

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	2.15V ~ 3.6V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f24j11t-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Features	PIC18F24J11	PIC18F25J11	PIC18F26J11		
Operating Frequency	DC – 48 MHz	DC – 48 MHz	DC – 48 MHz		
Program Memory (Bytes)	16K	32K	64K		
Program Memory (Instructions)	8,192	16,384	32,768		
Data Memory (Bytes)	3.8K	3.8K	3.8K		
Interrupt Sources		30	·		
I/O Ports	Ports A, B, C				
Timers	5				
Enhanced Capture/Compare/PWM Modules		2			
Serial Communications	MS	SP (2), Enhanced USAR	T (2)		
Parallel Communications (PMP/PSP)		No			
10-Bit Analog-to-Digital Module		10 Input Channels			
Resets (and Delays)	POR, BOR, RESET Instruction, Stack Full, Stack Underflow, MCLR, WDT (PWRT, OST)				
Instruction Set	75 Instructions,	83 with Extended Instruc	tion Set Enabled		
Packages	28-Pin QFN	I, SOIC, SSOP and SPE	0IP (300 mil)		

TABLE 1-1:DEVICE FEATURES FOR THE PIC18F2XJ11 (28-PIN DEVICES)

TABLE 1-2: DEVICE FEATURES FOR THE PIC18F4XJ11 (44-PIN DEVICES)

Features	PIC18F44J11	PIC18F45J11	PIC18F46J11		
Operating Frequency	DC – 48 MHz	DC – 48 MHz	DC – 48 MHz		
Program Memory (Bytes)	16K	32K	64K		
	-	-	-		
Program Memory (Instructions)	8,192	16,384	32,768		
Data Memory (Bytes)	3.8K	3.8K	3.8K		
Interrupt Sources	30				
I/O Ports	Ports A, B, C, D, E				
Timers	5				
Enhanced Capture/Compare/PWM Modules		2			
Serial Communications	MS	SP (2), Enhanced USART	(2)		
Parallel Communications (PMP/PSP)		Yes			
10-Bit Analog-to-Digital Module		13 Input Channels			
Resets (and Delays)	POR, BOR, RESET Instruction, Stack Full, Stack Underflow, MCLR, WDT (PWRT, OST)				
Instruction Set	75 Instructions,	83 with Extended Instruct	ion Set Enabled		
Packages		44-Pin QFN and TQFP			

	Pin N	umber	Dia	Duffer	
Pin Name	44- QFN	44- TQFP	Pin Type	Buffer Type	Description
					PORTB is a bidirectional I/O port. PORTB can be software programmed for internal weak pull-ups on all inputs.
RB0/AN12/INT0/RP3 RB0 AN12 INT0 RP3	9	8	I/O I I I/O	DIG Analog ST DIG	Digital I/O. Analog input 12. External interrupt 0. Remappable peripheral pin 3.
RB1/AN10/PMBE/RTCC/RP4 RB1 AN10 PMBE RTCC RP4	10	9	I/O I O I/O	DIG Analog DIG DIG DIG	Digital I/O. Analog input 10. Parallel Master Port byte enable. Real Time Clock Calendar output. Remappable peripheral pin 4.
RB2/AN8/CTED1/PMA3/REFO/ RP5 RB2 AN8 CTED1 PMA3 REFO RP5	11	10	I/O I I O I/O	DIG Analog ST DIG DIG DIG	Digital I/O. Analog input 8. CTMU edge 1 input. Parallel Master Port address. Reference output clock. Remappable peripheral pin 5.
RB3/AN9/CTED2/PMA2/RP6 RB3 AN9 CTED2 PMA2 RP6	12	11	I/O I I O I/O	DIG Analog ST DIG DIG	Digital I/O. Analog input 9. CTMU edge 2 input. Parallel Master Port address. Remappable peripheral pin 6.
Legend: TTL = TTL compatible in ST = Schmitt Trigger in I = Input P = Power DIG = Digital output		n CMOS	levels	A (CMOS= CMOS compatible input or outputAnalog= Analog inputO= OutputOD= Open-Drain (no P diode to VDD)

TABLE 1-4: PIC18F4XJ11 PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: RA7 and RA6 will be disabled if OSC1 and OSC2 are used for the clock function.

3.2.5.1 OSCTUNE Register

The internal oscillator's output has been calibrated at the factory but can be adjusted in the user's application. This is done by writing to the OSCTUNE register (Register 3-1).

When the OSCTUNE register is modified, the INTOSC frequency will begin shifting to the new frequency. Code execution continues during this shift. There is no indication that the shift has completed.

The OSCTUNE register also contains the INTSRC bit. The INTSRC bit allows users to select which internal oscillator provides the clock source when the 31 kHz frequency option is selected. This is covered in more detail in **Section 3.3.1 "Oscillator Control Register"**.

The 4x Phase Locked Loop (PLL) can be used with the internal oscillator block to produce faster device clock speeds than are normally possible with the internal oscillator sources. When enabled, the PLL produces a clock speed up to 32 MHz.

PLL operation is controlled through software. The control bit, PLLEN (OSCTUNE<6>), is used to enable or disable its operation. The PLL is available only to INTOSC when the device is configured to use one of the INTPLL modes as the primary clock source, SCS<1:0> = 00 (FOSC<2:0> = 011 or 010). Additionally, the PLL will only function when the selected output frequency is either 4 MHz or 8 MHz (OSCCON<6:4> = 111 or 110).

When configured for one of the PLL enabled modes, setting the PLLEN bit does not immediately switch the device clock to the PLL output. The PLL requires up to two milliseconds to start-up and lock, during which time, the device continues to be clocked. Once the PLL output is ready, the microcontroller core will automatically switch to the PLL derived frequency.

3.2.5.2 Internal Oscillator Output Frequency and Drift

The internal oscillator block is calibrated at the factory to produce an INTOSC output frequency of 8.0 MHz. However, this frequency may drift as VDD or temperature changes, which can affect the controller operation in a variety of ways.

The low-frequency INTRC oscillator operates independently of the INTOSC source. Any changes in INTOSC across voltage and temperature are not necessarily reflected by changes in INTRC and vice versa.

