

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	2.15V ~ 3.6V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f25j11-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION. QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2002

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2011, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 978-1-60932-959-4

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEEL0Q® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified. On transitions from SEC_RUN mode to PRI_RUN mode, the peripherals and CPU continue to be clocked from the Timer1 oscillator while the primary clock is started. When the primary clock becomes ready, a clock switch back to the primary clock occurs (see

Figure 4-2). When the clock switch is complete, the T1RUN bit is cleared, the OSTS bit is set and the primary clock would be providing the clock. The IDLEN and SCS bits are not affected by the wake-up; the Timer1 oscillator continues to run.

TADLE 3-2.	-2. INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)					
Register	Applicable Devices		Applicable Devices Power-on Reset, Brown-out Reset, Wake From Deep Sleep		Wake-up via WDT or Interrupt	
IPR1	PIC18F2XJ11	PIC18F4XJ11	1111 1111	1111 1111	uuuu uuuu	
PIR1	PIC18F2XJ11	PIC18F4XJ11	0000 0000	0000 0000	uuuu uuuu ⁽³⁾	
PIE1	PIC18F2XJ11	PIC18F4XJ11	0000 0000	0000 0000	uuuu uuuu	
RCSTA2	PIC18F2XJ11	PIC18F4XJ11	0000 0000	0000 0000	uuuu uuuu	
OSCTUNE	PIC18F2XJ11	PIC18F4XJ11	0000 0000	0000 0000	uuuu uuuu	
T1GCON	PIC18F2XJ11	PIC18F4XJ11	00x0 0x00	0000 0x00	uuuu uxuu	
RTCVALH	PIC18F2XJ11	PIC18F4XJ11	0xxx xxxx	Ouuu uuuu	Ouuu uuuu	
RTCVALL	PIC18F2XJ11	PIC18F4XJ11	0xxx xxx	Ouuu uuuu	0uuu uuuu	
T3GCON	PIC18F2XJ11	PIC18F4XJ11	0000 0x00	uuuu uxuu	uuuu uxuu	
TRISE ⁽⁵⁾	—	PIC18F4XJ11	111	111	uuu	
TRISD ⁽⁵⁾	—	PIC18F4XJ11	1111 1111	1111 1111	uuuu uuuu	
TRISC	PIC18F2XJ11	PIC18F4XJ11	1111 1111	1111 1111	uuuu uuuu	
TRISB	PIC18F2XJ11	PIC18F4XJ11	1111 1111	1111 1111	uuuu uuuu	
TRISA	PIC18F2XJ11	PIC18F4XJ11	111- 1111	111- 1111	uuu- uuuu	
ALRMCFG	PIC18F2XJ11	PIC18F4XJ11	0000 0000	uuuu uuuu	uuuu uuuu	
ALRMRPT	PIC18F2XJ11	PIC18F4XJ11	0000 0000	սսսս սսսս	uuuu uuuu	
ALRMVALH	PIC18F2XJ11	PIC18F4XJ11	xxxx xxxx	uuuu uuuu	uuuu uuuu	
ALRMVALL	PIC18F2XJ11	PIC18F4XJ11	xxxx xxxx	uuuu uuuu	uuuu uuuu	
LATE ⁽⁵⁾	_	PIC18F4XJ11	xxx	uuu	uuu	
LATD ⁽⁵⁾	_	PIC18F4XJ11	XXXX XXXX	uuuu uuuu	uuuu uuuu	
LATC	PIC18F2XJ11	PIC18F4XJ11	XXXX XXXX	uuuu uuuu	uuuu uuuu	
LATB	PIC18F2XJ11	PIC18F4XJ11	xxxx xxxx	uuuu uuuu	uuuu uuuu	
LATA	PIC18F2XJ11	PIC18F4XJ11	xxx- xxxx	uuu- uuuu	uuu- uuuu	
DMACON1	PIC18F2XJ11	PIC18F4XJ11	0000 0000	0000 0000	uuuu uuuu	
DMACON2	PIC18F2XJ11	PIC18F4XJ11	0000 0000	0000 0000	uuuu uuuu	
HLVDCON	PIC18F2XJ11	PIC18F4XJ11	0000 0000	0000 0000	uuuu uuuu	
PORTE ⁽⁵⁾	_	PIC18F4XJ11	00xxx	uuuuu	uuuuu	
PORTD ⁽⁵⁾	_	PIC18F4XJ11	xxxx xxxx	uuuu uuuu	uuuu uuuu	
PORTC	PIC18F2XJ11	PIC18F4XJ11	xxxx xxxx	uuuu uuuu	uuuu uuuu	
PORTB	PIC18F2XJ11	PIC18F4XJ11	xxxx xxxx	uuuu uuuu	uuuu uuuu	
PORTA	PIC18F2XJ11	PIC18F4XJ11	xxx- xxxx	uuu- uuuu	uuu- uuuu	
SPBRGH1	PIC18F2XJ11	PIC18F4XJ11	0000 0000	0000 0000	uuuu uuuu	

