

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	2.15V ~ 3.6V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f25j11-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	Pin Nu	Pin Number			
Pin Name	28-SPDIP/ SSOP/ SOIC	28-QFN	Pin Type	Buffer Type	Description
					PORTB is a bidirectional I/O port. PORTB can be software programmed for internal weak pull-ups on all inputs.
RB0/AN12/INT0/RP3 RB0 AN12 INT0 RP3	21	18	I/O I I I/O	DIG Analog ST DIG	Digital I/O. Analog input 12. External interrupt 0. Remappable peripheral pin 3.
RB1/AN10/RTCC/RP4 RB1 AN10 RTCC RP4	22	19	I/O I O I/O	DIG Analog DIG DIG	Digital I/O. Analog input 10. Real Time Clock Calendar output. Remappable peripheral pin 4.
RB2/AN8/CTED1/ REFO/RP5 RB2 AN8 CTED1 REFO RP5	23	20	I/O I I O I/O	DIG Analog ST DIG DIG	Digital I/O. Analog input 8. CTMU edge 1 input. Reference output clock. Remappable peripheral pin 5.
RB3/AN9/CTED2/RP6 RB3 AN9 CTED2 RP6	24	21	I/O I I/O I	DIG Analog ST DIG	Digital I/O. Analog input 9. CTMU edge 2 input. Remappable peripheral pin 6.
RB4/KBI0/RP7 RB4 KBI0 RP7	25	22	I/O I I/O	DIG TTL DIG	Digital I/O. Interrupt-on-change pin. Remappable peripheral pin 7.
RB5/KBI1/RP8 RB5 KBI1 RP8	26	23	I/O I I/O	DIG TTL DIG	Digital I/O. Interrupt-on-change pin. Remappable peripheral pin 8.
Legend: TTL = TTL compa ST = Schmitt Tri I = Input P = Power DIG = Digital outp	gger input w	ith CMOS	levels	A O	MOS= CMOS compatible input or outputnalog= Analog input= Output= OutputD= Open-Drain (no P diode to VDD)

TABLE 1-3: PIC18F2XJ11 PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: RA7 and RA6 will be disabled if OSC1 and OSC2 are used for the clock function.

3.5 Effects of Power-Managed Modes on Various Clock Sources

When the PRI_IDLE mode is selected, the designated primary oscillator continues to run without interruption. In secondary clock modes (SEC_RUN and SEC_IDLE), the Timer1 oscillator is operating and providing the device clock. The Timer1 oscillator may also run in all power-managed modes if required to clock Timer1 or Timer3.

In internal oscillator modes (RC RUN and RC IDLE), the internal oscillator block provides the device clock source. The 31 kHz INTRC output can be used directly to provide the clock and may be enabled to support various special features regardless of the power-managed mode (see Section 26.2 "Watchdog Timer (WDT)", Section 26.4 "Two-Speed Start-up" and Section 26.5 "Fail-Safe Clock Monitor" for more information on WDT, FSCM and Two-Speed Start-up). The INTOSC output at 8 MHz may be used directly to clock the device or may be divided down by the postscaler. The INTOSC output is disabled if the clock is provided directly from the INTRC output.

If Sleep mode is selected, all clock sources, which are no longer required, are stopped. Since all the transistor switching currents have been stopped, Sleep mode achieves the lowest current consumption of the device (only leakage currents) outside of Deep Sleep mode.

Enabling any on-chip feature that will operate during Sleep mode increases the current consumed during Sleep mode. The INTRC is required to support WDT operation. The Timer1 oscillator may be operating to support an RTC. Other features may be operating that do not require a device clock source (i.e., MSSP slave, PMP, INTx pins, etc.). Peripherals that may add significant current consumption are listed in **Section 29.2 "DC Characteristics: Power-Down and Supply Current PIC18F46J11 Family (Industrial)"**.

3.6 Power-up Delays

Power-up delays are controlled by two timers so that no external Reset circuitry is required for most applications. The delays ensure that the device is kept in Reset until the device power supply is stable under normal circumstances and the primary clock is operating and stable. For additional information on power-up delays, see **Section 5.6 "Power-up Timer (PWRT)**".

The first timer is the Power-up Timer (PWRT), which provides a fixed delay on power-up (parameter 33, Table 29-15).

The second timer is the Oscillator Start-up Timer (OST), intended to keep the chip in Reset until the crystal oscillator is stable (HS mode). The OST does this by counting 1024 oscillator cycles before allowing the oscillator to clock the device.

There is a delay of interval, TCSD (parameter 38, Table 29-15), following POR, while the controller becomes ready to execute instructions. This delay runs concurrently with any other delays. This may be the only delay that occurs when any of the internal oscillator or EC modes are used as the primary clock source.

6.2.3 INSTRUCTIONS IN PROGRAM MEMORY

The program memory is addressed in bytes. Instructions are stored as 2 bytes or 4 bytes in program memory. The Least Significant Byte (LSB) of an instruction word is always stored in a program memory location with an even address (LSB = 0). To maintain alignment with instruction boundaries, the PC increments in steps of 2 and the LSB will always read '0' (see Section 6.1.3 "Program Counter").

Figure 6-5 provides an example of how instruction words are stored in the program memory.

The CALL and GOTO instructions have the absolute program memory address embedded into the instruction. Since instructions are always stored on word boundaries, the data contained in the instruction is a word address. The word address is written to PC<20:1>. which accesses the desired byte address in program memory. Instruction #2 in Figure 6-5 displays how the instruction, GOTO 0006h, is encoded in the program memory. Program branch instructions, which encode a relative address offset, operate in the same manner. The offset value stored in a branch instruction represents the number of single-word instructions that the PC will be offset by. Section 27.0 "Instruction Set Summary" provides further details of the instruction set.

