

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

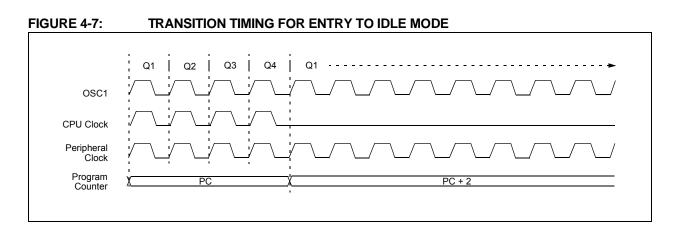
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

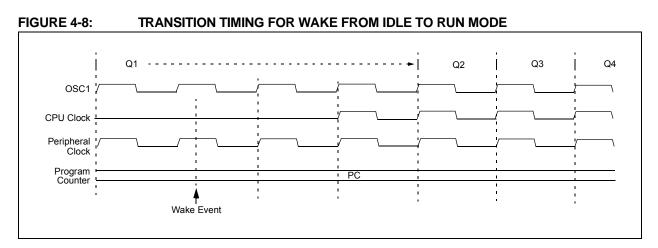
Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	2.15V ~ 3.6V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f25j11t-i-so


Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	Pin Nu	umber				
Pin Name	28-SPDIP/ SSOP/ SOIC	28-QFN	Pin Type	Buffer Type	Description	
MCLR	1	26	I	ST	Master Clear (Reset) input. This pin is an active-low Reset to the device.	
OSC1/CLKI/RA7 OSC1	9	6	I	ST	Oscillator crystal input or external clock source input. ST buffer when configured in RC mode; CMOS otherwise. Main oscillator input connection.	
			1	CMOS	External clock source input; always associated with pin function OSC1 (see related OSC1/CLKI pins).	
RA7 ⁽¹⁾ OSC2/CLKO/RA6	10	7	I/O	TTL	Digital I/O. Oscillator crystal or clock output.	
OSC2			0	—	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode.	
CLKO			0	_	Main oscillator feedback output connection. In RC mode, OSC2 pin outputs CLKO, which has 1/4 the frequency of OSC1 and denotes the instruction cycle rate.	
RA6 ⁽¹⁾			I/O	TTL	Digital I/O.	
Legend: TTL = TTL compatible input CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels Analog = Analog input I = Input O = Output P = Power OD = Open-Drain (no P diode to VDD) DIG = Digital output O = Open-Drain (no P diode to VDD)						

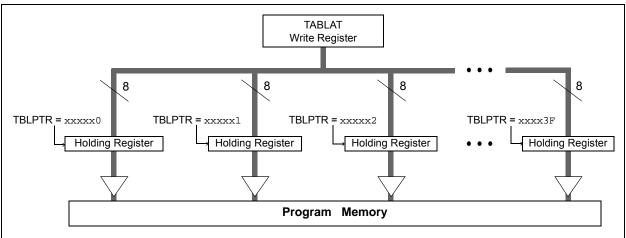
TABLE 1-3:PIC18F2XJ11 PINOUT I/O DESCRIPTIONS

Note 1: RA7 and RA6 will be disabled if OSC1 and OSC2 are used for the clock function.

7.5 Writing to Flash Program Memory

The programming block is 32 words or 64 bytes. Programming one word or 2 bytes at a time is also supported.

Table writes are used internally to load the holding registers needed to program the Flash memory. There are 64 holding registers used by the table writes for programming.


Since the Table Latch (TABLAT) is only a single byte, the TBLWT instruction may need to be executed 64 times for each programming operation (if WPROG = 0). All of the table write operations will essentially be short writes because only the holding registers are written. At the end of updating the 64 holding registers, the EECON1 register must be written to in order to start the programming operation with a long write.

The long write is necessary for programming the internal Flash. Instruction execution is halted while in a long write cycle. The long write will be terminated by the internal programming timer.

The on-chip timer controls the write time. The write/erase voltages are generated by an on-chip charge pump, rated to operate over the voltage range of the device.

- Note 1: Unlike previous PIC[®] devices, devices of the PIC18F46J11 family do not reset the holding registers after a write occurs. The holding registers must be cleared or overwritten before a programming sequence.
 - 2: To maintain the endurance of the program memory cells, each Flash byte should not be programmed more than once between erase operations. Before attempting to modify the contents of the target cell a second time, an erase of the target page, or a bulk erase of the entire memory, must be performed.

7.5.1 FLASH PROGRAM MEMORY WRITE SEQUENCE

The sequence of events for programming an internal program memory location should be:

- 1. Read 1024 bytes into RAM.
- 2. Update data values in RAM as necessary.
- 3. Load Table Pointer register with address being erased.
- 4. Execute the erase procedure.
- 5. Load Table Pointer register with address of first byte being written, minus 1.
- 6. Write the 64 bytes into the holding registers with auto-increment.
- Set the WREN bit (EECON1<2>) to enable byte writes.

- 8. Disable interrupts.
- 9. Write 55h to EECON2.
- 10. Write 0AAh to EECON2.
- 11. Set the WR bit. This will begin the write cycle.
- 12. The CPU will stall for the duration of the write for TIW (see parameter D133A).
- 13. Re-enable interrupts.
- 14. Repeat steps 6 through 13 until all 1024 bytes are written to program memory.
- 15. Verify the memory (table read).

