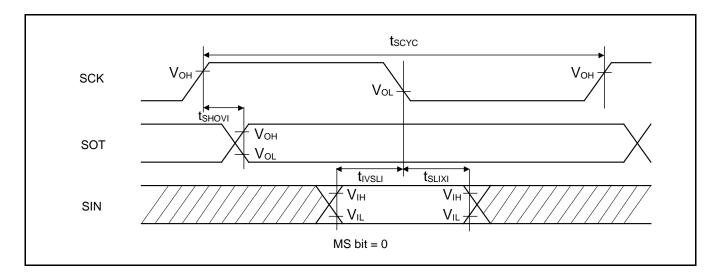
Separate Bus Access Synchronous SRAM Mode

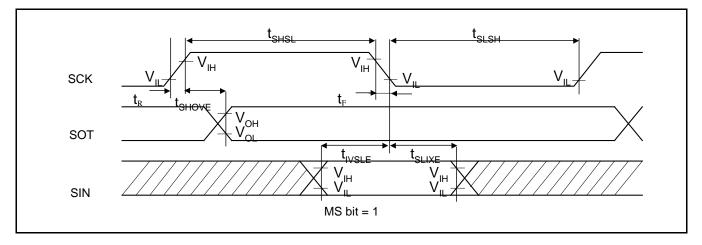
 $(V_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = 0V)$


Deremeter	Symbol	Pin Name	Conditions	Va	alue	Unit	
Parameter	Symbol	Pin Name	Conditions	Min	Max	Unit	
Addross dolay time	t	MCLK,	$V_{CC} \ge 4.5 V$	- 1	9	ns	
Address delay time	t _{AV}	MAD[24:0]	$V_{CC} < 4.5 V$		12	115	
	4		$V_{CC} \ge 4.5 V$	- 1	9	20	
MCSX dolou time	tcs∟	MCLK,	$V_{CC} < 4.5 V$		12	ns	
MCSX delay time		MCSX[7:0]	V _{CC} ≥ 4.5 V	- 1	9	20	
	t _{CSH}		$V_{CC} < 4.5 V$		12	ns	
	4		$V_{CC} \ge 4.5 V$	- 1	9	20	
MOEV dolou time	t _{REL}	MCLK,	$V_{CC} < 4.5 V$		12	ns	
MOEX delay time	+	MOEX	V _{CC} ≥ 4.5 V	- 1	9	20	
	t _{REH}		$V_{CC} < 4.5 V$		12	ns	
Data set up		MCLK,	V _{CC} ≥ 4.5 V	19		20	
→MCLK↑ time t _{DS}		MADATA[15:0]	$V_{CC} < 4.5 V$	37	-	ns	
MCLK↑→	MCLK, V _{CC} ≥ 4.5 V		- 0		20		
Data hold time	t _{DH}	MADATA[15:0]	$V_{CC} < 4.5 V$	0	-	ns	
			$V_{CC} \ge 4.5 V$	- 1	9	20	
MM/EX dolou time	t _{WEL}	MCLK,	$V_{CC} < 4.5 V$		12	ns	
MWEX delay time	+	MWEX	V _{CC} ≥ 4.5 V	- 1	9	20	
	t _{WEH}		$V_{CC} < 4.5 V$		12	ns	
			V _{CC} ≥ 4.5 V	- 1	9	20	
MDQM[1:0]	t _{DQML}	MCLK,	$V_{CC} < 4.5 V$		12	ns	
delay time		MDQM[1:0]	V _{CC} ≥ 4.5 V	- 1	9	20	
	t _{DQMH}		V _{CC} < 4.5 V		12	ns	
MCLK↑→		MCLK,	$V_{CC} \ge 4.5 V$	MCLK+1	MCLK+18	20	
Data output time	t _{ODS}	MADATA[15:0]	V_{CC} < 4.5 V		MCLK+24	ns	
MCLK↑→	+	MCLK,	$V_{CC} \ge 4.5 V$	- 1	18	20	
Data hold time	t _{OD}	MADATA[15:0]	V _{CC} < 4.5 V		24	ns	