TABLE 5-2: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition.

Note 1: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

3: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

- 4: See Table 5-1 for Reset value for specific condition.
- 5: Not implemented for PIC18F2XJ11 devices.
- 6: Not implemented on "LF" devices.

REGISTER 9-3: INTCON3: INTERRUPT CONTROL REGISTER 3 (ACCESS FF0h)

R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
INT2IP	INT1IP	INT3IE	INT2IE	INT1IE	INT3IF	INT2IF	INT1IF
bit 7		<u> </u>					bit 0
_ 							
Legend:							
R = Readabl	ie bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'	
-n = Value at	ι POR	'1' = Bit is set	•	'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 7	INT2IP: INT2	External Interr	rupt Priority bi	t			
	1 = High prior 0 = Low prior	rity rity	мр				
bit 6	INT1IP: INT1	External Interr	rupt Priority bi	t			
	1 = High prio 0 = Low prio	rity rity					
bit 5	INT3IE: INT3	External Interr	upt Enable bit	t			
	1 = Enables t 0 = Disables	the INT3 extern the INT3 extern	nal interrupt rnal interrupt				
bit 4	INT2IE: INT2	External Interr	upt Enable bit	t			
	1 = Enables t 0 = Disables	the INT2 extern the INT2 extern	nal interrupt				
bit 3	INT1IE: INT1	External Interr	rupt Enable bi	t			
••••	1 = Enables t 0 = Disables	the INT1 extern the INT1 exter	nal interrupt				
bit 2	INT3IF: INT3	External Interr	upt Flag bit				
	1 = The INT3 0 = The INT3	3 external interr 3 external inter	rupt occurred rupt did not oc	(must be cleare	d in software)		
bit 1	INT2IF: INT2	External Interr	upt Flag bit				
	1 = The INT2 0 = The INT2	2 external interr 2 external inter	rupt occurred rupt did not oc	(must be cleare	d in software)		
bit 0	INT1IF: INT1	External Interr	upt Flag bit				
	1 = The INT1 0 = The INT1	external interr external inter	rupt occurred or rupt did not oc	(must be cleare	d in software)		
Note: Ir	nterrupt flag bits	are set when	an interrupt c	ondition occurs	regardless of	the state of its	corresponding
er	nable bit or the G	Global Interrupt	: Enable bit. U	ser software she	ould ensure the	appropriate int no	terrupt flag bits

Pin	Function	TRIS Setting	I/O	l/O Type	Description
RE0/AN5/	RE0	1	Ι	ST	PORTE<0> data input; disabled when analog input enabled.
PMRD		0	0	DIG	LATE<0> data output; not affected by analog input.
	AN5	1	Ι	ANA	A/D input channel 5; default input configuration on POR.
	PMRD	1	Ι	ST/TTL	Parallel Master Port io_rd_in.
		0	0	DIG	Parallel Master Port read strobe.
RE1/AN6/	RE1	1	Ι	ST	PORTE<1> data input; disabled when analog input enabled.
PMWR		0	0	DIG	LATE<1> data output; not affected by analog input.
	AN6	1	Ι	ANA	A/D input channel 6; default input configuration on POR.
	PMWR	1	Ι	ST/TTL	Parallel Master Port io_wr_in.
		0	0	DIG	Parallel Master Port write strobe.
RE2/AN7/	RE2	1	Ι	ST	PORTE<2> data input; disabled when analog input enabled.
PMCS		0	0	DIG	LATE<2> data output; not affected by analog input.
	AN7	1	Ι	ANA	A/D input channel 7; default input configuration on POR.
	PMCS	0	0	DIG	Parallel Master Port byte enable.