3.2.5.3 Compensating for INTOSC Drift

It is possible to adjust the INTOSC frequency by modifying the value in the OSCTUNE register. This has no effect on the INTRC clock source frequency.

Tuning the INTOSC source requires knowing when to make the adjustment, in which direction it should be made, and in some cases, how large a change is needed. When using the EUSART, for example, an adjustment may be required when it begins to generate framing errors or receives data with errors while in Asynchronous mode. Framing errors indicate that the device clock frequency is too high; to adjust for this, decrement the value in OSCTUNE to reduce the clock frequency. On the other hand, errors in data may suggest that the clock speed is too low; to compensate, increment OSCTUNE to increase the clock frequency.

It is also possible to verify device clock speed against a reference clock. Two timers may be used: one timer is clocked by the peripheral clock, while the other is clocked by a fixed reference source, such as the Timer1 oscillator. Both timers are cleared, but the timer clocked by the reference generates interrupts. When an interrupt occurs, the internally clocked timer is read and both timers are cleared. If the internally clocked timer value is greater than expected, then the internal oscillator block is running too fast. To adjust for this, decrement the OSCTUNE register.

Finally, an ECCP module can use free-running Timer1 (or Timer3), clocked by the internal oscillator block and an external event with a known period (i.e., AC power frequency). The time of the first event is captured in the CCPRxH:CCPRxL registers and is recorded for use later. When the second event causes a capture, the time of the first event is subtracted from the time of the second event. Since the period of the external event is known, the time difference between events can be calculated.

If the measured time is greater than the calculated time, the internal oscillator block is running too fast; to compensate, decrement the OSCTUNE register. If the measured time is less than the calculated time, the internal oscillator block is running too slow; to compensate, increment the OSCTUNE register.

REGISTER 10-24:	: RPOR3: PERIPHERAL PIN SELECT OUTPUT REC	GISTER 3 (BANKED EC9h)
-----------------	---	------------------------

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	—	RP3R4	RP3R3	RP3R2	RP3R1	RP3R0
bit 7							bit 0
Legend:	d: R/W = Readable, Writable if IOLOCK = 0						
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'			
-n = Value at P	OR	'1' = Bit is set	ł	'0' = Bit is cleared x = Bit is unknow			nown

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP3R<4:0>:** Peripheral Output Function is Assigned to RP3 Output Pin bits (see Table 10-14 for peripheral function numbers)

REGISTER 10-25: RPOR4: PERIPHERAL PIN SELECT OUTPUT REGISTER 4 (BANKED ECAh)

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_		RP4R4	RP4R3	RP4R2	RP4R1	RP4R0
bit 7							bit 0

Legend:	R/\overline{W} = Readable, Writable if IOLOCK = 0					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP4R<4:0>:** Peripheral Output Function is Assigned to RP4 Output Pin bits (see Table 10-14 for peripheral function numbers)

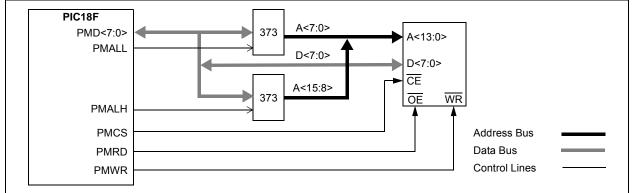
REGISTER 10-26: RPOR5: PERIPHERAL PIN SELECT OUTPUT REGISTER 5 (BANKED ECBh)

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	RP5R4	RP5R3	RP5R2	RP5R1	RP5R0
bit 7							bit 0

Legend:	R/\overline{W} = Readable, Writable if IOLOCK = 0				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 7-5 Unimplemented: Read as '0'

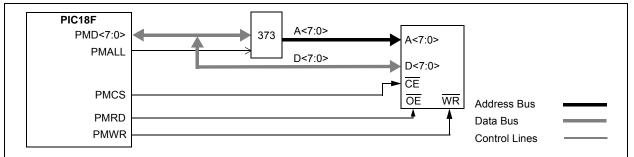
bit 4-0 **RP5R<4:0>:** Peripheral Output Function is Assigned to RP5 Output Pin bits (see Table 10-14 for peripheral function numbers)

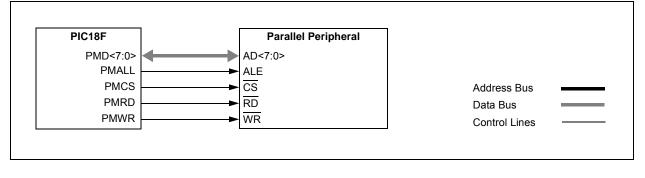

11.4 Application Examples

This section introduces some potential applications for the PMP module.

11.4.1 MULTIPLEXED MEMORY OR PERIPHERAL

Figure 11-27 demonstrates the hookup of a memory or another addressable peripheral in Full Multiplex mode. Consequently, this mode achieves the best pin saving from the microcontroller perspective. However, for this configuration, there needs to be some external latches to maintain the address.




11.4.2 PARTIALLY MULTIPLEXED MEMORY OR PERIPHERAL

Partial multiplexing implies using more pins; however, for a few extra pins, some extra performance can be achieved. Figure 11-28 provides an example of a memory or peripheral that is partially multiplexed with an external latch. If the peripheral has internal latches, as displayed in Figure 11-29, then no extra circuitry is required except for the peripheral itself.