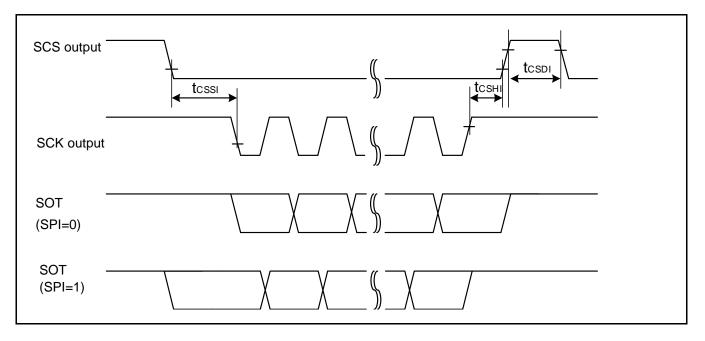

Note:

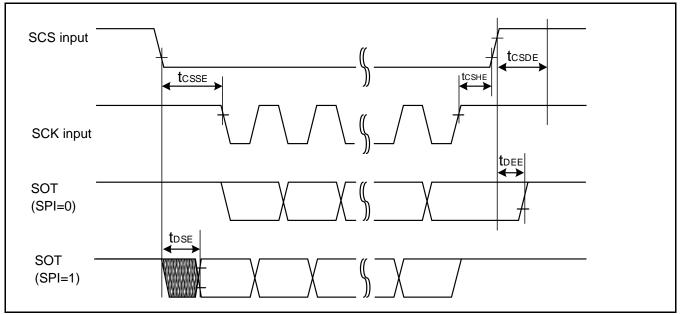
_


When the external load capacitance $C_L = 30 \ pF$



Synchronous Serial (SPI = 1, SCINV = 1)

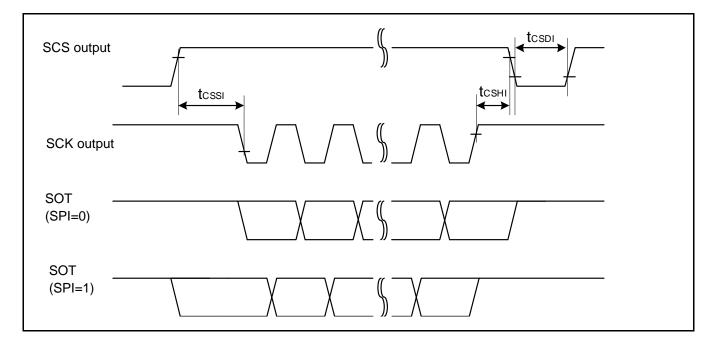

$(V_{CC} = 2.7V \text{ to } 5.5V)$	$V_{SS} = 0V$)
------------------------------------	-----------------

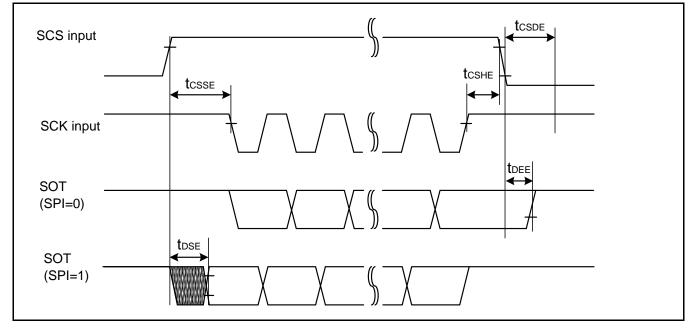

D		D ' N		V _{CC} < 4.5	5 V	$V_{CC} \ge 4.$		
Parameter	Symbol	Pin Name	Conditions	Min	Max	Min	Max	Unit
Serial clock cycle time	t _{SCYC}	SCKx		4t _{CYCP}	-	4t _{CYCP}	-	ns
SCK↓→SOT delay time	t _{SLOVI}	SCKx, SOTx		- 30	+ 30	- 20	+ 20	ns
SIN→SCK↑ setup time	t _{IVSHI}	SCKx, SINx	Internal shift clock	50	-	30	-	ns
SCK↑→SIN hold time	t _{SHIXI}	SCKx, SINx	operation	0	-	0	-	ns
SOT→SCK↑ delay time	t _{SOVHI}	SCKx, SOTx		2t _{CYCP} - 30	-	2tC _{YCP} - 30	-	ns
Serial clock L pulse width	t _{SLSH}	SCKx		2t _{CYCP} - 10	-	2t _{CYCP} - 10	-	ns
Serial clock H pulse width	t _{SHSL}	SCKx]	t _{CYCP} + 10	-	t _{CYCP} + 10	-	ns
SCK↓→SOT delay time	t _{SLOVE}	SCKx, SOTx		-	50	-	30	ns
SIN→SCK↑ setup time	t _{IVSHE}	SCKx, SINx	External shift clock	10	-	10	-	ns
SCK↑→SIN hold time	t _{SHIXE}	SCKx, SINx	operation	20	-	20	-	ns
SCK falling time	t _F	SCKx	1	-	5	-	5	ns
SCK rising time	t _R	SCKx		-	5	-	5	ns