An example of the required code is provided in Example 7-3 on the following page.

Note: Before setting the WR bit, the Table Pointer address needs to be within the intended address range of the 64 bytes in the holding register.

REGISTER 9-3: INTCON3: INTERRUPT CONTROL REGISTER 3 (ACCESS FF0h)

R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
INT2IP	INT1IP	INT3IE	INT2IE	INT1IE	INT3IF	INT2IF	INT1IF
bit 7							bit (
Legend:							
R = Reada	ıble bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown
bit 7	1 = High prio	•	upt Priority bit				
bit 6	0 = Low prior INT1IP: INT1 1 = High prior 0 = Low prior	External Interr	upt Priority bit				
bit 5	INT3IE: INT3 1 = Enables	External Interr the INT3 extern the INT3 extern	nal interrupt				
bit 4	1 = Enables	External Interr the INT2 extern the INT2 exter	nal interrupt				
bit 3	1 = Enables	External Interr the INT1 extern the INT1 exter	nal interrupt				
bit 2	1 = The INT3	External Interr external interr external interr	upt occurred (must be cleared	d in software)		
bit 1	1 = The INT2	External Interr external interr external interr	upt occurred (must be cleared	d in software)		
bit 0	1 = The INT1	External Interr external interr external interr	rupt occurred (must be cleared cur	d in software)		
	Interrupt flag bits enable bit or the 0 are clear prior to	Global Interrupt	Enable bit. Us	ser software sho	ould ensure the	e appropriate int	

Pin	Function	TRIS Setting	I/O	I/O Type	Description	
RC0/T1OSO/	RC0	1	I	ST	PORTC<0> data input.	
T1CKI/RP11		0	0 O DIG LATC<0> data output.		LATC<0> data output.	
	T10S0	x	0	ANA	Timer1 oscillator output; enabled when Timer1 oscillator enabled. Disables digital I/O.	
	T1CKI	1	Ι	ST	Timer1 counter input.	
	RP11	1	Ι	ST	Remappable peripheral pin 11 input.	
		0	0	DIG	Remappable peripheral pin 11 output.	
RC1/T1OSI/	RC1	1	Ι	ST	PORTC<1> data input.	
RP12		0	0	DIG	LATC<1> data output.	
	T10SI	x	I	ANA	Timer1 oscillator input; enabled when Timer1 oscillator enabled. Disables digital I/O.	
	RP12	1	Ι	ST	Remappable peripheral pin 12 input.	
		0	0	DIG	Remappable peripheral pin 12 output.	
RC2/AN11/	RC2	1	Ι	ST	PORTC<2> data input.	
CTPLS/RP13		0	0	DIG	LATC<2> data output.	
_	AN11	1	Ι	ANA	A/D input channel 11.	
	CTPLS	0	0	DIG		
	RP13	1	Ι	ST	Remappable peripheral pin 13 input.	
		0	0	DIG	Remappable peripheral pin 13 output.	
RC3/SCK1/	RC3	1	Ι	ST	PORTC<3> data input.	
SCL1/RP14		0	0	DIG	LATC<3> data output.	
	SCK1	1	Ι	ST	SPI clock input (MSSP1 module).	
		0	0	DIG	SPI clock output (MSSP1 module).	
	SCL1	1	I	I ² C/ SMBus	I ² C™ clock input (MSSP1 module).	
		0	0	DIG	I ² C clock output (MSSP1 module).	
	RP14	1	Ι	ST	Remappable peripheral pin 14 input.	
		0	0	DIG	Remappable peripheral pin 14 output.	
RC4/SDI1/	RC4	1	Ι	ST	PORTC<4> data input.	
SDA1/RP15		0	0	DIG	LATC<4> data output.	
	SDI1	1	Ι	ST	SPI data input (MSSP1 module).	
	SDA1	1	I	l ² C/ SMBus	I ² C data input (MSSP1 module).	
		0	0	DIG	I ² C/SMBus.	
	RP15	1	Ι	ST	Remappable peripheral pin 15 input.	
		0	0	DIG	Remappable peripheral pin 15 output.	

TABLE 10-7: PORTC I/O SUMMARY

Legend: DIG = Digital level output; TTL = TTL input buffer; ST = Schmitt Trigger input buffer; ANA = Analog level input/output; I²C/SMB = I²C/SMBus input buffer; x = Don't care (TRIS bit does not affect port direction or is overridden for this option)

Note 1: This bit is only available on 44-pin devices.

REGISTER 10-6:	RPINR1: PERIPHERAL	PIN SELECT INPUT	REGISTER 1	(BANKED EE7h)
----------------	---------------------------	-------------------------	-------------------	---------------

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—	INTR1R4	INTR1R3	INTR1R2	INTR1R1	INTR1R0
bit 7							bit 0

Legend:	R/W = Readable, Writable	R/\overline{W} = Readable, Writable if IOLOCK = 0					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 7-5 Unimplemented: Read as '0'

bit 4-0 INTR1R<4:0>: Assign External Interrupt 1 (INT1) to the Corresponding RPn Pin bits

REGISTER 10-7: RPINR2: PERIPHERAL PIN SELECT INPUT REGISTER 2 (BANKED EE8h)