GURE 6-5: INSTRUCTIONS IN PROGRAM MEMORY										
				LSB = 1	LSB = 0	Word Address \downarrow				
		Program Me				000000h				
		Byte Location	ons \rightarrow			000002h				
						000004h				
						000006h				
	Instruction 1:	MOVLW	055h	0Fh	55h	000008h				
	Instruction 2:	GOTO	0006h	EFh	03h	00000Ah				
				F0h	00h	00000Ch				
	Instruction 3:	MOVFF	123h, 456	h C1h	23h	00000Eh				
				F4h	56h	000010h				
						000012h				
						000014h				

FIGI

6.2.4 **TWO-WORD INSTRUCTIONS**

The standard PIC18 instruction set has four two-word instructions: CALL, MOVFF, GOTO and LSFR. In all cases, the second word of the instructions always has '1111' as its four Most Significant bits (MSbs); the other 12 bits are literal data, usually a data memory address.

The use of '1111' in the 4 MSbs of an instruction specifies a special form of NOP. If the instruction is executed in proper sequence immediately after the first word, the data in the second word is accessed and

used by the instruction sequence. If the first word is skipped for some reason, and the second word is executed by itself, a NOP is executed instead. This is necessary for cases when the two-word instruction is preceded by a conditional instruction that changes the PC. Example 6-4 illustrates how this works.

Note: See Section 6.5 "Program Memory and the Extended Instruction Set" for information on two-word instructions in the extended instruction set.

EXAMPLE 6-4: TWO-WORD INSTRUCTIONS

CASE 1:			
Object Code	Source Code	9	
0110 0110 0000 0000	TSTFSZ	REG1	; is RAM location 0?
1100 0001 0010 0011	MOVFF	REG1, REG2	; No, skip this word
1111 0100 0101 0110			; Execute this word as a NOP
0010 0100 0000 0000	ADDWF	REG3	; continue code
CASE 2:			
Object Code	Source Code	9	
0110 0110 0000 0000	TSTFSZ	REG1	; is RAM location 0?
1100 0001 0010 0011	MOVFF	REG1, REG2	; Yes, execute this word
1111 0100 0101 0110			; 2nd word of instruction
0010 0100 0000 0000	ADDWF	REG3	; continue code

7.5.3 WRITE VERIFY

Depending on the application, good programming practice may dictate that the value written to the memory should be verified against the original value. This should be used in applications where excessive writes can stress bits near the specification limit.

7.5.4 UNEXPECTED TERMINATION OF WRITE OPERATION

If a write is terminated by an unplanned event, such as loss of power or an unexpected Reset, the memory location just programmed should be verified and reprogrammed if needed. If the write operation is interrupted by a MCLR Reset or a WDT time-out Reset during normal operation, the user can check the WRERR bit and rewrite the location(s) as needed.

7.6 Flash Program Operation During Code Protection

See Section 26.6 "Program Verification and Code Protection" for details on code protection of Flash program memory.

TABLE 7-2:	REGISTERS ASSOCIATED WITH PROGRAM FLASH MEMORY
------------	--

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:
TBLPTRU	_	— — bit 21 Program Memory Table Pointer Upper Byte (TBLPTR<20:16>)							69
TBPLTRH	Program Memory Table Pointer High Byte (TBLPTR<15:8>)								69
TBLPTRL	Program Memory Table Pointer Low Byte (TBLPTR<7:0>)							69	
TABLAT	Program Memory Table Latch						69		
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INTOIF	RBIF	69
EECON2	Program Memory Control Register 2 (not a physical register)								71
EECON1	—	_	WPROG	FREE	WRERR	WREN	WR	—	71

Legend: — = unimplemented, read as '0'. Shaded cells are not used during Flash program memory access.

9.1 INTCON Registers

The INTCON registers are readable and writable registers, which contain various enable, priority and flag bits.

Note: Interrupt flag bits are set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the Global Interrupt Enable bit. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt. This feature allows for software polling.

REGISTER 9-1: INTCON: INTERRUPT CONTROL REGISTER (ACCESS FF2h)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x
GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF ⁽¹⁾
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	GIE/GIEH: Global Interrupt Enable bit
	When IPEN = 0:
	1 = Enables all unmasked interrupts
	0 = Disables all interrupts
	When IPEN = 1:
	1 = Enables all high-priority interrupts
	0 = Disables all interrupts
bit 6	PEIE/GIEL: Peripheral Interrupt Enable bit
	When IPEN = 0:
	1 = Enables all unmasked peripheral interrupts
	0 = Disables all peripheral interrupts
	<u>When IPEN = 1 and GIEH = 1:</u> 1 = Enables all low-priority peripheral interrupts
	0 = Disables all low-priority peripheral interrupts
bit 5	TMR0IE: TMR0 Overflow Interrupt Enable bit
	1 = Enables the TMR0 overflow interrupt
	0 = Disables the TMR0 overflow interrupt
bit 4	INTOIE: INTO External Interrupt Enable bit
	1 = Enables the INT0 external interrupt
	0 = Disables the INTO external interrupt
bit 3	RBIE: RB Port Change Interrupt Enable bit
	1 = Enables the RB port change interrupt
	0 = Disables the RB port change interrupt
bit 2	TMR0IF: TMR0 Overflow Interrupt Flag bit
	1 = TMR0 register has overflowed (must be cleared in software)
	0 = TMR0 register did not overflow
bit 1	INTOIF: INTO External Interrupt Flag bit
	1 = The INTO external interrupt occurred (must be cleared in software)
	0 = The INT0 external interrupt did not occur
bit 0	RBIF: RB Port Change Interrupt Flag bit ⁽¹⁾
	1 = At least one of the RB<7:4> pins changed state (must be cleared in software)
	0 = None of the RB<7:4> pins have changed state
Note 1	A mismatch condition will continue to get this bit. Reading DODTR and waiting 1 Toy will and the mismatches

Note 1: A mismatch condition will continue to set this bit. Reading PORTB and waiting 1 TCY will end the mismatch condition and allow the bit to be cleared.

10.7.6 PERIPHERAL PIN SELECT REGISTERS

The PIC18F46J11 family of devices implements a total of 37 registers for remappable peripheral configuration of 44-pin devices. The 28-pin devices have 31 registers for remappable peripheral configuration.

Note: Input and output register values can only be changed if PPS<IOLOCK> = 0. See Example 10-7 for a specific command sequence.