TABLE 10-11: PORTE I/O SUMMARY

Legend: DIG = Digital level output; TTL = TTL input buffer; ST = Schmitt Trigger input buffer; ANA = Analog level I = Input; O = Output; P = Power

TABLE 10-12: SUMMARY OF REGISTERS ASSOCIATED WITH PORTE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
PORTE ⁽¹⁾	RDPU ⁽³⁾	REPU ⁽⁴⁾				RE2	RE1	RE0	93
LATE ⁽¹⁾	—	_	_	—	_	LATE2	LATE1	LATE0	92
TRISE ⁽¹⁾	—		_	—		TRISE2	TRISE1	TRISE0	92
ANCON0	PCFG7 ⁽²⁾	PCFG6 ⁽²⁾	PCFG5 ⁽²⁾	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0	94

Legend: — = unimplemented, read as '0'. Shaded cells are not used by PORTE.

Note 1: These registers are not available in 28-pin devices.

- 2: These bits are only available in 44-pin devices.
- 3: PORTD Pull-up Enable bit

0 = All PORTD pull-ups are disabled

1 = PORTD pull-ups are enabled for any input pad

4: PORTE Pull-up Enable bit

0 = All PORTE pull-ups are disabled

 $\ensuremath{\mathtt{1}}$ = PORTE pull-ups are enabled for any input pad

REGISTER 10-12:	RPINR8: PERIPHERAL	PIN SELECT INPUT	REGISTER 8	(BANKED E	EEEh)
-----------------	---------------------------	------------------	-------------------	-----------	-------

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—	IC2R4	IC2R3	IC2R2	IC2R1	IC2R0
bit 7							bit 0

Legend:	R/\overline{W} = Readable, Writable if IOLOCK = 0						
R = Readable bit	W = Writable bit U = Unimplemented bit, read as '0'						
-n = Value at POR	'1' = Bit is set	set '0' = Bit is cleared x = Bit is unknown					

bit 7-5 Unimplemented: Read as '0'

bit 4-0 IC2R<4:0>: Assign Input Capture 2 (ECCP2) to the Corresponding RPn Pin bits

REGISTER 10-13: RPINR12: PERIPHERAL PIN SELECT INPUT REGISTER 12 (BANKED EF2h)

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—	T1GR4	T1GR3	T1GR2	T1GR1	T1GR0
bit 7							bit 0

Legend:	R/\overline{W} = Readable, Writable if IOLOCK = 0						
R = Readable bit	W = Writable bit U = Unimplemented bit, read as '0'						
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 7-5 Unimplemented: Read as '0'

bit 4-0 T1GR<4:0>: Timer1 Gate Input (T1G) to the Corresponding RPn Pin bits

REGISTER 10-14: RPINR13: PERIPHERAL PIN SELECT INPUT REGISTER 13 (BANKED EF3h)

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—	T3GR4	T3GR3	T3GR2	T3GR1	T3GR0
bit 7							bit 0

Legend:	R/\overline{W} = Readable, Writable if IOLOCK = 0					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'			
-n = Value at POR	'1' = Bit is set '0' = Bit is cleared x = Bit is unknown					

bit 7-5 Unimplemented: Read as '0'

bit 4-0 T3GR<4:0>: Timer3 Gate Input (T3G) to the Corresponding RPn Pin bits

11.3.11 MASTER MODE TIMING

This section contains a number of timing examples that represent the common Master mode configuration options. These options vary from 8-bit to 16-bit data, fully demultiplexed to fully multiplexed address and Wait states.