Notes:

- The above characteristics apply to CLK synchronous mode.
- t_{CYCP} indicates the APB bus clock cycle time.
 About the APB bus number which multi-function serial is connected to, see 8. Block Diagram in this data sheet.
- These characteristics only guarantee the same relocate port number. For example, the combination of SCLKx_0 and SOTx_1 is not guaranteed.
- When the external load capacitance $C_L = 30 \text{ pF}$.

High-speed Synchronous Serial (SPI = 0, SCINV = 0)

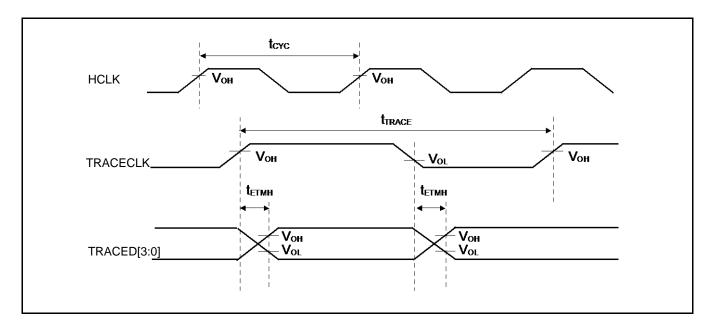

 $(V_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = 0V)$


Parameter	Symbol	Pin Name	Conditions	V_{CC} < 4.5 V		V _{CC} ≥ 4.5 V		Unit
Parameter	Symbol	Pin Name	Conditions	Min	Max	Min	Max	Unit
Serial clock cycle time	t _{scyc}	SCKx		4t _{CYCP}	-	4t _{CYCP}	-	ns
SCK↓→SOT delay time	t _{SLOVI}	SCKx, SOTx		-10	+10	-10	+10	ns
SIN→SCK↑		SCKx,	Internal shift clock operation	14		12.5	_	20
setup time	t _{IVSHI}	SINx	clock operation	12.5*	-	12.0	-	ns
SCK∱→SIN hold time	t _{SHIXI}	SCKx, SINx		5	-	5	-	ns
Serial clock L pulse width	t _{SLSH}	SCKx		2t _{CYCP} – 5	-	2t _{CYCP} – 5	-	ns
Serial clock H pulse width	t _{SHSL}	SCKx		t _{CYCP} + 10	-	t _{CYCP} + 10	-	ns
SCK↓→SOT delay time	t _{SLOVE}	SCKx, SOTx	External shift	-	15	-	15	ns
SIN→SCK↑ setup time	t _{IVSHE}	SCKx, SINx	clock operation	5	-	5	-	ns
		SCKx,	-	5		_		
SCK∱→SIN hold time	t _{SHIXE}	SINx		5	-	5	-	ns
SCK falling time	t _F	SCKx		-	5	-	5	ns
SCK rising time	t _R	SCKx		-	5	-	5	ns

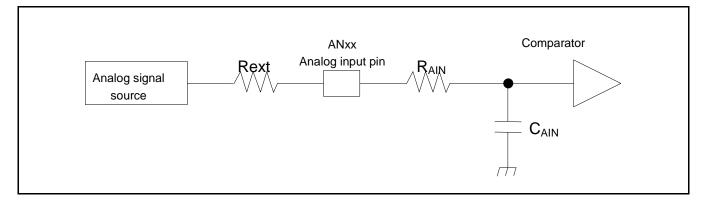
Notes:

- The above characteristics apply to CLK synchronous mode.
- t_{CYCP} indicates the APB bus clock cycle time.
 About the APB bus number which multi-function serial is connected to, see 8. Block Diagram in this data sheet.
- These characteristics only guarantee the following pins.
- No chip select: SIN4_1, SOT4_1, SCK4_1
- Chip select: SIN6_1, SOT6_1, SCK6_1, SCS6_1
- When the external load capacitance $C_L = 30 \text{ pF}$. (For *, when $C_L = 10 \text{ pF}$)