REGISTER 10-5: PPSCON: PERIPHERAL PIN SELECT INPUT REGISTER 0 (BANKED EFFh)⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
_	—			—	—	_	IOLOCK
bit 7 bi							

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7-1 Unimplemented: Read as '0'

bit 0

IOLOCK: I/O Lock Enable bit

1 = I/O lock active, RPORx and RPINRx registers are write-protected
 0 = I/O lock not active, pin configurations can be changed

Note 1: Register values can only be changed if PPSCON<IOLOCK> = 0.

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—	SCK2R4	SCK2R3	SCK2R2	SCK2R1	SCK2R0
bit 7							bit 0

Legend:	R/\overline{W} = Readable, Writable if IOLOCK = 0					
R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 7-5 Unimplemented: Read as '0'

bit 4-0 SCK2R<4:0>: Assign SPI2 Clock Input (SCLK2) to the Corresponding RPn Pin bits

REGISTER 10-19: RPINR23: PERIPHERAL PIN SELECT INPUT REGISTER 23 (BANKED EFDh)

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	—	—	SS2R4	SS2R3	SS2R2	SS2R1	SS2R0
bit 7							bit 0

Legend:	R/\overline{W} = Readable, Writable if IOLOCK = 0				
R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

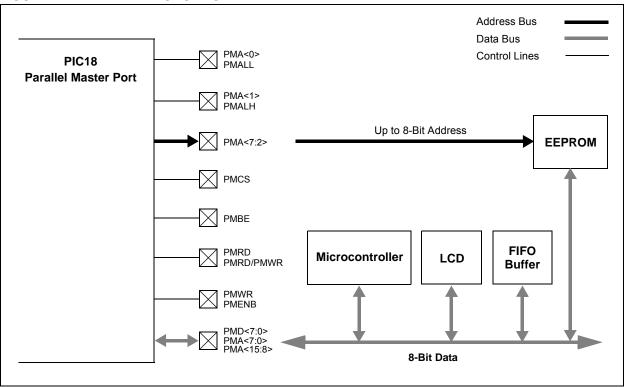
bit 7-5 Unimplemented: Read as '0'

bit 4-0 SS2R<4:0>: Assign SPI2 Slave Select Input (SS2IN) to the Corresponding RPn Pin bits

REGISTER 10-20: RPINR24: PERIPHERAL PIN SELECT INPUT REGISTER 24 (BANKED EFEh)

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—	OCFAR4	OCFAR3	OCFAR2	OCFAR1	OCFAR0
bit 7							bit 0

Legend:	R/\overline{W} = Readable, Writable if IOLOCK = 0				
R = Readable bit	Readable bit W = Writable bit		d as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		


bit 7-5 Unimplemented: Read as '0'

bit 4-0 OCFAR<4:0>: Assign PWM Fault Input (FLT0) to the Corresponding RPn Pin bits

11.0 PARALLEL MASTER PORT (PMP)

The Parallel Master Port module (PMP) is an 8-bit parallel I/O module, specifically designed to communicate with a wide variety of parallel devices, such as communication peripherals, LCDs, external memory devices and microcontrollers. Because the interface to parallel peripherals varies significantly, the PMP is highly configurable. The PMP module can be configured to serve as either a PMP or as a Parallel Slave Port (PSP). Key features of the PMP module are:

- Up to 16 bits of Addressing when Using Data/Address Multiplexing
- Up to 8 Programmable Address Lines
- One Chip Select Line
- Programmable Strobe Options:
 - Individual Read and Write Strobes or;
 Read/Write Strobe with Enable Strobe
- Address Auto-Increment/Auto-Decrement
- Programmable Address/Data Multiplexing
- Programmable Polarity on Control Signals
- Legacy Parallel Slave Port Support
- Enhanced Parallel Slave Support:
 - Address Support
 - 4-Byte Deep, Auto-Incrementing Buffer
- · Programmable Wait States
- · Selectable Input Voltage Levels

FIGURE 11-1: PMP MODULE OVERVIEW

TABLE 17-3:RTCVALH AND RTCVALLREGISTER MAPPING

RTCPTR<1:0>	RTCC Value Register Window				
	RTCVALH<15:8>	RTCVALL<7:0>			
00	MINUTES	SECONDS			
01	WEEKDAY	HOURS			
10	MONTH	DAY			
11	_	YEAR			

The Alarm Value register window (ALRMVALH and ALRMVALL) uses the ALRMPTR bits (ALRMCFG<1:0>) to select the desired Alarm register pair.

By reading or writing to the ALRMVALH register, the Alarm Pointer value, ALRMPTR<1:0>, decrements by 1 until it reaches '00'. Once it reaches '00', the ALRMMIN and ALRMSEC value will be accessible through ALRMVALH and ALRMVALL until the pointer value is manually changed.

TABLE 17-4:	ALRMVAL REGISTER
	MAPPING

ALRMPTR<1:0>	Alarm Value Register Window				
ALRMPTR<1:0>	ALRMVALH<15:8>	ALRMVALL<7:0>			
0.0	ALRMMIN	ALRMSEC			
01	ALRMWD	ALRMHR			
10	ALRMMNTH	ALRMDAY			
11	_				