FIGURE 11-12: READ AND WRITE TIMING, 8-BIT DATA, DEMULTIPLEXED ADDRESS

	Q1 Q2 Q3 0	Q4 Q1	Q2 Q3	Q4 Q1	I Q2 Q3 0	Q4 Q1 Q2 0	Q3 Q4 Q	1 Q2	Q3	Q4	Q1 Q2 Q3 Q	4 Q1 Q2 Q3 Q4
				1			1 1 1	1		1 1 1		1 1 1
PMCS									; ;			1 1
MD<7:0> -							I			1 1 1)	
MA<7:0>				Ż			<u> </u>	1	1 1	-	(<u> </u>
PMWR		<u> </u>	1	1			1	1	1 1	1 1	i i	1
PMRD		· · ·					1 1	1	<u> </u>			1 1
PMPIF		i i							1 1			
BUSY		· ·		1			1	1	•	1 1		1 1

FIGURE 11-14: READ TIMING, 8-BIT DATA, WAIT STATES ENABLED, PARTIALLY MULTIPLEXED ADDRESS

REGISTER 17-11: HOURS: HOURS VALUE REGISTER (ACCESS F98h, PTR 01b)⁽¹⁾

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	HRTEN1	HRTEN0	HRONE3	HRONE2	HRONE1	HRONE0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6	Unimplemented: Read as '0'
bit 5-4	HRTEN<1:0>: Binary Coded Decimal Value of Hour's Tens Digit bits Contains a value from 0 to 2.
bit 3-0	HRONE<3:0>: Binary Coded Decimal Value of Hour's Ones Digit bits Contains a value from 0 to 9.

Note 1: A write to this register is only allowed when RTCWREN = 1.

REGISTER 17-12: MINUTES: MINUTES VALUE REGISTER (ACCESS F99h, PTR 00b)

U-0	R/W-x						
—	MINTEN2	MINTEN1	MINTEN0	MINONE3	MINONE2	MINONE1	MINONE0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	Unimplemented: Read as '0'
bit 6-4	MINTEN<2:0>: Binary Coded Decimal Value of Minute's Tens Digit bits Contains a value from 0 to 5.
bit 3-0	MINONE<3:0>: Binary Coded Decimal Value of Minute's Ones Digit bits Contains a value from 0 to 9.

REGISTER 17-13: SECONDS: SECONDS VALUE REGISTER (ACCESS F98h, PTR 00b)

U-0	R/W-x						
—	SECTEN2	SECTEN1	SECTEN0	SECONE3	SECONE2	SECONE1	SECONE0
bit 7							bit 0

Legend:							
R = Readab	ole bit	W = Writable bit	U = Unimplemented bit,	read as '0'			
-n = Value at POR		'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			
hit 7	Unimple	mented: Read as '0'					
	Ommple	Unimplemented: Read as 0					
bit 6-4	SECTEN<2:0>: Binary Coded Decimal Value of Second's Tens Digit bits Contains a value from 0 to 5.						

bit 3-0 SECONE<3:0>: Binary Coded Decimal Value of Second's Ones Digit bits Contains a value from 0 to 9.

REGISTER 17-18:	ALRMMIN: ALARM MINUTES	VALUE REGISTER	(ACCESS F8Fh,	PTR 00b)
-----------------	------------------------	----------------	---------------	----------

U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
—	MINTEN2	MINTEN1	MINTEN0	MINONE3	MINONE2	MINONE1	MINONE0	
bit 7							bit 0	
Legend:								
R = Readable bit		W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at POR		'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown		
bit 7	Unimplemen	ted: Read as '	0'					
bit 6-4	bit 6-4 MINTEN<2:0>: Binary Coded Decimal Value of Minute's Tens Digit bits							

	Contains a value from 0 to 5.
bit 3-0	MINONE<3:0>: Binary Coded Decimal Value of Minute's Ones Digit bits Contains a value from 0 to 9.

REGISTER 17-19: ALRMSEC: ALARM SECONDS VALUE REGISTER (ACCESS F8Eh, PTR 00b)

U-0	R/W-x						
—	SECTEN2	SECTEN1	SECTEN0	SECONE3	SECONE2	SECONE1	SECONE0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7 Unimplemented: Read as '0'

bit 6-4 SECTEN<2:0>: Binary Coded Decimal Value of Second's Tens Digit bits Contains a value from 0 to 5.

bit 3-0 SECONE<3:0>: Binary Coded Decimal Value of Second's Ones Digit bits Contains a value from 0 to 9.