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—	INTR2R4	INTR2R3	INTR2R2	INTR2R1	INTR2R0
bit 7							bit 0

Legend:	R/W = Readable, Writable	R/W = Readable, Writable if IOLOCK = 0					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 7-5 Unimplemented: Read as '0'

bit 4-0 INTR2R<4:0>: Assign External Interrupt 2 (INT2) to the Corresponding RPn pin bits

REGISTER 10-8: RPINR3: PERIPHERAL PIN SELECT INPUT REGISTER 3 (BANKED EE9h)

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—	INTR3R4	INTR3R3	INTR3R2	INTR3R1	INTR3R0
bit 7							bit 0

Legend:	R/\overline{W} = Readable, Writable i	R/\overline{W} = Readable, Writable if IOLOCK = 0					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 7-5 Unimplemented: Read as '0'

bit 4-0 INTR3R<4:0>: Assign External Interrupt 3 (INT3) to the Corresponding RPn Pin bits

REGISTER 10-21: RPOR0: PERIPHERAL PIN SELECT OUTPUT REGISTER 0 (BANKED EC6h)⁽¹⁾

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_		RP0R4	RP0R3	RP0R2	RP0R1	RP0R0
bit 7							bit 0

Legend:	R/\overline{W} = Readable, Writable if IOLOCK = 0				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP0R<4:0>:** Peripheral Output Function is Assigned to RP0 Output Pin bits (see Table 10-14 for peripheral function numbers)

Note 1: Register values can be changed only if PPSCON<IOLOCK> = 0.

REGISTER 10-22: RPOR1: PERIPHERAL PIN SELECT OUTPUT REGISTER 1 (BANKED EC7h)

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	RP1R4	RP1R3	RP1R2	RP1R1	RP1R0
bit 7							bit 0

Legend:	R/\overline{W} = Readable, Writable if IOLOCK = 0				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP1R<4:0>:** Peripheral Output Function is Assigned to RP1 Output Pin bits (see Table 10-14 for peripheral function numbers)

REGISTER 10-23: RPOR2: PERIPHERAL PIN SELECT OUTPUT REGISTER 2 (BANKED EC8h)

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_		RP2R4	RP2R3	RP2R2	RP2R1	RP2R0
bit 7							bit 0

Legend:	R/\overline{W} = Readable, Writable if IOLOCK = 0				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 7-5 Unimplemented: Read as '0'

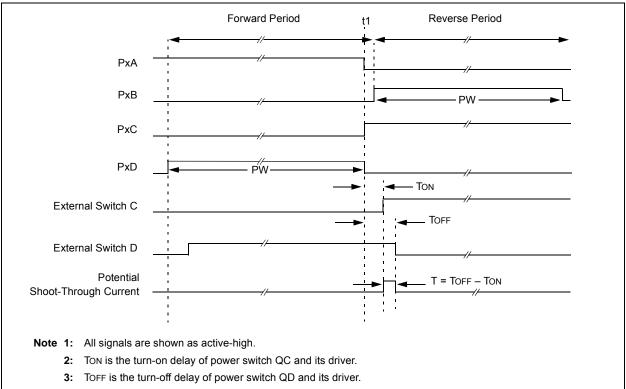
bit 4-0 **RP2R<4:0>:** Peripheral Output Function is Assigned to RP2 Output Pin bits (see Table 10-14 for peripheral function numbers)

REGISTER 11-5: PMEH: PARALLEL PORT ENABLE REGISTER HIGH BYTE (BANKED F57h)⁽¹⁾

U-0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	
_	PTEN14	—		—	—	_	—	
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable b		oit	U = Unimplemented bit, read as '0'					
-n = Value a	it POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		
bit 7	Unimpleme	nted: Read as '0	,					
bit 6	PTEN14: PN	ICS Port Enable	bit					
	1 = PMCS chip select line							
	0 = PMCS f	unctions as port l	I/O					
bit 5-0	Unimpleme	nted: Read as '0	,					

Note 1: This register is only available in 44-pin devices.

REGISTER 11-6: PMEL: PARALLEL PORT ENABLE REGISTER LOW BYTE (BANKED F56h)⁽¹⁾


| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| PTEN7 | PTEN6 | PTEN5 | PTEN4 | PTEN3 | PTEN2 | PTEN1 | PTEN0 |
| bit 7 | | | | | | | bit 0 |

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 7-2	PTEN<7:2>: PMP Address Port Enable bits
	1 = PMA<7:2> function as PMP address lines
	0 = PMA<7:2> function as port I/O
bit 1-0	PTEN<1:0>: PMALH/PMALL Strobe Enable bits
	 1 = PMA<1:0> function as either PMA<1:0> or PMALH and PMALL 0 = PMA<1:0> pads functions as port I/O

Note 1: This register is only available in 44-pin devices.

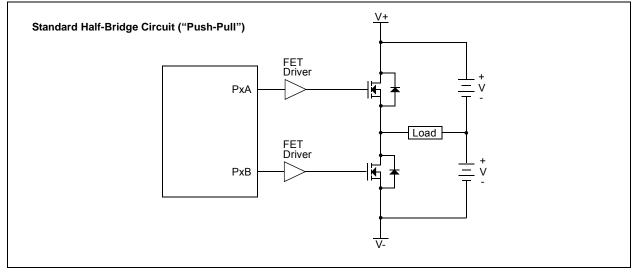
18.5.3 START-UP CONSIDERATIONS

When any PWM mode is used, the application hardware must use the proper external pull-up and/or pull-down resistors on the PWM output pins.