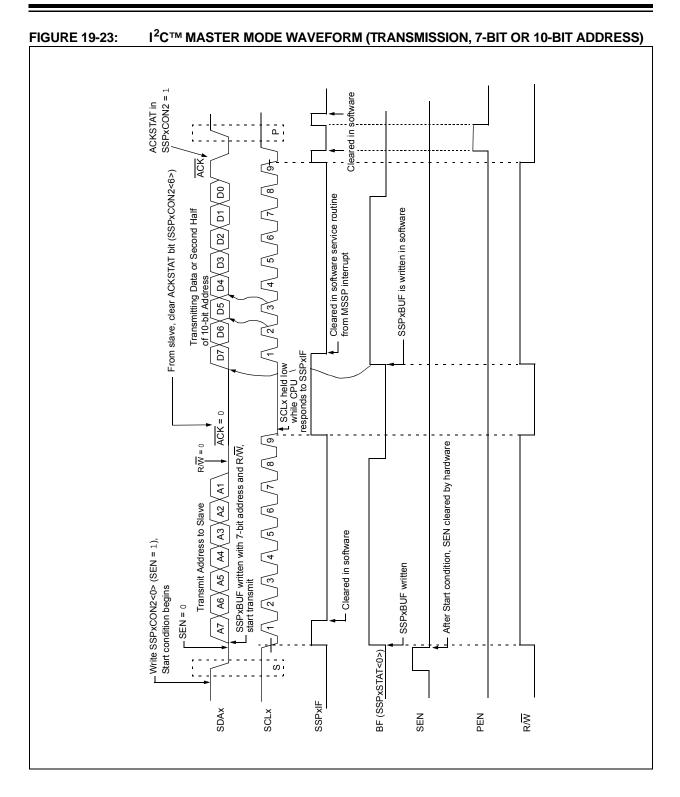
17.2.9 CALIBRATION

The real-time crystal input can be calibrated using the periodic auto-adjust feature. When properly calibrated, the RTCC can provide an error of less than three seconds per month.

To perform this calibration, find the number of error clock pulses and store the value in the lower half of the RTCCAL register. The 8-bit, signed value – loaded into RTCCAL – is multiplied by '4' and will either be added or subtracted from the RTCC timer, once every minute.

To calibrate the RTCC module:

- 1. Use another timer resource on the device to find the error of the 32.768 kHz crystal.
- 2. Convert the number of error clock pulses per minute (see Equation 17-1).


EQUATION 17-1: CONVERTING ERROR CLOCK PULSES

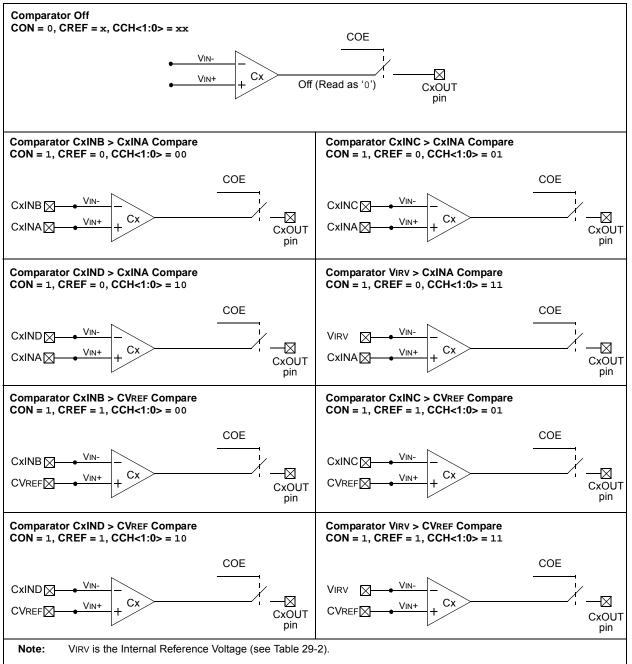
(Ideal Frequency (32,768) – Measured Frequency) * 60 = Error Clocks per Minute

- If the oscillator is *faster* than ideal (negative result from step 2), the RTCCALL register value needs to be negative. This causes the specified number of clock pulses to be subtracted from the timer counter once every minute.
- If the oscillator is *slower* than ideal (positive result from step 2), the RTCCALL register value needs to be positive. This causes the specified number of clock pulses to be added to the timer counter once every minute.
- 3. Load the RTCCAL register with the correct value.

Writes to the RTCCAL register should occur only when the timer is turned off, or immediately after the rising edge of the seconds pulse.

Note:	In determining the crystal's error value, it							
	is the user's responsibility to include the							
	crystal's initial error from drift due to							
	temperature or crystal aging.							