19.5.7.1 Baud Rate and Module Interdependence

Because MSSP1 and MSSP2 are independent, they can operate simultaneously in I^2C Master mode at different baud rates. This is done by using different BRG reload values for each module.

Because this mode derives its basic clock source from the system clock, any changes to the clock will affect both modules in the same proportion. It may be possible to change one or both baud rates back to a previous value by changing the BRG reload value.

FIGURE 19-19: BAUD RATE GENERATOR BLOCK DIAGRAM

TABLE 19-3: I²C[™] CLOCK RATE w/BRG

Fosc	Fcy	Fcy * 2	BRG Value	FscL (2 Rollovers of BRG)
40 MHz	10 MHz	20 MHz	18h	400 kHz ⁽¹⁾
40 MHz	10 MHz	20 MHz	1Fh	312.5 kHz
40 MHz	10 MHz	20 MHz	63h	100 kHz
16 MHz	4 MHz	8 MHz	09h	400 kHz ⁽¹⁾
16 MHz	4 MHz	8 MHz	0Ch	308 kHz
16 MHz	4 MHz	8 MHz	27h	100 kHz
4 MHz	1 MHz	2 MHz	02h	333 kHz ⁽¹⁾
4 MHz	1 MHz	2 MHz	09h	100 kHz
16 MHz	4 MHz	8 MHz	03h	1 MHz ⁽¹⁾

Note 1: The I²C interface does not conform to the 400 kHz I²C specification (which applies to rates greater than 100 kHz) in all details, but may be used with care where higher rates are required by the application.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	69
PIR1	PMPIF ⁽³⁾	ADIF	RC1IF	TX1IF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	72
PIE1	PMPIE ⁽³⁾	ADIE	RC1IE	TX1IE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	72
IPR1	PMPIP ⁽³⁾	ADIP	RC1IP	TX1IP	SSP1IP	CCP1IP	TMR2IP	TMR1IP	72
PIR2	OSCFIF	CM2IF	CM1IF	—	BCL1IF	LVDIF	TMR3IF	CCP2IF	72
PIE2	OSCFIE	CM2IE	CM1IE	_	BCL1IE	LVDIE	TMR3IE	CCP2IE	72
IPR2	OSCFIP	CM2IP	CM1IP	_	BCL1IP	LVDIP	TMR3IP	CCP2IP	72
PIR3	SSP2IF	BCL2IF	RC2IF	TX2IF	TMR4IF	CTMUIF	TMR3GIF	RTCIF	72
PIE3	SSP2IE	BCL2IE	RC2IE	TX2IE	TMR4IE	CTMUIE	TMR3GIE	RTCIE	72
IPR3	SSP2IP	BCL2IP	RC2IP	TX2IP	TMR4IP	CTMUIP	TMR3GIP	RTCIP	72
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	72
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	72
SSP1BUF	MSSP1 Red	ceive Buffer/1	ransmit Reg	ister					70
SSPxADD	MSSP1 Add	lress Register	r (l ² C™ Slave	e mode), MSS	SP1 Baud Ra	te Reload Re	egister (I ² C M	aster mode)	70, 73
SSPxMSK ⁽¹⁾	MSK7	MSK6	MSK5	MSK4	MSK3	MSK2	MSK1	MSK0	70, 73
SSPxCON1	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	70, 73
SSPxCON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	70, 73
	GCEN	ACKSTAT	ADMSK5(2)	ADMSK4(2)	ADMSK3(2)	ADMSK2(2)	ADMSK1(2)	SEN	
SSPxSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	70, 73
SSP2BUF	MSSP2 Red	ceive Buffer/1	ransmit Reg	ister					73
SSP2ADD	MSSP2 Add	Iress Registe	er (I ² C Slave I	mode), MSS	P2 Baud Rat	e Reload Re	gister (I ² C M	aster mode)	73

TABLE 19-4: F	REGISTERS ASSOCIATED WITH I ² C [™] OPERATION
---------------	---

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the MSSPx module in I^2C^{TM} mode.