FIGURE 11-28: EXAMPLE OF A PARTIALLY MULTIPLEXED ADDRESSING APPLICATION

FIGURE 11-29: EXAMPLE OF AN 8-BIT MULTIPLEXED ADDRESS AND DATA APPLICATION

REGISTER 15-3: TCLKCON: TIMER CLOCK CONTROL REGISTER (BANKED F52h)

U-0	U-0	U-0	R-0	U-0	U-0	R/W-0	R/W-0
_		—	T1RUN	—	—	T3CCP2	T3CCP1
bit 7							bit 0

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit,	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 7-5 bit 4	Unimplemented: Read as '0' T1RUN: Timer1 Run Status bit 1 = Device is currently clocked by T1OSC/T1CKI 0 = System clock comes from an oscillator other than T1OSC/T1CKI
bit 3-2	Unimplemented: Read as '0'
bit 1-0	 T3CCP<2:1>: ECCP Timer Assignment bits 10 = ECCP1 and ECCP2 both use Timer3 (capture/compare) and Timer4 (PWM) 01 = ECCP1 uses Timer1 (compare/capture) and Timer2 (PWM); ECCP2 uses Timer3 (capture/compare) and Timer4 (PWM) 00 = ECCP1 and ECCP2 both use Timer1 (capture/compare) and Timer2 (PWM)

15.6 Timer3 Interrupt

The TMR3 register pair (TMR3H:TMR3L) increments from 0000h to FFFFh and overflows to 0000h. The Timer3 interrupt, if enabled, is generated on overflow and is latched in interrupt flag bit, TMR3IF (PIR2<1>). This interrupt can be enabled or disabled by setting or clearing the Timer3 Interrupt Enable bit, TMR3IE (PIE2<1>).

15.7 Resetting Timer3 Using the ECCP Special Event Trigger

If ECCP1 or ECCP2 is configured to use Timer3 and to generate a Special Event Trigger in Compare mode (CCPxM<3:0> = 1011), this signal will reset Timer3.

The trigger from ECCP2 will also start an A/D conversion if the A/D module is enabled (see **Section 18.3.4** "**Special Event Trigger**" for more information).

The module must be configured as either a timer or synchronous counter to take advantage of this feature. When used this way, the CCPRxH:CCPRxL register pair effectively becomes a Period register for Timer3.

If Timer3 is running in Asynchronous Counter mode, the Reset operation may not work.

In the event that a write to Timer3 coincides with a Special Event Trigger from an ECCP module, the write will take precedence.

Note: The Special Event Triggers from the ECCPx module will not set the TMR3IF interrupt flag bit (PIR1<0>).

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	90
PIR2	OSCFIF	CM2IF	CM1IF	_	BCL1IF	LVDIF	TMR3IF	CCP2IF	92
PIE2	OSCFIE	CM2IE	CM1IE	_	BCL1IE	LVDIE	TMR3IE	CCP2IE	92
IPR2	OSCFIP	CM2IP	CM1IP	_	BCL1IP	LVDIP	TMR3IP	CCP2IP	92
TMR3L	Timer3 Register Low Byte								93
TMR3H	Timer3 Register High Byte							93	
T1CON	TMR1CS1	TMR1CS0	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	RD16	TMR10N	91
T3CON	TMR3CS1	TMR3CS0	T3CKPS1	T3CKPS0	_	T3SYNC	RD16	TMR3ON	93
T3GCON	TMR3GE	T3GPOL	T3GTM	T3GSPM	T3GGO/ T3DONE	T3GVAL	T3GSS1	T3GSS0	92
TCLKCON	—	—	—	T1RUN	—	_	T3CCP2	T3CCP1	94
PIR3	SSP2IF	BCL2IF	RC2IF	TX2IF	TMR4IF	CTMUIF	TMR3GIF	RTCCIF	92
PIE3	SSP2IE	BCL2IE	RC2IE	TX2IE	TMR4IE	CTMUIE	TMR3GIE	RTCCIE	92
IPR3	SSP2IP	BCL2IP	RC2IP	TX2IP	TMR4IP	CTMUIP	TMR3GIP	RTCCIP	92

TABLE 15-3: REGISTERS ASSOCIATED WITH TIMER3 AS A TIMER/COUNTER

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the Timer3 module.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SSCON1	SSCON0	TXINC	RXINC	DUPLEX1	DUPLEX0	DLYINTEN	DMAEN
bit 7							bit
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value at F	POR	'1' = Bit is set	t	'0' = Bit is cle	ared	x = Bit is unkn	iown
bit 7-6	$11 = \frac{\text{SSDMA}}{\text{O1} = \frac{\text{SSDMA}}{\text{SSDMA}}}$ $10 = \frac{\text{SSDMA}}{\text{SSDMA}}$	is asserted for is asserted for is asserted for	the duration the duration the duration	of 2 bytes; DLY of 1 byte; DLYI	INTEN is alway INTEN is alway NTEN is alway	ys reset low s reset low	
bit 5	TXINC: Trans Allows the tra 1 = The trans	smit Address Ir Insmit address mit address is	to increment Enal to increment to to be increme	ble bit as the transfer nted from the i	progresses.	tware programr XADDR<11:0> 1:0>	napie
bit 4	Allows the recei	ved address is	to increment a to be increme	s the transfer p ented from the	-	RXADDR<11:0> 11:0>	
bit 3-2	DUPLEX<1:0 10 = SPI DM. 01 = DMA op	I>: Transmit/Read A operates in F erates in Half-	eceive Operat Full-Duplex mo Duplex mode,	ing Mode Seled	ct bits nultaneously tra itted only	nsmitted and re	ceived
bit 1	DLYINTEN: DEnables the i elapsed from 1 = The intern	Delay Interrupt nterrupt to be the latest com	Enable bit invoked after pleted transfe , SSCON<1:0	the number of	SCK cycles sp	ecified in DLYC	YC<2:0≻ ha
bit 0	DMAEN: DM This bit is set	A Operation St by the users' the DMA opera session	art/Stop bit software to st	art the DMA op eted or aborted		eset back to zer	o by the DM

REGISTER 19-3: DMACON1: DMA CONTROL REGISTER 1 (ACCESS F88h)

19.5.2 OPERATION

The MSSP module functions are enabled by setting the MSSP Enable bit, SSPEN (SSPxCON1<5>).

The SSPxCON1 register allows control of the I^2C operation. Four mode selection bits (SSPxCON1<3:0>) allow one of the following I^2C modes to be selected:

- I²C Master mode, clock
- I²C Slave mode (7-bit address)
- I²C Slave mode (10-bit address)
- I²C Slave mode (7-bit address) with Start and Stop bit interrupts enabled
- I²C Slave mode (10-bit address) with Start and Stop bit interrupts enabled
- I²C Firmware Controlled Master mode, slave is Idle

Selection of any I²C mode with the SSPEN bit set forces the SCLx and SDAx pins to be open-drain, provided these pins are programmed as inputs by setting the appropriate TRISB or TRISD bits. To ensure proper operation of the module, pull-up resistors must be provided externally to the SCLx and SDAx pins.