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:
GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	69
PMPIF ⁽¹⁾	ADIF	RC1IF	TX1IF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	72
PMPIE ⁽¹⁾	ADIE	RC1IE	TX1IE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	72
PMPIP ⁽¹⁾	ADIP	RC1IP	TX1IP	SSP1IP	CCP1IP	TMR2IP	TMR1IP	72
OSCFIF	CM2IF	CM1IF	—	BCL1IF	LVDIF	TMR3IF	CCP2IF	72
OSCFIE	CM2IE	CM1IE	_	BCL1IE	LVDIE	TMR3IE	CCP2IE	72
OSCFIP	CM2IP	CM1IP	_	BCL1IP	LVDIP	TMR3IP	CCP2IP	72
A/D Result	t Register Hi	gh Byte						70
A/D Result	t Register Lo	w Byte						70
VCFG1	VCFG0	CHS3	CHS3	CHS1	CHS0	GO/DONE	ADON	70
PCFG7 ⁽¹⁾	PCFG6 ⁽¹⁾	PCFG5 ⁽¹⁾	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0	74
ADFM	ADCAL	ACQT2	ACQT1	ACQT0	ADCS2	ADCS1	ADCS0	70
VBGEN	<mark>۲</mark> (2)	_	PCFG12	PCFG11	PCFG10	PCFG9	PCFG8	74
PxM1	PxM0	DCxB1	DCxB0	CCPxM3	CCPxM2	CCPxM1	CCPxM0	71
RA7	RA6	RA5	_	RA3	RA2	RA1	RA0	72
TRISA7	TRISA6	TRISA5	_	TRISA3	TRISA2	TRISA1	TRISA0	72
	GIE/GIEH PMPIF ⁽¹⁾ PMPIE ⁽¹⁾ OSCFIF OSCFIF OSCFIP A/D Resul A/D Resul VCFG1 PCFG7 ⁽¹⁾ ADFM VBGEN PxM1 RA7	GIE/GIEHPEIE/GIELPMPIF(1)ADIFPMPIE(1)ADIEPMPIP(1)ADIPOSCFIFCM2IFOSCFIECM2IEOSCFIECM2IEOSCFIPCM2IPA/D Result Register HiA/D Result Register LCVCFG1VCFG0PCFG7(1)PCFG6(1)ADFMADCALVBGENr ⁽²⁾ PxM1PxM0RA7RA6	GIE/GIEH PEIE/GIEL TMR0IE PMPIF ⁽¹⁾ ADIF RC1IF PMPIE ⁽¹⁾ ADIE RC1IE PMPIE ⁽¹⁾ ADIE RC1IF PMPIE ⁽¹⁾ ADIE RC1IF PMPIE ⁽¹⁾ ADIE RC1IF OSCFIF CM2IF CM1IF OSCFIE CM2IE CM1IF OSCFIP CM2IP CM1IF A/D Result Register Hutter Byte A/D Result Register LUT Byte VCFG1 VCFG0 CHS3 PCFG7 ⁽¹⁾ PCFG6 ⁽¹⁾ PCFG5 ⁽¹⁾ ADFM ADCAL ACQT2 VBGEN r ⁽²⁾ — PXM1 PXM0 DCxB1 RA7 RA6 RA5	GIE/GIEH PEIE/GIEL TMR0IE INT0IE PMPIF ⁽¹⁾ ADIF RC1IF TX1IF PMPIE ⁽¹⁾ ADIE RC1IE TX1IE PMPIE ⁽¹⁾ ADIE RC1IE TX1IF PMPIE ⁽¹⁾ ADIE RC1IE TX1IF PMPIE ⁽¹⁾ ADIE RC1IP TX1IP OSCFIF CM2IF CM1IF OSCFIE CM2IP CM1IE OSCFIF CM2IP CM1IP OSCFIF CM2IP CM1IP OSCFIF CM2IP CM1IP OSCFIF CM2IP CM1IP ADResultRegisterLUT VCFG1 VCFG0 CHS3 CHS3 PCFG7 ⁽¹⁾ PCFG6 ⁽¹⁾ PCFG5 ⁽¹⁾ PCFG4 ADFM ADCAL ACQT2 ACQT1 VBGEN r ⁽²⁾ PCFG12 PXM1 PXM0 DCXB1 DCXB0	GIE/GIEHPEIE/GIELTMROIEINTOIERBIEPMPIF(1)ADIFRC1IFTX1IFSSP1IFPMPIE(1)ADIERC1IETX1IESSP1IEPMPIP(1)ADIPRC1IPTX1IPSSP1IPOSCFIFCM2IFCM1IF—BCL1IFOSCFIECM2IECM1IE—BCL1IFOSCFIPCM2IPCM1IP—BCL1IPOSCFIPCM2IPCM1IP—BCL1IPAD Result Register Hubter-BCL1IPA/D Result Register LubterStressonCHS3CHS3VCFG1VCFG0CHS3CHS3CHS1PCFG7(1)PCFG6(1)PCFG5(1)PCFG4PCFG3ADFMADCALACQT2ACQT1ACQT0VBGENr ⁽²⁾ —PCFG12PCFG11PXM1PXM0DCxB1DCxB0CCPxM3RA7RA6RA5—RA3	GIE/GIEHPEIE/GIELTMROIEINTOIERBIETMROIFPMPIF(1)ADIFRC1IFTX1IFSSP1IFCCP1IFPMPIE(1)ADIERC1IETX1IESSP1IECCP1IEPMPIP(1)ADIERC1IPTX1IPSSP1IECCP1IPOSCFIFCM2IFCM1IF—BCL1IFLVDIFOSCFIECM2IECM1IE—BCL1IELVDIFOSCFIFCM2IPCM1IP—BCL1IPLVDIFOSCFIFCM2IPCM1IP—BCL1IPLVDIFOSCFIFCM2IPCM1IP—BCL1IPLVDIFOSCFIFCM2IPCM1IP—BCL1IPLVDIFOSCFIFCM2IPCM1IP—BCL1IPLVDIFVSCFIFCM2IPCM1IP—BCL1IPLVDIFVCFG1PCFG1PCFG1PCFG1PCFG1PCFG2VCFG1VCFG0CHS3CHS3CHS3CHS1CHS0PCFG7(1)PCFG6(1)PCFG5(1)PCFG4PCFG3PCFG2ADFMADCALACQT2ACQT1ACQT0ADCS2VBGENr(2)—PCFG12PCFG11PCFG10PXM1PXM0DCXB1DCXB0CCPXM3CCPXM2RA7RA6RA5—RA3RA2	GIE/GIEHPEIE/GIELTMROIEINTOIERBIETMROIFINTOIFPMPIF(1)ADIFRC1IFTX1IFSSP1IFCCP1IFTMR2IFPMPIE(1)ADIERC1IETX1IESSP1IECCP1IETMR2IEPMPIP(1)ADIPRC1IPTX1IPSSP1IPCCP1IPTMR2IFOSCFIFCM2IFCM1IF—BCL1IFLVDIFTMR3IFOSCFIFCM2IECM1IE—BCL1IELVDIFTMR3IFOSCFIPCM2IPCM1IP—BCL1IPLVDIPTMR3IFOSCFIPCM2IPCM1IP—BCL1IPLVDIPTMR3IFOSCFIPCM2IPCM1IP—BCL1IPLVDIPTMR3IFOSCFIPCM2IPCM1PPBCL1IPLVDIPTMR3IFOSCFIPCM2IPCM1PPBCL1IPLVDIPTMR3IFOSCFIPCM2IPCM1PPBCL1IPLVDIPTMR3IFOSCFIPCM2IPCM1PPBCL1IPLVDIPTMR3IFOSCFIPCM2IPCM1PPBCL1IPLVDIPTMR3IFOSCFIPCM2IPCM1PPBCL1IPLVDIPTMR3IFOSCFIPCM2IPCM1PPBCL1IPLVDIPTMR3IFOSCFIPCM2IPCM1PPPBCL1IPLVDIPTMR3IFADRSUTRESTERSTMESTMESTMESTMESTMESTMESTMEVEFG1VEFG0CHS3CHS3CHS3CHS3	GIE/GIEHPEIE/GIELTMROIEINTOIERBIETMROIFINTOIFRBIFPMPIF(1)ADIFRC1IFTX1IFSSP1IFCCP1IFTMR2IFTMR1IFPMPIE(1)ADIERC1IETX1IESSP1IECCP1IETMR2IETMR1IEPMPIP(1)ADIPRC1IPTX1IPSSP1IPCCP1IPTMR2IPTMR1IPOSCFIFCM2IFCM1IFBCL1IFLVDIFTMR3IFCCP2IFOSCFIECM2IECM1IEBCL1IELVDIFTMR3IECCP2IPOSCFIFCM2IPCM1IPBCL1IPLVDIPTMR3IPCCP2IPOSCFIFCM2IPCM1IPBCL1IPLVDIPTMR3IFCCP2IPOSCFIFCM2IPCM1IPBCL1IPLVDIPTMR3IPCCP2IPA/D ResutFegister LibretBCL1IPLVDIPTMR3IPCCP2IPA/D ResutFegister LibretBCL1IPLVDIPTMR3IPCCP2IPA/D ResutFegister LibretBCL1IPLVDIPTMR3IPCCP2IPA/D ResutFegister LibretBCL1IPLVDIPTMR3IPCCP2IPA/D ResutFegister LibretBCL1IPLVDIPTMR3IPCCP2IPA/D ResutFegister LibretBCL1IPLVDIPTMR3IPCCP2IPVCFG1VCFG0CHS3CHS3CHS3CHS1ADOSADOSPCFG1 ¹¹ PCFG6 ¹¹ PCFG6 ¹¹ PCF