Note:	When the microcontroller is released from						
	Reset, all of the I/O pins are in the						
	high-impedance state. The external						
	circuits must keep the power switch						
	devices in the OFF state until the micro-						
	controller drives the I/O pins with the						
	proper signal levels or activates the PWM						
	output(s).						

The CCPxM<1:0> bits of the CCPxCON register allow the user to choose whether the PWM output signals are active-high or active-low for each pair of PWM output pins (PxA/PxC and PxB/PxD). The PWM output polarities must be selected before the PWM pin output drivers are enabled. Changing the polarity configuration while the PWM pin output drivers are enabled is not recommended since it may result in damage to the application circuits.

The PxA, PxB, PxC and PxD output latches may not be in the proper states when the PWM module is initialized. Enabling the PWM pin output drivers at the same time as the Enhanced PWM modes may cause damage to the application circuit. The Enhanced PWM modes must be enabled in the proper Output mode and complete a full PWM cycle before enabling the PWM pin output drivers. The completion of a full PWM cycle is indicated by the TMR2IF or TMR4IF bit of the PIR1 or PIR3 register being set as the second PWM period begins.


18.5.6 PROGRAMMABLE DEAD-BAND DELAY MODE

In half-bridge applications, where all power switches are modulated at the PWM frequency, the power switches normally require more time to turn off than to turn on. If both the upper and lower power switches are switched at the same time (one turned on and the other turned off), both switches may be on for a short period until one switch completely turns off. During this brief interval, a very high current (shoot-through current) will flow through both power switches, shorting the bridge supply. To avoid this potentially destructive shoot-through current from flowing during switching, turning on either of the power switches is normally delayed to allow the other switch to completely turn off.

In Half-Bridge mode, a digitally programmable dead-band delay is available to avoid shoot-through current from destroying the bridge power switches. The delay occurs at the signal transition from the non-active state to the active state. See Figure 18-16 for illustration. The lower seven bits of the associated ECCPxDEL register (Register 18-3) sets the delay period in terms of microcontroller instruction cycles (TcY or 4 Tosc).

EXAMPLE OF FIGURE 18-16: HALF-BRIDGE PWM OUTPUT Period Period Pulse Width PxA(2) td I PxB(2) (1) ·(1) (1) td = Dead-Band Delay Note 1: At this time, the TMR2 register is equal to the PR2 register. 2: Output signals are shown as active-high.

FIGURE 18-17: EXAMPLE OF HALF-BRIDGE APPLICATIONS

19.2 Control Registers

Each MSSP module has three associated control registers. These include a status register (SSPxSTAT) and two control registers (SSPxCON1 and SSPxCON2). The use of these registers and their individual Configuration bits differ significantly depending on whether the MSSP module is operated in SPI or I²C mode.

Additional details are provided under the individual sections.

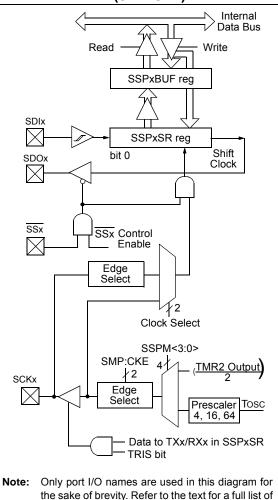
Note: In devices with more than one MSSP module, it is very important to pay close attention to the SSPxCON register names. SSP1CON1 and SSP1CON2 control different operational aspects of the same module, while SSP1CON1 and SSP2CON1 control the same features for two different modules.

19.3 SPI Mode

The SPI mode allows 8 bits of data to be synchronously transmitted and received simultaneously. All four modes of SPI are supported.

When MSSP2 is used in SPI mode, it can optionally be configured to work with the SPI DMA submodule described in **Section 19.4 "SPI DMA Module"**.

To accomplish communication, typically three pins are used:


- Serial Data Out (SDOx) RC5/SDO1/RP16 or SDO2/Remappable
- Serial Data In (SDIx) RC4/SDI1/SDA1/RP15 or SDI2/Remappable
- Serial Clock (SCKx) RC3/SCK1/SCL1/RP14 or SCK2/Remappable

Additionally, a fourth pin may be used when in a Slave mode of operation:

 Slave Select (SSx) – RA5/AN4/SS1/ HLVDIN/RP2 or SS2/Remappable

Figure 19-1 depicts the block diagram of the MSSP module when operating in SPI mode.

FIGURE 19-1: MSSPx BLOCK DIAGRAM (SPI MODE)

multiplexed functions.