19.5.3 SLAVE MODE

In Slave mode, the SCLx and SDAx pins must be configured as inputs (TRISB<5:4> set). The MSSP module will override the input state with the output data when required (slave-transmitter).

The l^2C Slave mode hardware will always generate an interrupt on an address match. Address masking will allow the hardware to generate an interrupt for more than one address (up to 31 in 7-bit addressing and up to 63 in 10-bit addressing). Through the mode select bits, the user can also choose to interrupt on Start and Stop bits.

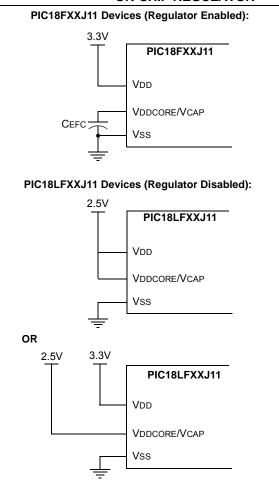
When an address is matched, or the data transfer after an address match is received, the hardware automatically will generate the Acknowledge (ACK) pulse and load the SSPxBUF register with the received value currently in the SSPxSR register.

Any combination of the following conditions will cause the MSSP module not to give this ACK pulse:

- The Buffer Full bit, BF (SSPxSTAT<0>), was set before the transfer was received.
- The overflow bit, SSPOV (SSPxCON1<6>), was set before the transfer was received.

In this case, the SSPxSR register value is not loaded into the SSPxBUF, but bit, SSPxIF, is set. The BF bit is cleared by reading the SSPxBUF register, while bit, SSPOV, is cleared through software. The SCLx clock input must have a minimum high and low for proper operation. The high and low times of the I^2C specification, as well as the requirement of the MSSP module, are shown in timing parameter 100 and parameter 101.

19.5.3.1 Addressing


Once the MSSP module has been enabled, it waits for a Start condition to occur. Following the Start condition, the 8 bits are shifted into the SSPxSR register. All incoming bits are sampled with the rising edge of the clock (SCLx) line. The value of register, SSPxSR<7:1>, is compared to the value of the SSPxADD register. The address is compared on the falling edge of the eighth clock (SCLx) pulse. If the addresses match and the BF and SSPOV bits are clear, the following events occur:

- 1. The SSPxSR register value is loaded into the SSPxBUF register.
- 2. The Buffer Full bit, BF, is set.
- 3. An ACK pulse is generated.
- 4. The MSSPx Interrupt Flag bit, SSPxIF, is set (and interrupt is generated, if enabled) on the falling edge of the ninth SCLx pulse.

In 10-Bit Addressing mode, two address bytes need to be received by the slave. The five Most Significant bits (MSbs) of the first address byte specify if this is a 10-bit address. Bit R/\overline{W} (SSPxSTAT<2>) must specify a write so the slave device will receive the second address byte. For a 10-bit address, the first byte would equal '11110 A9 A8 0', where 'A9' and 'A8' are the two MSbs of the address. The sequence of events for 10-bit addressing is as follows, with steps 7 through 9 for the slave-transmitter:

- 1. Receive first (high) byte of address (bits, SSPxIF, BF and UA, are set on address match).
- 2. Update the SSPxADD register with second (low) byte of address (clears bit, UA, and releases the SCLx line).
- 3. Read the SSPxBUF register (clears bit, BF) and clear flag bit, SSPxIF.
- 4. Receive second (low) byte of address (bits, SSPxIF, BF and UA, are set).
- 5. Update the SSPxADD register with the first (high) byte of address. If match releases SCLx line, this will clear bit, UA.
- 6. Read the SSPxBUF register (clears bit, BF) and clear flag bit, SSPxIF.
- 7. Receive Repeated Start condition.
- 8. Receive first (high) byte of address (bits, SSPxIF and BF, are set).
- 9. Read the SSPxBUF register (clears bit, BF) and clear flag bit, SSPxIF.

FIGURE 26-2: CONNECTIONS FOR THE ON-CHIP REGULATOR

26.3.2 ON-CHIP REGULATOR AND BOR

When the on-chip regulator is enabled, PIC18F46J11 family devices also have a simple brown-out capability. If the voltage supplied to the regulator is inadequate to maintain a minimum output level; the regulator Reset circuitry will generate a Brown-out Reset (BOR). This event is captured by the BOR flag bit (RCON<0>).

The operation of the BOR is described in more detail in Section 5.4 "Brown-out Reset (BOR)" and Section 5.4.1 "Detecting BOR". The brown-out voltage levels are specific in Section 29.1 "DC Characteristics: Supply Voltage PIC18F46J11 Family (Industrial)".

26.3.3 POWER-UP REQUIREMENTS

The on-chip regulator is designed to meet the power-up requirements for the device. If the application does not use the regulator, then strict power-up conditions must be adhered to. While powering up, VDDCORE should not exceed VDD by 0.3 volts.

26.3.4 OPERATION IN SLEEP MODE

When enabled, the on-chip regulator always consumes a small incremental amount of current over IDD. This includes when the device is in Sleep mode, even though the core digital logic does not require much power. To provide additional savings in applications where power resources are critical, the regulator can be configured to automatically enter a lower quiescent draw standby mode whenever the device goes into Sleep mode. This feature is controlled by the REGSLP bit (WDTCON<7>, Register 26-11). If this bit is set upon entry into Sleep mode, the regulator will transition into a lower power state. In this state, the regulator still provides a regulated output voltage necessary to maintain SRAM state information, but consumes less quiescent current.

Substantial Sleep mode power savings can be obtained by setting the REGSLP bit, but device wake-up time will increase in order to insure the regulator has enough time to stabilize.

27.0 INSTRUCTION SET SUMMARY

The PIC18F46J11 family of devices incorporates the standard set of 75 PIC18 core instructions, and an extended set of eight new instructions for the optimization of code that is recursive or that utilizes a software stack. The extended set is discussed later in this section.