TABLE 21-2: SUMMARY OF A/D REGISTERS

Legend: — = unimplemented, read as '0'. Shaded cells are not used for A/D conversion.

Note 1: These bits are only available on 44-pin devices.

2: Reserved. Always maintain as '0' for minimum power consumption.

FIGURE 22-4: COMPARATOR CONFIGURATIONS

22.7 Comparator Operation During Sleep

When a comparator is active and the device is placed in Sleep mode, the comparator remains active and the interrupt is functional if enabled. This interrupt will wake-up the device from Sleep mode when enabled. Each operational comparator will consume additional current. To minimize power consumption while in Sleep mode, turn off the comparators (CON = 0) before entering Sleep. If the device wakes up from Sleep, the contents of the CMxCON register are not affected.

22.8 Effects of a Reset

A device Reset forces the CMxCON registers to their Reset state. This forces both comparators and the voltage reference to the OFF state.

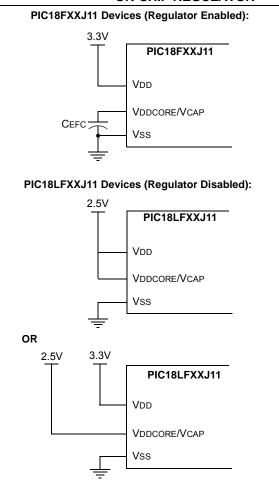

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	69
PIR2	OSCFIF	CM2IF	CM1IF		BCL1IF	LVDIF	TMR3IF	CCP2IF	72
PIE2	OSCFIE	CM2IE	CM1IE	_	BCL1IE	LVDIE	TMR3IE	CCP2IE	72
IPR2	OSCFIP	CM2IP	CM1IP	_	BCL1IP	LVDIP	TMR3IP	CCP2IP	72
CMxCON	CON	COE	CPOL	EVPOL1	EVPOL0	CREF	CCH1	CCH0	70
CVRCON	CVREN	CVROE	CVRR	CVRSS	CVR3	CVR2	CVR1	CVR0	74
CMSTAT	_	_	_	_		_	COUT2	COUT1	73
ANCON0	PCFG7 ⁽¹⁾	PCFG6 ⁽¹⁾	PCFG5 ⁽¹⁾	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0	74
PORTA	RA7	RA6	RA5	_	RA3	RA2	RA1	RA0	72
TRISA	TRISA7	TRISA6	TRISA5	_	TRISA3	TRISA2	TRISA1	TRISA0	72

 TABLE 22-3:
 REGISTERS ASSOCIATED WITH COMPARATOR MODULE

Legend: — = unimplemented, read as '0', r = reserved. Shaded cells are not related to comparator operation.

Note 1: These bits and/or registers are not implemented on 28-pin devices.

FIGURE 26-2: CONNECTIONS FOR THE ON-CHIP REGULATOR

26.3.2 ON-CHIP REGULATOR AND BOR

When the on-chip regulator is enabled, PIC18F46J11 family devices also have a simple brown-out capability. If the voltage supplied to the regulator is inadequate to maintain a minimum output level; the regulator Reset circuitry will generate a Brown-out Reset (BOR). This event is captured by the BOR flag bit (RCON<0>).

The operation of the BOR is described in more detail in Section 5.4 "Brown-out Reset (BOR)" and Section 5.4.1 "Detecting BOR". The brown-out voltage levels are specific in Section 29.1 "DC Characteristics: Supply Voltage PIC18F46J11 Family (Industrial)".

26.3.3 POWER-UP REQUIREMENTS

The on-chip regulator is designed to meet the power-up requirements for the device. If the application does not use the regulator, then strict power-up conditions must be adhered to. While powering up, VDDCORE should not exceed VDD by 0.3 volts.

26.3.4 OPERATION IN SLEEP MODE

When enabled, the on-chip regulator always consumes a small incremental amount of current over IDD. This includes when the device is in Sleep mode, even though the core digital logic does not require much power. To provide additional savings in applications where power resources are critical, the regulator can be configured to automatically enter a lower quiescent draw standby mode whenever the device goes into Sleep mode. This feature is controlled by the REGSLP bit (WDTCON<7>, Register 26-11). If this bit is set upon entry into Sleep mode, the regulator will transition into a lower power state. In this state, the regulator still provides a regulated output voltage necessary to maintain SRAM state information, but consumes less quiescent current.

Substantial Sleep mode power savings can be obtained by setting the REGSLP bit, but device wake-up time will increase in order to insure the regulator has enough time to stabilize.