19.3.1 REGISTERS

Each MSSP module has four registers for SPI mode operation. These are:

- MSSPx Control Register 1 (SSPxCON1)
- MSSPx Status Register (SSPxSTAT)
- Serial Receive/Transmit Buffer Register (SSPxBUF)
- MSSPx Shift Register (SSPxSR) Not directly accessible

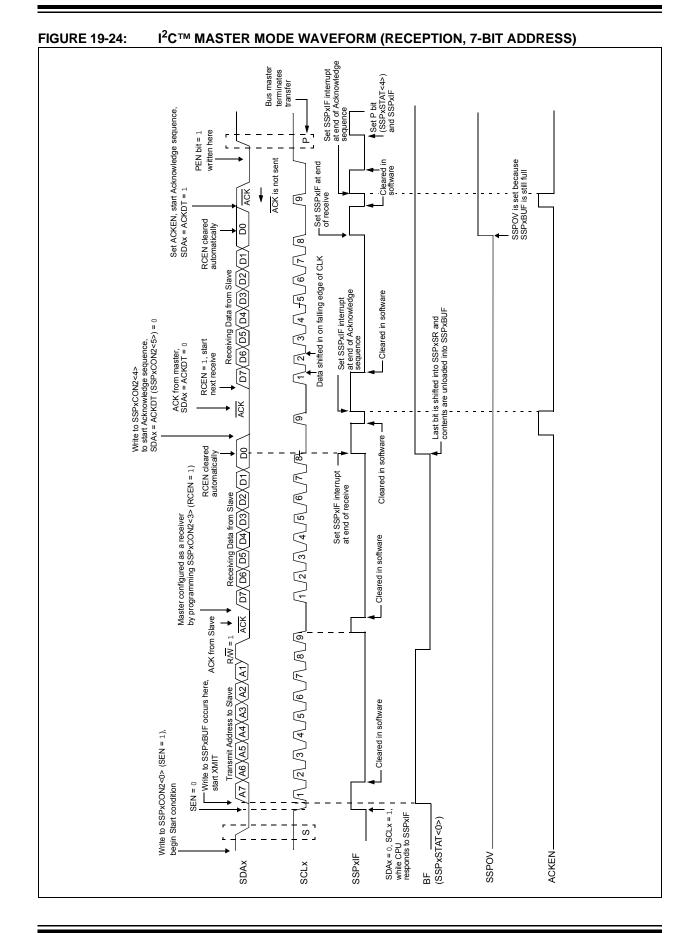
SSPxCON1 and SSPxSTAT are the control and status registers in SPI mode operation. The SSPxCON1 register is readable and writable. The lower six bits of the SSPxSTAT are read-only. The upper two bits of the SSPxSTAT are read/write.

SSPxSR is the shift register used for shifting data in or out. SSPxBUF is the buffer register to which data bytes are written to or read from.

In receive operations, SSPxSR and SSPxBUF together create a double-buffered receiver. When SSPxSR receives a complete byte, it is transferred to SSPxBUF and the SSPxIF interrupt is set.

transmission, the SSPxBUF During is not double-buffered. A write to SSPxBUF will write to both SSPxBUF and SSPxSR.

Because the SSPxBUF register is dou-Note: ble-buffered, using read-modify-write instructions such as BCF, COMF, etc., will not work. Similarly, when debugging under an in-circuit debugger, performing actions that cause reads of SSPxBUF (mouse hovering, watch, etc.) can consume data that the application code was expecting to receive.


REGISTER 19-1:	SSPxSTAT: MSSPx STATUS REGISTER – SPI MODE (ACCESS FC7h/F73h)	
----------------	---	--

R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0
SMP	CKE ⁽¹⁾	D/A	Р	S	R/W	UA	BF
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	SMP: Sample bit
	SPI Master mode:
	1 = Input data sampled at end of data output time
	0 = Input data sampled at middle of data output time
	SPI Slave mode:
	SMP must be cleared when SPI is used in Slave mode.
bit 6	CKE: SPI Clock Select bit ⁽¹⁾
	1 = Transmit occurs on transition from active to Idle clock state
	0 = Transmit occurs on transition from Idle to active clock state
bit 5	D/A: Data/Address bit
	Used in I ² C™ mode only.
bit 4	P: Stop bit
	Used in I ² C mode only; this bit is cleared when the MSSP module is disabled, SSPEN is cleared.
bit 3	S: Start bit
	Used in I ² C mode only.
bit 2	R/W: Read/Write Information bit
	Used in I ² C mode only.
bit 1	UA: Update Address bit
	Used in I ² C mode only.
bit 0	BF: Buffer Full Status bit
	1 = Receive complete, SSPxBUF is full
	0 = Receive not complete, SSPxBUF is empty
Note 1:	Polarity of clock state is set by the CKP bit (SSPxCON1<4>).

olarity of clock state is set by the CKP bit (SSPxCON1<4>).

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-x
SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D
oit 7							bit
Legend:							
R = Readabl	le bit	W = Writable I	oit	U = Unimplem	ented bit, read	l as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
bit 7	SPEN: Serial	Port Enable bit	:				
	1 = Serial po	rt enabled					
	0 = Serial po	rt disabled (hel	d in Reset)				
bit 6		eceive Enable b	it				
		bit receptionbit reception					
bit 5	SREN: Single	e Receive Enab	le bit				
	<u>Asynchronou</u> Don't care.	<u>s mode</u> :					
		mode – Master					
	0 = Disables	single receive single receive ared after recep	ntion is comple	ate			
		mode – Slave:					
bit 4	CREN: Conti	nuous Receive	Enable bit				
	<u>Asynchronou</u> 1 = Enables						
	0 = Disables	receiver					
	Synchronous						
		continuous rece continuous rec		le bit, CREN, is	cleared (CREN	N overrides SR	EN)
bit 3	ADDEN: Add	ress Detect Ena	able bit				
		<u>s mode 9-Bit (R</u>			la tha maasiya k		
	0 = Disables	address detect	ion, all bytes a	nterrupt and load are received and			
	<u>Asynchronou</u> Don't care.	<u>s mode 8-Bit (R</u>	<u>X9 = 0)</u> :				
bit 2	FERR: Frami	ng Error bit					
	1 = Framing 0 = No frami		eared by read	ling RCREGx re	gister and rece	eiving next valio	d byte)
bit 1	OERR: Over	un Error bit					
		rror is cleared.	leared by clea	aring bit CREN).	UART reception	on will be disca	arded until th
bit 0		of Received Da	ata				