12.4.15 ETM Timing

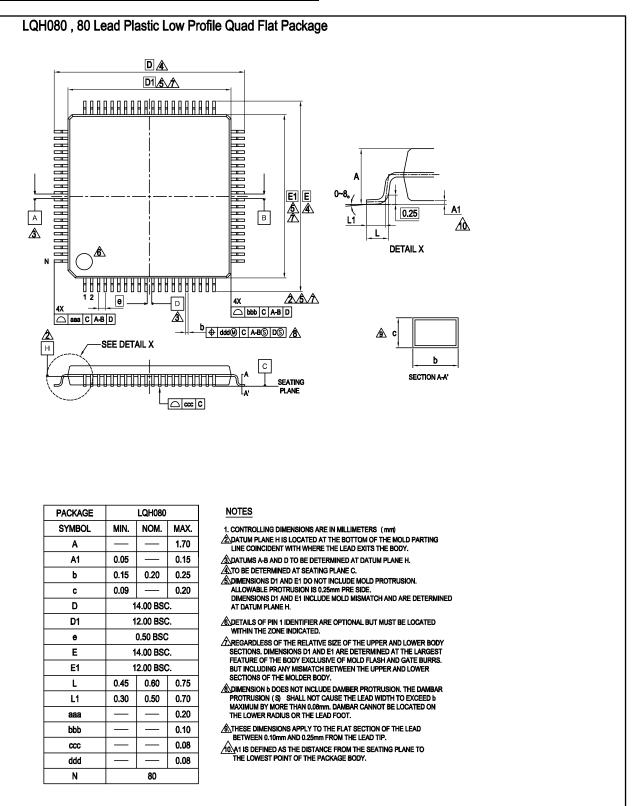

(V_{CC} = 2.7V to 5.5V, V_{SS} = 0V)

			•	Va	alue	Unit	Bernarke
Parameter	Symbol	Pin Name	Conditions	Min	Max	Unit	Remarks
Data hald	t===	TRACECLK,	$V_{CC} \ge 4.5 V$	2	9		
Data hold t _{ETMH}	TRACED[3:0]	V_{CC} < 4.5 V	2	15	ns		
TRACECLK	1/+	TRACECLK	$V_{CC} \ge 4.5 V$	-	50	MHz	
frequency	1/ t _{TRACE}		V_{CC} < 4.5 V	-	32	MHz	
TRACECLK	+		$V_{CC} \ge 4.5 V$	20	-	ns	
clock cycle	t _{TRACE}		V_{CC} < 4.5 V	31.25	-	ns	


Note:

_

When the external load capacitance C_L = 30 pF.


(Equation 1) $t_S \ge (R_{AIN} + Rext) \times C_{AIN} \times 9$

	ts:	Sampling time
	R _{AIN} :	Input resistance of A/D = 1.2 k Ω at 4.5 V < AV_{CC} < 5.5 V
		Input resistance of A/D = 1.8 k Ω at 2.7 V < AV_{CC} < 4.5 V
	C _{AIN} :	Input capacity of A/D = 12.05 pF at 2.7 V < AV_{CC} < 5.5 V
	Rext:	Output impedance of external circuit
(Equation 2) $t_c = t_{CCK} \times 14$	4	
	t _C :	Compare time
	t _{сск} :	Compare clock cycle

Package Type	Package Code
LQFP 80	LQH080

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products	
Automotive	cypress.com/go/automotive
Clocks & Buffers	cypress.com/go/clocks
Interface	cypress.com/go/interface
Lighting & Power Control	cypress.com/go/powerpsoc
Memory	cypress.com/go/memory
PSoC	cypress.com/go/psoc
Touch Sensing	cypress.com/go/touch
USB Controllers	cypress.com/go/USB
Wireless/RF	cypress.com/go/wireless
Spansion Products	spansion.com/products

PSoC® Solutions psoc.cypress.com/solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community Community | Forums | Blogs | Video | Training

Technical Support cypress.com/go/support

Cypress, the Cypress logo, Spansion[®], the Spansion logo, MirrorBit[®], MirrorBit[®] EclipseTM, ORNANDTM, Easy DesignSimTM, TraveoTM and combinations thereof, are trademarks and registered trademarks of Cypress Semiconductor Corp. ARM and Cortex are the registered trademarks of ARM Limited in the EU and other countries. All other trademarks or registered trademarks referenced herein are the property of their respective owners.

© Cypress Semiconductor Corporation, 2015. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

This Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.