BTG		Bit Toggle f		BOV		Branch if (Branch if Overflow				
Synta	x:	BTG f, b {,a	}		Synta	Syntax: BOV		OV n			
Opera	ands:	$0 \leq f \leq 255$			Oper	Operands: Operation:		127			
		0 ≤ b < 7 a ∈ [0,1]			Oper			if Overflow bit is '1', (PC) + 2 + 2n \rightarrow PC			
Opera	ation:	$(\overline{f} < b >) \to f <$	b>		Statu	Status Affected: None					
Status	s Affected:	None			Enco	ding:	1110 0100 nnnn		inn nnnn		
Enco	ding:	0111	bbba ff	ff ffff	Desc	ription:	If the Overf	low bit is '1',	then the		
Descr	ription:	Bit 'b' in dat inverted.	a memory loc	ation 'f' is			program wi		nah an (Qua' ia		
	If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default).				The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be						
				ed instruction				PC + 2 + 2n. This instruction is then a two-cycle instruction.			
	set is enabled, this instruction operates in Indexed Literal Offset Addressing		Word	Words:		1					
			ever f ≤ 95 (5 .2.3 "Byte-O r	,	Cycle	Cycles:					
		Bit-Oriente	•	is in Indexed	Q C If Ju	ycle Activity: mp:					
Word	s:	1				Q1	Q2	Q3	Q4		
Cycle	s:	1				Decode	Read literal 'n'	Process Data	Write to PC		
Q Cy	cle Activity:					No	No	No	No		
F	Q1	Q2	Q3	Q4		operation	operation	operation	operation		
	Decode	Read	Process	Write	lf No	o Jump:					
L		register 'f'	Data	register 'f'		Q1	Q2	Q3	Q4		
<u>Exam</u>	ple:	BTG L	ATC, 4,	0		Decode	Read literal 'n'	Process Data	No operation		
	Before Instruc LATC	= 0111 (0101 [75h]		<u>Exan</u>	<u>iple:</u>	HERE	BOV Jum	р		
I	After Instruction: LATC = 0110 0101 [65h]			Before Instruc PC After Instructio	= ad	dress (HER	Ε)				
						If Overflo PC If Overflo PC	= ad ow = 0;	dress (Jum)	- /		

BZ	Branch if Z	Branch if Zero					
Syntax:	BZ n						
Operands:	-128 ≤ n ≤ 1	127					
Operation:	if Zero bit is (PC) + 2 + 2	,	;				
Status Affected:	None						
Encoding:	1110	0000	nnnn	nnnn			
Description:	If the Zero I will branch.	pit is '1', f	then the p	orogram			
	The 2's con added to th have incren instruction, PC + 2 + 2r two-cycle in	e PC. Sin mented to the new n. This in	nce the P o fetch the address o struction	C will e next will be			
Words:	1						
Cycles:	1(2)	1(2)					
Q Cycle Activity: If Jump:							
Q1	Q2	Q3		Q4			
Decode	Read literal 'n'	Proce Data		Vrite to PC			
No operation	No operation	No operat		No peration			
If No Jump:							
Q1	Q2	Q3	-	Q4			
Decode	Read literal 'n'	Proce Data		No peration			
Example:	HERE	BZ	Jump				
Before Instruct	Before Instruction PC = address (HERE) After Instruction						
10	uu	aress (1	HERE)				

Syntax:		Subroutir	ne Call		
Synax.		CALL k {	,s}		
Operand	3:	$0 \le k \le 10$ s $\in [0,1]$	48575		
Operation	1:	$\begin{array}{l} (PC) + 4 - \\ k \rightarrow PC < 2 \\ \text{if s = 1,} \\ (W) \rightarrow WS \\ (STATUS) \\ (BSR) \rightarrow I \end{array}$	20:1>; 6, → STATU	JSS,	
Status Af	fected:	None			
Encoding 1st word 2nd word	•	1110 1111	110s k ₁₉ kkk	k ₇ kkl kkkk	0
		memory ra (PC + 4) is stack. If 's BSR registers a respective STATUSS update oc 20-bit valu PC<20:1> instruction	s pushed are also pu are also pu and BSR curs (defa ie 'k' is loa . CALL is	onto the W, STA ushed in register S. If 's' ault). Th aded inf	e return TUS and nto their s, WS, = 0, no ien, the to
Words:		2	•		
Cycles:		2			
Q Cycle	Activity:	-			
Q Oyolo	Q1	Q2	Q3	3	Q4
		Read literal	Push P		Read literal
D	ecode	'k'<7:0>,	stac	k	'k'<19:8>,
	No beration			k ۱	
	No peration	ʻk'<7:0>, No	stac	k ۱	'k'<19:8>, Nrite to PC No operation

POP		Рор Тор о	f Return	Stack	
Synta	ax:	POP			
Oper	ands:	None			
Oper	ation:	$(TOS) \rightarrow b$	it bucket		
Statu	is Affected:	None			
Enco	oding:	0000	0000	000	0 0110
Desc	ription:	stack and i then becor was pushe This instru- the user to	s discard nes the p d onto th ction is p properly	led. Th previou le retur rovideo manag	ff the return e TOS value s value that n stack. d to enable ge the return ware stack.
Word	ds:	1			
Cycle	es:	1			
QC	ycle Activity:				
	Q1	Q2	Q	3	Q4
	Decode	No	POP 1		No
		operation	valu	ie	operation
<u>Exan</u>	nple:	POP GOTO	NEW		
Before Instructio TOS Stack (1 lev		tion level down)		0031A2 014332	
	After Instructio TOS PC	n		014332 NEW	2h

PUSH	4	Push Top o	of Ret	urn Stac	:k
Synta	IX:	PUSH			
Opera	ands:	None			
Opera	ation:	$(PC + 2) \rightarrow$	TOS		
Status	s Affected:	None			
Enco	ding:	0000	0000	000	0 0101
Desci	ription:		tack. 1 shed d tion al ack by	The prev own on t lows imp modifyir	ious TOS the stack. plementing a ng TOS and
Word	s:	1			
Cycle	s:	1			
QCy	cle Activity:				
-	Q1	Q2	(23	Q4
	Decode	PUSH PC + 2 onto return stack	•	No ration	No operation
Exam	iple:	PUSH			
<u>Exam</u> I	i <u>ple:</u> Before Instruc TOS PC		= =	345Ah 0124h	