		SYNC = 0, BRGH = 0, BRG16 = 1										
BAUD RATE	Fosc	= 40.000) MHz	Fosc	= 20.000) MHz	Fosc	= 10.000) MHz	Fosc = 8.000 MHz		
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)
0.3	0.300	0.00	8332	0.300	0.02	4165	0.300	0.02	2082	0.300	-0.04	1665
1.2	1.200	0.02	2082	1.200	-0.03	1041	1.200	-0.03	520	1.201	-0.16	415
2.4	2.402	0.06	1040	2.399	-0.03	520	2.404	0.16	259	2.403	-0.16	207
9.6	9.615	0.16	259	9.615	0.16	129	9.615	0.16	64	9.615	-0.16	51
19.2	19.231	0.16	129	19.231	0.16	64	19.531	1.73	31	19.230	-0.16	25
57.6	58.140	0.94	42	56.818	-1.36	21	56.818	-1.36	10	55.555	3.55	8
115.2	113.636	-1.36	21	113.636	-1.36	10	125.000	8.51	4	_	—	—

TABLE 20-3: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)

			S	YNC = 0, E	= 0, BRGH = 0, BRG16 = 1						
BAUD	FOSC = 4.000 MHz			Fos	c = 2.000	MHz	Fos	Fosc = 1.000 MHz			
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)		
0.3	0.300	0.04	832	0.300	-0.16	415	0.300	-0.16	207		
1.2	1.202	0.16	207	1.201	-0.16	103	1.201	-0.16	51		
2.4	2.404	0.16	103	2.403	-0.16	51	2.403	-0.16	25		
9.6	9.615	0.16	25	9.615	-0.16	12	—	_	_		
19.2	19.231	0.16	12	—	_	_	—	_	_		
57.6	62.500	8.51	3	—	_	_	—	_	_		
115.2	125.000	8.51	1	_	_	—	_	_	_		

		SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1										
BAUD RATE	FOSC = 40.000 MHZ) MHz	Fosc = 20.000 MHz			Fosc = 10.000 MHz			Fosc = 8.000 MHz		
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)
0.3	0.300	0.00	33332	0.300	0.00	16665	0.300	0.00	8332	0.300	-0.01	6665
1.2	1.200	0.00	8332	1.200	0.02	4165	1.200	0.02	2082	1.200	-0.04	1665
2.4	2.400	0.02	4165	2.400	0.02	2082	2.402	0.06	1040	2.400	-0.04	832
9.6	9.606	0.06	1040	9.596	-0.03	520	9.615	0.16	259	9.615	-0.16	207
19.2	19.193	-0.03	520	19.231	0.16	259	19.231	0.16	129	19.230	-0.16	103
57.6	57.803	0.35	172	57.471	-0.22	86	58.140	0.94	42	57.142	0.79	34
115.2	114.943	-0.22	86	116.279	0.94	42	113.636	-1.36	21	117.647	-2.12	16

		SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1								
BAUD RATE	Fosc = 4.000 MHz			Fos	c = 2.000	MHz	Fos	Fosc = 1.000 MHz		
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	
0.3	0.300	0.01	3332	0.300	-0.04	1665	0.300	-0.04	832	
1.2	1.200	0.04	832	1.201	-0.16	415	1.201	-0.16	207	
2.4	2.404	0.16	415	2.403	-0.16	207	2.403	-0.16	103	
9.6	9.615	0.16	103	9.615	-0.16	51	9.615	-0.16	25	
19.2	19.231	0.16	51	19.230	-0.16	25	19.230	-0.16	12	
57.6	58.824	2.12	16	55.555	3.55	8	—	_	—	
115.2	111.111	-3.55	8	—	_	—	—	_	—	

22.5 Comparator Control and Configuration

Each comparator has up to eight possible combinations of inputs: up to four external analog inputs, and one of two internal voltage references.

Both comparators allow a selection of the signal from pin, CxINA, or the voltage from the comparator reference (CVREF) on the non-inverting channel. This is compared to either CxINB, CTMU or the microcontroller's fixed internal reference voltage (VIRV, 0.6V nominal) on the inverting channel.

Table 22-1 provides the comparator inputs and outputs tied to fixed I/O pins.

Figure 22-4 illustrates the available comparator configurations and their corresponding bit settings.

TABLE 22-1:	COMPARATOR INPUTS AND
	OUTPUTS

Comparator	Input or Output	I/O Pin
	C1INA (VIN+)	RA0
1	C1INB (VIN-)	RA3
I	C1OUT	Remapped RPn
	C2INA(VIN+)	RA1
2	C2INB(VIN-)	RA2
2	C2OUT	Remapped RPn

22.5.1 COMPARATOR ENABLE AND INPUT SELECTION

Setting the CON bit of the CMxCON register (CMxCON<7>) enables the comparator for operation. Clearing the CON bit disables the comparator, resulting in minimum current consumption.