27.1 Standard Instruction Set

The standard PIC18 instruction set adds many enhancements to the previous PIC[®] MCU instruction sets, while maintaining an easy migration from these PIC MCU instruction sets. Most instructions are a single program memory word (16 bits), but there are four instructions that require two program memory locations.

Each single-word instruction is a 16-bit word divided into an opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction.

The instruction set is highly orthogonal and is grouped into four basic categories:

- Byte-oriented operations
- Bit-oriented operations
- · Literal operations
- Control operations

The PIC18 instruction set summary in Table 27-2 lists the **byte-oriented**, **bit-oriented**, **literal** and **control** operations.

Table 27-1 provides the opcode field descriptions.

Most Byte-oriented instructions have three operands:

- 1. The file register (specified by 'f')
- 2. The destination of the result (specified by 'd')
- 3. The accessed memory (specified by 'a')

The file register designator, 'f', specifies which file register is to be used by the instruction. The destination designator, 'd', specifies where the result of the operation is to be placed. If 'd' is '0', the result is placed in the WREG register. If 'd' is '1', the result is placed in the file register specified in the instruction.

All **Bit-oriented** instructions have three operands:

- 1. The file register (specified by 'f')
- 2. The bit in the file register (specified by 'b')
- 3. The accessed memory (specified by 'a')

The bit field designator 'b' selects the number of the bit affected by the operation, while the file register designator, 'f', represents the number of the file in which the bit is located. The **Literal** instructions may use some of the following operands:

- A literal value to be loaded into a file register (specified by 'k')
- The desired FSR register to load the literal value into (specified by 'f')
- No operand required (specified by '—')

The **Control** instructions may use some of the following operands:

- A program memory address (specified by 'n')
- The mode of the CALL or RETURN instructions (specified by 's')
- The mode of the table read and table write instructions (specified by 'm')
- No operand required (specified by '---')

All instructions are a single word, except for four double-word instructions. These instructions were made double-word to contain the required information in 32 bits. In the second word, the 4 MSbs are '1's. If this second word is executed as an instruction (by itself), it will execute as a NOP.

All single-word instructions are executed in a single instruction cycle, unless a conditional test is true or the Program Counter (PC) is changed as a result of the instruction. In these cases, the execution takes two instruction cycles with the additional instruction cycle(s) executed as a NOP.

The double-word instructions execute in two instruction cycles.

One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 μ s. If a conditional test is true, or the program counter is changed as a result of an instruction, the instruction execution time is 2 μ s. Two-word branch instructions (if true) would take 3 μ s.

Figure 27-1 provides the general formats that the instructions can have. All examples use the convention 'nnh' to represent a hexadecimal number.

The instruction set summary, provided in Table 27-2, lists the standard instructions recognized by the Microchip MPASM[™] Assembler.

Section 27.1.1 "Standard Instruction Set" provides a description of each instruction.

BTFS	SC	Bit Test File	, Skip if Clear							
Synta	IX:	BTFSC f, b	BTFSC f, b {,a}							
Opera		0 ≤ f ≤ 255								
		$0 \leq b \leq 7$								
		a ∈ [0,1]	a ∈ [0,1]							
Opera	ation:	skip if (f)	= 0							
Statu	s Affected:	None								
Enco	ding:	1011	bbba fff:	f ffff						
Desci	ription:	instruction is then the next the current in carded and a	skipped. If bit skipped. If bit instruction fet astruction exect NOP is execu a two-cycle ins	'b' is '0', ched during ution is dis- ted instead,						
			e Access Bank e BSR is used t lefault).							
		set is enable in Indexed Li mode whene Section 27.2 Bit-Oriented	d the extended d, this instructi iteral Offset Ad ever f ≤ 95 (5FH 2.3 "Byte-Orie I Instructions et Mode" for d	on operates Idressing n). See nted and in Indexed						
Word	s:	1								
Cycle		1(2)								
0,010		. ,	cles if skip and	followed						
		by a	2-word instruc	tion.						
QC	cle Activity:									
	Q1	Q2	Q3	Q4						
	Decode	Read register 'f'	Process Data	No operation						
lf ski	p:	regiotor r	Dula	oporation						
	Q1	Q2	Q3	Q4						
	No	No	No	No						
	operation	operation	operation	operation						
IT SKI	p and followed Q1	by 2-word inst Q2	Q3	Q4						
	No	No	No	No						
	operation	operation	operation	operation						
	No	No	No	No						
	operation	operation	operation	operation						
<u>Exam</u>	iple:	HERE BI FALSE : TRUE :	FSC FLAG	, 1, O						
I	Before Instruct PC		ress (HERE)							
	After Instruction	n								
	If FLAG< PC	- /	ress (TRUE)							
	If FLAG<	l> = 1;								
	PC	= add	ress (false))						

BTFSS	Bit Test File	, Skip if Set						
Syntax:	BTFSS f, b {	,a}						
Operands:	$0 \leq f \leq 255$							
	$0 \le b < 7$							
o <i>i</i> :	a ∈ [0,1]	_						
Operation:	skip if (f)	= 1						
Status Affected:	None							
Encoding:		bbba fff:						
Description:	instruction is then the next the current in carded and a	gister 'f' is '1', tl skipped. If bit t instruction fet nstruction exect a NOP is execu a two-cycle ins	'b' is '1', ched during ution is dis- ted instead,					
		e Access Bank e BSR is used default).						
	set is enable in Indexed Li mode whene Section 27.2 Bit-Oriented	d the extended d, this instructi iteral Offset Ad ever f ≤ 95 (5FH 2.3 "Byte-Orie I Instructions et Mode" for d	on operates Idressing n). See nted and in Indexed					
Words:	1							
Cycles:		vcles if skip an a 2-word instru						
Q Cycle Activity:	00	00	0.1					
Q1 Decode	Q2 Read	Q3 Process	Q4 No					
Decode	register 'f'	Data	operation					
lf skip:	0							
Q1	Q2	Q3	Q4					
No	No	No	No					
operation	operation	operation	operation					
If skip and followed Q1	Q2	Q3	Q4					
No	No	No	No					
operation	operation	operation	operation					
No	No	No	No					
operation	operation	operation	operation					
Example:	HERE BI FALSE : TRUE :	TFSS FLAG	, 1, 0					
Before Instruct PC		ress (HERE)						
After Instruction	n							
After Instructio If FLAG< PC If FLAG<	1> = 0; = add	ress (False))					