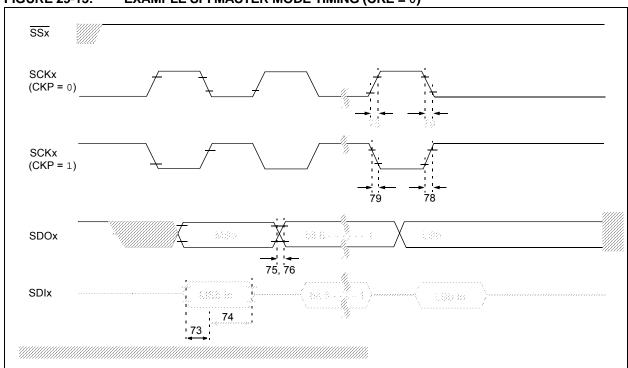
Subtract Literal from FSR2 and Return

SUBULNK

SUB	FSR	Subtract	Subtract Literal from FSR					
Synta	ax:	SUBFSR	SUBFSR f, k					
Oper	ands:	$0 \le k \le 63$	3					
		$f \in [0, 1,$	2]					
Oper	ation:	FSRf – k	\rightarrow FSRf					
Statu	s Affected:	None						
Enco	ding:	1110	1001	ffkk	kkkk			
Desc	ription:	The 6-bit the conte by 'f'.						
Word	ls:	1	1					
Cycle	es:	1						
QC	ycle Activity:							
Q1		Q2	Q3		Q4			
	Decode	Read	Proce	ss \	Vrite to			
		register 'f'	Data	a de	stination			

SUBFSR 2, 0x23

Synta	Syntax: SUBULNK k						
Oper	ands:	$0 \le k \le 63$					
Oper	ation:	FSR2 – k -	→ FSR2,				
		$(TOS) \rightarrow P$	С				
Statu	s Affected:	None					
Enco	ding:	1110	1001	11kk	kkkk		
Desc		The 6-bit literal 'k' is subtracted from the contents of the FSR2. A RETURN is then executed by loading the PC with the TOS.					
		The instruction takes two cycles to execute; a NOP is performed during the second cycle.					
		This may be thought of as a special case of the SUBFSR instruction, where f = 3 (binary '11'); it operates only on FSR2.					
Word	ls:	1					
Cycle	es:	2					
QC	ycle Activity:						
	Q1	Q2	(23	Q4		
	Decode	Read register '		cess ata	Write to destination		
	No	No	١	10	No		
Operation		Operation Operation Operation					


Example:	SUBULNK	0x23					
Before Instruction							
	00000						

-	USELI							
=	0100h							
After Instruction								
=	03DCh							
=	(TOS)							
	ion =							

Before Instruction FSR2 = 03FFh After Instruction

Example:

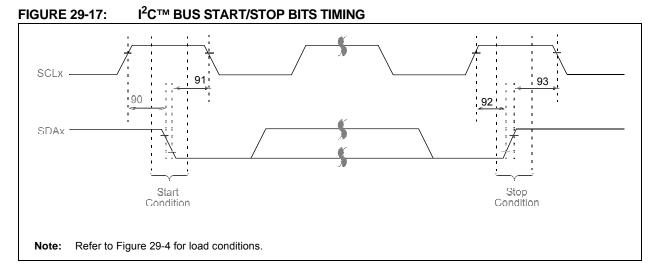

FSR2 = 03DCh

FIGURE 29-13: EXAMPLE SPI MASTER MODE TIMING (CKE = 0)

TABLE 29-20:	EXAMPLE SPI MODE REQUIREMENTS	(MASTER MODE, CKE = 0)
--------------	--------------------------------------	------------------------

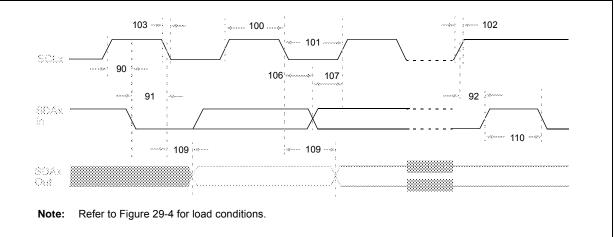

Param No.	Symbol	Characteristic	Min	Max	Units	Conditions
73	TDIV2scH,	Setup Time of SDIx Data Input to SCKx Edge	35	—	ns	VDD = 3.3V,
	TDIV2SCL		100	_	ns	VDDCORE = 2.5V VDD = 2.15V, VDDCORE = 2.15V
74	TSCH2DIL,	Hold Time of SDIx Data Input to SCKx Edge	30		ns	$V_{DD} = 3.3V,$
	TscL2DIL		83	_	ns	VDDCORE = 2.5V VDD = 2.15V
75	TDOR	SDOx Data Output Rise Time	_	25	ns	PORTB or PORTC
76	TDOF	SDOx Data Output Fall Time	_	25	ns	PORTB or PORTC
78	TscR	SCKx Output Rise Time (Master mode)	_	25	ns	PORTB or PORTC
79	TscF	SCKx Output Fall Time (Master mode)	_	25	ns	PORTB or PORTC

TABLE 29-24: I²C[™] BUS START/STOP BITS REQUIREMENTS (SLAVE MODE)

Param. No.	Symbol	Characte	ristic	Min	Max	Units	Conditions	
90	TSU:STA	Start Condition	100 kHz mode	4700	_	ns	Only relevant for Repeated	
		Setup Time	400 kHz mode	600	_		Start condition	
91	THD:STA	Start Condition	100 kHz mode	4000	_	ns	After this period, the first	
		Hold Time	400 kHz mode	600	_		clock pulse is generated	
92	Tsu:sto	Stop Condition	100 kHz mode	4700	—	ns		
		Setup Time	400 kHz mode	600	_			
93	THD:STO	Stop Condition	100 kHz mode	4000	_	ns		
		Hold Time	400 kHz mode	600				

FIGURE 29-18: I²C[™] BUS DATA TIMING