Note 1: SSPxMSK shares the same address in SFR space as SSPxADD, but is only accessible in certain I²C Slave mode operations in 7-Bit Masking mode. See Section 19.5.3.4 "7-Bit Address Masking Mode" for more details.

2: Alternate bit definitions for use in I^2C Slave mode operations only.

3: These bits are only available on 44-pin devices.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	69
PIR1	PMPIF ⁽¹⁾	ADIF	RC1IF	TX1IF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	72
PIE1	PMPIE ⁽¹⁾	ADIE	RC1IE	TX1IE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	72
IPR1	PMPIP ⁽¹⁾	ADIP	RC1IP	TX1IP	SSP1IP	CCP1IP	TMR2IP	TMR1IP	72
PIR3	SSP2IF	BCL2IF	RC2IF	TX2IF	TMR4IF	CTMUIF	TMR3GIF	RTCCIF	72
PIE3	SSP2IE	BCL2IE	RC2IE	TX2IE	TMR4IE	CTMUIE	TMR3GIE	RTCCIE	72
IPR3	SSP2IP	BCL2IP	RC2IP	TX2IP	TMR4IP	CTMUIP	TMR3GIP	RTCCIP	72
RCSTAx	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	72
RCREGx	EUSARTx	Receive Reg	ister						72
TXSTAx	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	72
BAUDCONx	ABDOVF	RCIDL	RXDTP	TXCKP	BRG16	—	WUE	ABDEN	73
SPBRGHx	EUSARTx Baud Rate Generator Register High Byte								
SPBRGx	EUSARTx	Baud Rate G	enerator R	egister Low	Byte				72

TABLE 20-6: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Legend: — = unimplemented locations read as '0'. Shaded cells are not used for asynchronous reception.

Note 1: These bits are only available on 44-pin devices.

20.2.4 AUTO-WAKE-UP ON SYNC BREAK CHARACTER

During Sleep mode, all clocks to the EUSART are suspended. Because of this, the BRG is inactive and a proper byte reception cannot be performed. The auto-wake-up feature allows the controller to wake-up due to activity on the RXx/DTx line while the EUSART is operating in Asynchronous mode.

The auto-wake-up feature is enabled by setting the WUE bit (BAUDCONx<1>). Once set, the typical receive sequence on RXx/DTx is disabled and the EUSART remains in an Idle state, monitoring for a wake-up event independent of the CPU mode. A wake-up event consists of a high-to-low transition on the RXx/DTx line. (This coincides with the start of a Sync Break or a Wake-up Signal character for the LIN/J2602 protocol.)

Following a wake-up event, the module generates an RCxIF interrupt. The interrupt is generated synchronously to the Q clocks in normal operating modes (Figure 20-8) and asynchronously if the device is in Sleep mode (Figure 20-9). The interrupt condition is cleared by reading the RCREGx register.

FIGURE 22-4: COMPARATOR CONFIGURATIONS

24.2 HLVD Setup

To set up the HLVD module:

- 1. Disable the module by clearing the HLVDEN bit (HLVDCON<4>).
- 2. Write the value to the HLVDL<3:0> bits that selects the desired HLVD trip point.
- 3. Set the VDIRMAG bit to detect one of the following:
 - High voltage (VDIRMAG = 1)
 - Low voltage (VDIRMAG = 0)
- 4. Enable the HLVD module by setting the HLVDEN bit.
- Clear the HLVD Interrupt Flag, LVDIF (PIR2<2>), which may have been set from a previous interrupt.
- If interrupts are desired, enable the HLVD interrupt by setting the HLVDIE and GIE/GIEH bits (PIE2<2> and INTCON<7>).

An interrupt will not be generated until the IRVST bit is set.

24.3 Current Consumption

When the module is enabled, the HLVD comparator and voltage divider are enabled and will consume static current. The total current consumption, when enabled, is specified in electrical specification parameter D022B (Δ IHLVD) (Section 29.2 "DC Characteristics: Power-Down and Supply Current PIC18F46J11 Family (Industrial)").

Depending on the application, the HLVD module does not need to operate constantly. To decrease the current requirements, the HLVD circuitry may only need to be enabled for short periods where the voltage is checked. After doing the check, the HLVD module may be disabled.