27.2.2 EXTENDED INSTRUCTION SET

ADD	FSR	Add Liter	Add Literal to FSR						
Synta	ax:	ADDFSR	ADDFSR f, k						
Oper	ands:	$0 \le k \le 63$	$0 \le k \le 63$						
		f ∈ [0, 1,	2]						
Oper	ation:	FSR(f) + I	$s \rightarrow FSR($	(f)					
Statu	us Affected: None								
Enco	oding:	1110	1000	ffkk	kkkk				
Desc	ription:	The 6-bit	The 6-bit literal 'k' is added to the						
		contents of	of the FSF	R spec	ified by 'f'.				
Word	ls:	1							
Cycle	es:	1							
QC	ycle Activity:								
	Q1	Q2	Q3		Q4				
	Decode	Read	Proces	SS	Write to				
		literal 'k'	Data	1	FSR				

ADDFSR 2, 0x23

03FFh

0422h

Example:

Before Instruction FSR2

After Instruction

FSR2

=

=

ADDULNK	Add Literal to FSR2 and Return							
Syntax:	ADDULN	ADDULNK k						
Operands:	$0 \le k \le 63$							
Operation:	FSR2 + k	$x \rightarrow FSR2$,					
	$(TOS) \rightarrow$	PC						
Status Affected:	None		-					
Encoding:	1110	1000	11kk	kkkk				
Description:	The 6-bit literal 'k' is added to the contents of FSR2. A RETURN is then executed by loading the PC with the TOS.							
		a nop is p	es two cyc performed					
	case of th	ne ADDFSI	ht of as a R instructio '11'); it op	on,				
Words:	1							
Cycles:	2							

Q Cycle Activity:

Q1	Q2	Q3	Q4
Decode	Read	Process	Write to
	literal 'k'	Data	FSR
No	No	No	No
Operation	Operation	Operation	Operation

Example:	AD	DDULNK 0x23	
Before Instruc	tion		
FSR2	=	03FFh	
PC	=	0100h	
After Instruction	n		

=

=

0422h

(TOS)

FSR2

PC

Note: All PIC18 instructions may take an optional label argument preceding the instruction mnemonic for use in symbolic addressing. If a label is used, the instruction format then becomes: {label} instruction argument(s).

29.2 DC Characteristics: Power-Down and Supply Current PIC18F46J11 Family (Industrial) (Continued)

PIC18LFX	XJ11 Family			rating C perature		c (unless otherwise $C \le TA \le +85^{\circ}C$ for ind	
PIC18FXX	J11 Family			rating C perature		c (unless otherwise $C \le TA \le +85^{\circ}C$ for in	
Param No.	Device	Тур	Max	Units		Condi	tions
	Supply Current (IDD) ⁽²⁾						
	PIC18LFXXJ11	1.9	3.6	mA	-40°C		
		2.0	3.8	mA	+25°C	VDD = 2.0V, VDDCORE = 2.0V	
		2.0	3.8	mA	+85°C	VDDCORE - 2.0V	
	PIC18LFXXJ11	2.8	4.8	mA	-40°C		
		2.8	4.8	mA	+25°C	VDD = 2.5V, VDDCORE = 2.5V	
		2.8	4.9	mA	+85°C	VDDCORE - 2.3V	Fosc = 8 MHz, RC_RUN
	PIC18FXXJ11	2.3	4.2	mA	-40°C	VDD = 2.15V,	mode, Internal RC Oscillator
		2.3	4.2	mA	+25°C	VDDCORE = 10 μ F	
		2.4	4.5	mA	+85°C	Capacitor	-
	PIC18FXXJ11	2.8	5.1	mA	-40°C	VDD = 3.3V,	
		2.8	5.1	mA	+25°C	VDDCORE = 10 μ F	
		2.8	5.4	mA	+85°C	Capacitor	
	PIC18LFXXJ11	1.9	9.4	μA	-40°C		
		2.3	9.4	μA	+25°C	VDD = 2.0V, VDDCORE = 2.0V	
		4.5	17.2	μA	+85°C		
	PIC18LFXXJ11	2.4	10.5	μA	-40°C	VDD = 2.5V,	
		2.8	10.5	μA	+25°C	VDD = 2.5V, VDDCORE = 2.5V	
		5.4	19.5	μA	+85°C		Fosc = 31 kHz, RC_IDLE mode, Internal RC Oscillator,
	PIC18FXXJ11	33.3	75	μA	-40°C	VDD = 2.15V,	INTSRC = 0
		43.8	75	μA	+25°C	VDDCORE = 10 µF	
		55.3	92	μA	+85°C	Capacitor	
	PIC18FXXJ11	36.1	82	μA	-40°C	VDD = 3.3V,	
		44.5	82	μA	+25°C	VDDCORE = 10 µF	
		56.3	105	μA	+85°C	Capacitor	

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or Vss and all features that add delta current disabled (such as WDT, Timer1 oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption. All features that add delta current are disabled (WDT, etc.). The test conditions for all IDD measurements in active operation mode are:

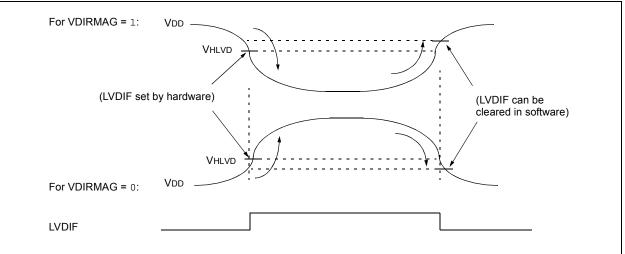
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD/Vss;

MCLR = VDD; WDT disabled unless otherwise specified.

3: Low-Power Timer1 with standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.