The CCH<1:0> bits in the CMxCON register (CMxCON<1:0>) direct either one of three analog input pins, or the Internal Reference Voltage (VIRV), to the comparator VIN-. Depending on the comparator operating mode, either an external or internal voltage reference may be used. The analog signal present at VIN- is compared to the signal at VIN+ and the digital output of the comparator is adjusted accordingly.

The external reference is used when CREF = 0 (CMxCON<2>) and VIN+ is connected to the CxINA pin. When external voltage references are used, the comparator module can be configured to have the reference sources externally. The reference signal must be between VSs and VDD, and can be applied to either pin of the comparator.

The comparator module also allows the selection of an internally generated voltage reference (CVREF) from the comparator voltage reference module. This module is described in more detail in **Section 22.0 "Comparator Module"**. The reference from the comparator voltage reference module is only available when CREF = 1. In this mode, the internal voltage reference is applied to the comparator's VIN+ pin.

Note:	The comparator input pin selected by
	CCH<1:0> must be configured as an input
	by setting both the corresponding TRIS
	and PCFG bits in the ANCON1 register.

22.5.2 COMPARATOR ENABLE AND OUTPUT SELECTION

The comparator outputs are read through the CMSTAT register. The CMSTAT<0> reads the Comparator 1 output and CMSTAT<1> reads the Comparator 2 output. These bits are read-only.

The comparator outputs may also be directly output to the RPn I/O pins by setting the COE bit (CMxCON<6>). When enabled, multiplexers in the output path of the pins switch to the output of the comparator.

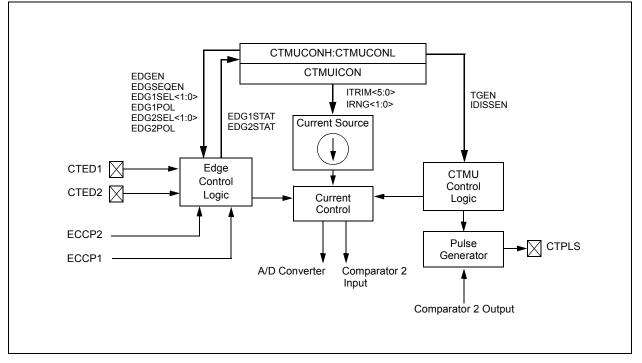
By default, the comparator's output is at logic high whenever the voltage on VIN+ is greater than on VIN-. The polarity of the comparator outputs can be inverted using the CPOL bit (CMxCON<5>).

The uncertainty of each of the comparators is related to the input offset voltage and the response time given in the specifications, as discussed in **Section 22.2 "Comparator Operation"**.

25.0 CHARGE TIME MEASUREMENT UNIT (CTMU)

The Charge Time Measurement Unit (CTMU) is a flexible analog module that provides accurate differential time measurement between pulse sources, as well as asynchronous pulse generation. By working with other on-chip analog modules, the CTMU can be used to precisely measure time, measure capacitance, measure relative changes in capacitance or generate output pulses with a specific time delay. The CTMU is ideal for interfacing with capacitive-based sensors.

The module includes the following key features:


- Up to 13 channels available for capacitive or time measurement input
- · On-chip precision current source
- Four-edge input trigger sources
- Polarity control for each edge source
- Control of edge sequence

- Control of response to edges
- · Time measurement resolution of 1 nanosecond
- · High precision time measurement
- Time delay of external or internal signal asynchronous to system clock
- Accurate current source suitable for capacitive measurement

The CTMU works in conjunction with the A/D Converter to provide up to 13 channels for time or charge measurement, depending on the specific device and the number of A/D channels available. When configured for time delay, the CTMU is connected to one of the analog comparators. The level-sensitive input edge sources can be selected from four sources: two external inputs or ECCP1/ECCP2 Special Event Triggers.

Figure 25-1 provides a block diagram of the CTMU.

26.2 Watchdog Timer (WDT)

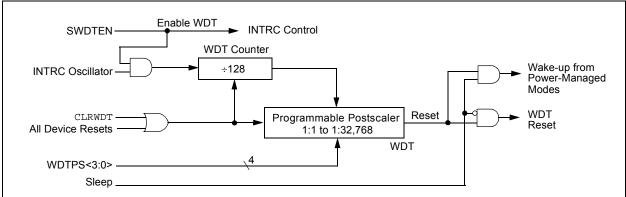
PIC18F46J11 family devices have both a conventional WDT circuit and a dedicated, Deep Sleep capable Watchdog Timer. When enabled, the conventional WDT operates in normal Run, Idle and Sleep modes. This data sheet section describes the conventional WDT circuit.

The dedicated, Deep Sleep capable WDT can only be enabled in Deep Sleep mode. This timer is described in Section 4.6.4 "Deep Sleep Watchdog Timer (DSWDT)".

The conventional WDT is driven by the INTRC oscillator. When the WDT is enabled, the clock source is also enabled. The nominal WDT period is 4 ms and has the same stability as the INTRC oscillator.