24.4 HLVD Start-up Time

The internal reference voltage of the HLVD module, specified in electrical specification parameter D420 (see Table 29-8 in Section 29.0 "Electrical Characteristics"), may be used by other internal circuitry, such as the Programmable Brown-out Reset (BOR).

If the HLVD or other circuits using the voltage reference are disabled to lower the device's current consumption, the reference voltage circuit will require time to become stable before a low or high-voltage condition can be reliably detected. This start-up time, TIRVST, is an interval that is independent of device clock speed. It is specified in electrical specification parameter 36 (Table 29-15).

The HLVD interrupt flag is not enabled until TIRVST has expired and a stable reference voltage is reached. For this reason, brief excursions beyond the set point may not be detected during this interval. Refer to Figure 24-2 or Figure 24-3.

	2. 1			46	Dit In ofr	vetion M	/ord		
Mnemo	onic,	Description	Cvcles				vora	Status	Notes
Operands		• • • •		MSb			LSb	Affected	
BIT-ORIEN	TED OPE	RATIONS							
BCF	f, b, a	Bit Clear f	1	1001	bbba	ffff	ffff	None	1, 2
BSF	f, b, a	Bit Set f	1	1000	bbba	ffff	ffff	None	1, 2
BTFSC	f, b, a	Bit Test f, Skip if Clear	1 (2 or 3)	1011	bbba	ffff	ffff	None	3, 4
BTFSS	f, b, a	Bit Test f, Skip if Set	1 (2 or 3)	1010	bbba	ffff	ffff	None	3, 4
BTG	f, b, a	Bit Toggle f	1	0111	bbba	ffff	ffff	None	1, 2
CONTROL	OPERAT	IONS						•	
BC	n	Branch if Carry	1 (2)	1110	0010	nnnn	nnnn	None	
BN	n	Branch if Negative	1 (2)	1110	0110	nnnn	nnnn	None	
BNC	n	Branch if Not Carry	1 (2)	1110	0011	nnnn	nnnn	None	
BNN	n	Branch if Not Negative	1 (2)	1110	0111	nnnn	nnnn	None	
BNOV	n	Branch if Not Overflow	1 (2)	1110	0101	nnnn	nnnn	None	
BNZ	n	Branch if Not Zero	1 (2)	1110	0001	nnnn	nnnn	None	
BOV	n	Branch if Overflow	1 (2)	1110	0100	nnnn	nnnn	None	
BRA	n	Branch Unconditionally	2	1101	0nnn	nnnn	nnnn	None	
BZ	n	Branch if Zero	1 (2)	1110	0000	nnnn	nnnn	None	
CALL	n, s	Call Subroutine 1st word	2	1110	110s	kkkk	kkkk	None	
		2nd word		1111	kkkk	kkkk	kkkk		
CLRWDT	—	Clear Watchdog Timer	1	0000	0000	0000	0100	TO, PD	
DAW	—	Decimal Adjust WREG	1	0000	0000	0000	0111	С	
GOTO	n	Go to Address 1st word	2	1110	1111	kkkk	kkkk	None	
		2nd word		1111	kkkk	kkkk	kkkk		
NOP	—	No Operation	1	0000	0000	0000	0000	None	
NOP	—	No Operation	1	1111	XXXX	XXXX	XXXX	None	4
POP	—	Pop Top of Return Stack (TOS)	1	0000	0000	0000	0110	None	
PUSH	—	Push Top of Return Stack (TOS)	1	0000	0000	0000	0101	None	
RCALL	n	Relative Call	2	1101	1nnn	nnnn	nnnn	None	
RESET		Software Device Reset	1	0000	0000	1111	1111	All	
RETFIE	S	Return from Interrupt Enable	2	0000	0000	0001	000s	GIE/GIEH,	
								PEIE/GIEL	
RETLW	k	Return with Literal in WREG	2	0000	1100	kkkk	kkkk	None	
RETURN	S	Return from Subroutine	2	0000	0000	0001	001s	None	
SLEEP	—	Go into Standby mode	1	0000	0000	0000	0011	TO, PD	

TABLE 27-2: PIC18F46J11 FAMILY INSTRUCTION SET (CONTINUED)

Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned.