29.2 DC Characteristics: Power-Down and Supply Current PIC18F46J11 Family (Industrial) (Continued)

PIC18LFX	XJ11 Family	Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial									
PIC18FXX	(J11 Family			rating C	Conditions (unless otherwise stated) e $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial						
Param No.	Device	Тур	Max	Units		Conditions					
	Supply Current (IDD) ⁽²⁾										
	PIC18LFXXJ11	0.285	0.700	mA	-40°C						
		0.300	0.700	mA	+25°C	VDD = 2.0V, VDDCORE = 2.0V					
		0.336	0.750	mA	+85°C						
	PIC18LFXXJ11	0.372	1.00	mA	-40°C		Fosc = 4 MHz, PRI_IDLE				
		0.397	1.00	mA	+25°C	VDD = 2.5V, VDDCORE = 2.5V					
		0.495	1.10	mA	+85°C	VBBOOKE 2.0V					
	PIC18FXXJ11	0.357	0.850	mA	-40°C	VDD = 2.15V,	mode, EC Oscillator				
		0.383	0.850	mA	+25°C	VDDCORE = $10 \mu F$					
		0.407	0.900	mA	+85°C	Capacitor					
	PIC18FXXJ11	0.449	1.30	mA	-40°C	VDD = 3.3V,					
		0.488	1.20	mA	+25°C	VDDCORE = $10 \mu F$					
		0.554	1.20	mA	+85°C	Capacitor					
	PIC18LFXXJ11	4.5	6.5	mA	-40°C	VDD = 2.5V,					
		4.5	6.5	mA	+25°C	VDD = 2.5V, VDDCORE = 2.5V					
		4.6	6.5	mA	+85°C		Fosc = 48 MHz PRI IDLE mode,				
	PIC18FXXJ11	4.9	12.4	mA	-40°C		EC oscillator				
		5.0	11.5	mA	+25°C	VDDCORE = 10 µF					
		5.1	11.5	mA	+85°C	Capacitor					


Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSs and all features that add delta current disabled (such as WDT, Timer1 oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption. All features that add delta current are disabled (WDT, etc.). The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD/VSS;

- MCLR = VDD; WDT disabled unless otherwise specified.
- **3:** Low-Power Timer1 with standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.

FIGURE 29-3: HIGH/LOW-VOLTAGE DETECT CHARACTERISTICS

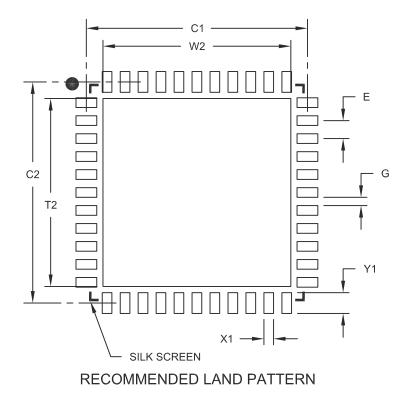


TABLE 29-7: HIGH/LOW-VOLTAGE DETECT CHARACTERISTICS

Param No.	Symbol	Charac	teristic	Min	Тур	Max	Units	Conditions
D420		HLVD Voltage on VDD	HLVDL<3:0> = 1000	2.33	2.45	2.57	V	
		Transition High-to-	HLVDL<3:0> = 1001	2.47	2.60	2.73	V	
		Low	HLVDL<3:0> = 1010	2.66	2.80	2.94	V	
			HLVDL<3:0> = 1011	2.76	2.90	3.05	V	
			HLVDL<3:0> = 1100	2.85	3.00	3.15	V	
			HLVDL<3:0> = 1101	2.97	3.13	3.29	V	
			HLVDL<3:0> = 1110	3.23	3.40	3.57	V	
D421	Tirvst	Time for Internal Refer become Stable	ence Voltage to	_	20	_	μS	
D422	Tlvd	High/Low-Voltage Dete	ect Pulse Width	200			μS	

44-Lead Plastic Quad Flat, No Lead Package (ML) – 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E		0.65 BSC	
Optional Center Pad Width	W2			6.80
Optional Center Pad Length	T2			6.80
Contact Pad Spacing	C1		8.00	
Contact Pad Spacing	C2		8.00	
Contact Pad Width (X44)	X1			0.35
Contact Pad Length (X44)	Y1			0.80
Distance Between Pads	G	0.25		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2103A

Disabling in Sleep Mode	65
BSF	
BTFSC	
BTFSS	
BTG	
BZ	

С

C Compilers	
MPLAB C18	464
MPLAB C30	464
Calibration (A/D Converter)	359
CALL	
CALLW	
Capture (ECCP Module)	
CCPRxH:CCPRxL Registers	
ECCP Pin Configuration	
Prescaler	
Software Interrupt	
•	
Timer1/Timer3 Mode Selection	
Clock Sources	
Effects of Power-Managed Modes	
Selecting the 31 kHz Source	
Selection Using OSCCON Register	
CLRF	429
CLRWDT	429
Code Examples	
16 x 16 Signed Multiply Routine	114
16 x 16 Unsigned Multiply Routine	
512-Byte SPI Master Mode Init and Transfer	
8 x 8 Signed Multiply Routine	
8 x 8 Unsigned Multiply Routine	
A/D Calibration Routine	
Calculating Baud Rate Error	
Capacitance Calibration Routine	
•	
Capacitive Touch Switch Routine	
Changing Between Capture Prescalers	
Communicating with the +5V System	
Computed GOTO Using an Offset Value	
Configuring EUSART2 Input and Output Functions .	
Current Calibration Routine	
Erasing Flash Program Memory	108
Fast Register Stack	81
How to Clear RAM (Bank 1) Using Indirect	
Addressing	97
Initializing PORTA	
Initializing PORTB	
Initializing PORTC	
Initializing PORTD	
Initializing PORTE	
Loading the SSP1BUF (SSP1SR) Register	
Reading a Flash Program Memory Word	107
Saving STATUS, WREG and BSR Registers in	400
RAM	
Setup for CTMU Calibration Routines	
Single-Word Write to Flash Program Memory	
Two-Word Instructions	
Ultra Low-Power Wake-up Initialization	
Writing to Flash Program Memory	110
Code Protection	
COMF	
	395
Comparator	395 430
Comparator Analog Input Connection Considerations	395 430 361
Analog Input Connection Considerations	395 430 361 364
Analog Input Connection Considerations	395 430 361 364 368
Analog Input Connection Considerations	395 430 361 364 368 365

Effects of a Reset	368
Enable and Input Selection	365
Enable and Output Selection	365
Interrupts	367
Operation	364
Operation During Sleep	368
Registers	
Response Time	364
Comparator Specifications	
Comparator Voltage Reference	
Accuracy and Error	
Associated Registers	
Configuring	
Connection Considerations	
Effects of a Reset	
Operation During Sleep	
Compare (ECCP Module)	
CCPRx Register	
Pin Configuration	
Software Interrupt	
Special Event Trigger	
Timer1/Timer3 Mode Selection	
Compare (ECCPx Module)	201
Special Event Trigger	250
Computed GOTO	
-	
Configuration Bits	
Configuration Mismatch (CM) Reset	. 00
Configuration Register Protection	411
Configuration Registers Bits and Device IDs	~~~
Bits and Device IDs	396
Mapping Flash Configuration Words	396
Core Features	
Easy Migration	
Expanded Memory	
Extended Instruction Set	
nanoWatt Technology	
Oscillator Options and Features	
CPFSEQ	
CPFSGT	
CPFSLT	
Crystal Oscillator/Ceramic Resonators	. 39
CTMU	
Associated Registers	
Calibrating	
Creating a Delay with	390
Effects of a Reset	390
Initialization	381
Measuring Capacitance with	387
Measuring Time with	389
Operation	380
Operation During Idle Mode	390
Operation During Sleep Mode	
CTMU Current Source Specifications	
Customer Change Notification Service	
Customer Notification Service	
Customer Support	
D	
Data Addressing Modes	. 97
Comparing Addressing Modes with the	
Extended Instruction Set Enabled	101

Comparing Addressing Modes with the	
Extended Instruction Set Enabled	101
Direct	97
Indexed Literal Offset	100
BSR	102
Instructions Affected	101
Mapping Access Bank	102

ALRMVAL Register Mapping	. 242
Calibration	. 242
Clock Source	. 240
Digit Carry Rules	. 240
General Functionality	. 241
Leap Year	. 241
Register Mapping	. 241
RTCVAL Register Mapping	. 242
Safety Window for Register Reads and Writes	241
Write Lock	. 241
Peripheral Module Disable (PMD) Register	. 244
Register Interface	. 239
Register Maps	. 245
Reset	
Device	. 244
Power-on Reset (POR)	. 244
Value Registers (RTCVAL)	. 233
RTCEN Bit Write	. 239

S

SCKx	272
SDIx	272
SDOx	272
SEC_IDLE Mode	52
SEC_RUN Mode	48
Serial Clock, SCKx	272
Serial Data In (SDIx)	272
Serial Data Out (SDOx)	272
Serial Peripheral Interface. See SPI Mode.	
SETF	
Shoot-Through Current	265
Slave Select (SSx)	272
SLEEP	
Software Simulator (MPLAB SIM)	464
Special Event Trigger. See Compare (ECCP Mode).	
Special Features of the CPU	
SPI Mode (MSSP)	272
Associated Registers	
Bus Mode Compatibility	
Clock Speed, Interactions	280
Effects of a Reset	280
Enabling SPI I/O	
Master Mode	277
Master/Slave Connection	
Operation	
Open-Drain Output Option	
Operation in Power-Managed Modes	
Registers	273
Serial Clock	272
Serial Data In	272
Serial Data Out	272
Slave Mode	278
Slave Select	
Slave Select Synchronization	278
SPI Clock	
SSPxBUF Register	277
SSPxSR Register	
Typical Connection	
SSPOV	
SSPOV Status Flag	316
SSPxSTAT Register	
R/W Bit	-
SSx	
Stack Full/Underflow Resets	
SUBFSR	
SUBFWB	448

SUBLW 449 SUBULNK 459 SUBWF 449 SUBWF 449 SUBWFB 450 SWAPF 450
--

Т

Table Pointer Operations with TBLRD, TBLWT (table) Table Reads/Table Writes	
TBLRD	
TBLWT	
Timer0	
Associated Registers	
Operation	
Overflow Interrupt	
Prescaler	
Switching Assignment	
Prescaler Assignment (PSA Bit)	1
Prescaler Select (T0PS2:T0PS0 Bits)	1
Reads and Writes in 16-Bit Mode	1
Source Edge Select (T0SE Bit)	
Source Select (TOCS Bit)	
Timer1	
16-Bit Read/Write Mode	
Associated Registers	
Clock Source Selection	
Gate	
Interrupt	
Operation	
Oscillator 201,	
Layout Considerations	
Resetting, Using the ECCP Special Event Trigger	
TMR1H Register	
TMR1L Register	
Use as a Clock Source	2
Timer2	2
Associated Registers	2
Interrupt	2
Operation	2
Output	2
Timer3	2
16-Bit Read/Write Mode	2
Associated Registers	
Gate	
Operation	
Oscillator	
Overflow Interrupt	
Special Event Trigger (ECCP)	
TMR3H Register	
TMR3L Register	
Timer4	
Associated Registers	
Interrupt	
MSSP Clock Shift	
Operation	
Output	2
Postscaler. See Postscaler, Timer4.	_
PR4 Register	2
Prescaler. See Prescaler, Timer4.	
TMR4 Register	
TMR4 to PR4 Match Interrupt 225,	2
Timing Diagrams	
A/D Conversion	5
Asynchronous Reception	
Asynchronous Transmission	
· · · · · · · · · · · · · · · · · · ·	-

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

TO: RE:	Technical Publications Manager Reader Response	Total Pages Sent		
	n: Name			
1101				
	Company Address			
	City / State / ZIP / Country			
	Telephone: ()	FAX: ()		
Арр	lication (optional):			
Wou	Id you like a reply?YN			
	ice: PIC18F46J11 Family	Literature Number: DS39932D		
Que	stions:			
1.	What are the best features of this document?			
2.	2. How does this document meet your hardware and software development needs?			
3.	Do you find the organization of this document easy to follow? If not, why?			
4.	. What additions to the document do you think would enhance the structure and subject?			
5.	. What deletions from the document could be made without affecting the overall usefulness?			
6.	Is there any incorrect or misleading information (what and where)?			
7.	How would you improve this document?			