3: If the Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

4: Some instructions are two-word instructions. The second word of these instructions will be executed as a NOP unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all program memory locations have a valid instruction.

	WFC	ADD W a	ADD W and Carry bit to f					
Synta	x:	ADDWFC	f {,d {,;	a}}				
Opera	$\begin{array}{llllllllllllllllllllllllllllllllllll$							
Opera	ation:	(W) + (f) +	$(C) \rightarrow de$	st				
Status	s Affected:	N,OV, C, I	DC, Z					
Enco	ding:	0010	00da	ffff	ffff			
Desci	ription:	Add W, the location 'f' placed in v placed in v	Add W, the Carry flag and data memory location 'f'. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed in data memory location 'f'.					
		lf 'a' is '0', lf 'a' is '1', GPR bank	the Acces the BSR is (default).	s Bank is used to	selected. select the			
		If 'a' is '0' set is enal in Indexec mode whe Section 2 Bit-Orient Literal Of	and the ex oled, this i I Literal Of enever f ≤ 7.2.3 "By ted Instru fset Mode	ktended ir nstruction ffset Addro 95 (5Fh). te-Oriento ctions in e" for deta	estruction operates essing See ed and Indexed ails.			
Word	s:	1						
Cycle	S:	1						
QCy	cle Activity:							
-	Q1	Q2	Q3		Q4			
	Decode	Read register 'f'	Proce: Data	ss V a des	/rite to stination			
Example:		ADDWFC	REG,	0, 1				
	Before Instruct Carry bit REG W After Instructio Carry bit REG W	tion = 1 = 02h = 4Dh on = 0 = 02h = 50h						

ANDLW	AND Litera	al with V	V		
Syntax:	ANDLW	k			
Operands:	$0 \le k \le 255$;			
Operation:	(W) .AND.	$k \rightarrow W$			
Status Affected:	N, Z				
Encoding:	0000	1011	kkk	k	kkkk
Description:	The conter 8-bit literal W.	its of W a 'k'. The i	are AN result i	IDeo s pla	d with the aced in
Words:	1				
Cycles:	1				
Q Cycle Activity:					
Q1	Q2	Q	3		Q4
Decode	Read literal 'k'	Proce Dat	ess a	۷	Vrite to W
Example:	ANDLW	0x5F			
Before Instruction	ction = A3h				
W	= 03h				

29.4.2 TIMING CONDITIONS

The temperature and voltages specified in Table 29-8 apply to all timing specifications unless otherwise noted. Figure 29-4 specifies the load conditions for the timing specifications.

TABLE 29-8: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC

	Standard Operating Conditions (unless otherwise stated)					
AC CHARACTERISTICS	Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial					
	Operating voltage VDD range as described in Section 29.1 and Section 29.3 .					

FIGURE 29-4: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

29.4.3 TIMING DIAGRAMS AND SPECIFICATIONS

FIGURE 29-19: MSSPx I²C[™] BUS START/STOP BITS TIMING WAVEFORMS

TABLE 29-26: MSSPx I²C[™] BUS START/STOP BITS REQUIREMENTS

Param. No.	Symbol	Characteristic		Min	Max	Units	Conditions
90	TSU:STA	Start Condition	100 kHz mode	2(Tosc)(BRG + 1)		ns	Only relevant for
		Setup Time	400 kHz mode	2(Tosc)(BRG + 1)			Repeated Start condition
91	THD:STA	Start Condition	100 kHz mode	2(Tosc)(BRG + 1)	_	ns	After this period, the
		Hold Time	400 kHz mode	2(Tosc)(BRG + 1)	_		first clock pulse is generated
92	Tsu:sto	Stop Condition	100 kHz mode	2(Tosc)(BRG + 1)	_	ns	—
		Setup Time	400 kHz mode	2(Tosc)(BRG + 1)			
93	THD:STO	Stop Condition	100 kHz mode	2(Tosc)(BRG + 1)	— ns		—
		Hold Time	400 kHz mode	2(Tosc)(BRG + 1)	_		

FIGURE 29-20: MSSPx I²C[™] BUS DATA TIMING