The 4 ms period of the WDT is multiplied by a 16-bit postscaler. Any output of the WDT postscaler is selected by a multiplexer, controlled by the WDTPS bits in Configuration Register 2H. Available periods range from about 4 ms to 135 seconds (2.25 minutes depending on voltage, temperature and WDT postscaler). The WDT and postscaler are cleared

FIGURE 26-1: WDT BLOCK DIAGRAM


whenever a SLEEP or CLRWDT instruction is executed, or a clock failure (primary or Timer1 oscillator) has occurred.

- Note 1: The CLRWDT and SLEEP instructions clear the WDT and postscaler counts when executed.
 - 2: When a CLRWDT instruction is executed, the postscaler count will be cleared.

26.2.1 CONTROL REGISTER

The WDTCON register (Register 26-11) is a readable and writable register. The SWDTEN bit enables or disables WDT operation. This allows software to override the WDTEN Configuration bit and enable the WDT only if it has been disabled by the Configuration bit.

LVDSTAT is a read-only status bit that is continuously updated and provides information about the current level of VDDCORE. This bit is only valid when the on-chip voltage regulator is enabled.

BTFS	SC	Bit Test File	Bit Test File, Skip if Clear				
Synta	IX:	BTFSC f, b	{,a}				
Opera		0 ≤ f ≤ 255					
		$0 \leq b \leq 7$					
		a ∈ [0,1]					
Opera	ation:	skip if (f)	= 0				
Statu	s Affected:	None					
Enco	ding:	1011	bbba fff:	f ffff			
Desci	ription:	instruction is then the next the current in carded and a	skipped. If bit skipped. If bit instruction fet astruction exect NOP is execu a two-cycle ins	'b' is '0', ched during ution is dis- ted instead,			
			e Access Bank e BSR is used t lefault).				
		set is enable in Indexed Li mode whene Section 27.2 Bit-Oriented	d the extended d, this instructi iteral Offset Ad ever f ≤ 95 (5FH 2.3 "Byte-Orie I Instructions et Mode" for d	on operates Idressing n). See nted and in Indexed			
Word	s:	1					
Cycle		1(2)					
0,010		. ,	cles if skip and	followed			
		by a	2-word instruc	tion.			
QC	cle Activity:						
	Q1	Q2	Q3	Q4			
	Decode	Read register 'f'	Process Data	No operation			
lf ski	p:	regiotor r	Dula	oporation			
	Q1	Q2	Q3	Q4			
	No	No	No	No			
	operation	operation	operation	operation			
IT SKI	p and followed Q1	by 2-word inst Q2	Q3	Q4			
	No	No	No	No			
	operation	operation	operation	operation			
	No	No	No	No			
	operation	operation	operation	operation			
<u>Exam</u>	iple:	HERE BI FALSE : TRUE :	FSC FLAG	, 1, O			
I	Before Instruct PC		ress (HERE)				
	After Instruction	n					
	If FLAG< PC	- /	ress (TRUE)				
	If FLAG<	l> = 1;					
	PC	= add	ress (False))			

BTFSS	Bit Test File	, Skip if Set	
Syntax:	BTFSS f, b {	,a}	
Operands:	$0 \leq f \leq 255$		
	$0 \le b < 7$		
o <i>i</i> :	a ∈ [0,1]	_	
Operation:	skip if (f)	= 1	
Status Affected:	None		
Encoding:		bbba fff:	
Description:	instruction is then the next the current in carded and a	gister 'f' is '1', tl skipped. If bit t instruction fet nstruction exect a NOP is execu a two-cycle ins	'b' is '1', ched during ution is dis- ted instead,
		e Access Bank e BSR is used default).	
	set is enable in Indexed Li mode whene Section 27.2 Bit-Oriented	d the extended d, this instructi iteral Offset Ad ever f ≤ 95 (5FH 2.3 "Byte-Orie I Instructions et Mode" for d	on operates Idressing n). See nted and in Indexed
Words:	1		
Cycles:		vcles if skip an a 2-word instru	
Q Cycle Activity:	00	00	0.1
Q1 Decode	Q2 Read	Q3 Process	Q4 No
Decode	register 'f'	Data	operation
lf skip:	0		
Q1	Q2	Q3	Q4
No	No	No	No
operation	operation	operation	operation
If skip and followed Q1	Q2	Q3	Q4
No	No	No	No
operation	operation	operation	operation
No	No	No	No
operation	operation	operation	operation
Example:	HERE BI FALSE : TRUE :	TFSS FLAG	, 1, 0
Before Instruct PC		ress (HERE)	
After Instruction	n		
After Instructio If FLAG< PC If FLAG<	1> = 0; = add	ress (False))

27.2.5 SPECIAL CONSIDERATIONS WITH MICROCHIP MPLAB[®] IDE TOOLS

The latest versions of Microchip's software tools have been designed to fully support the extended instruction set for the PIC18F46J11 family. This includes the MPLAB C18 C Compiler, MPASM assembly language and MPLAB Integrated Development Environment (IDE).

When selecting a target device for software development, MPLAB IDE will automatically set default Configuration bits for that device. The default setting for the XINST Configuration bit is '1', enabling the extended instruction set and Indexed Literal Offset Addressing. For proper execution of applications developed to take advantage of the extended instruction set, XINST must be set during programming.

To develop software for the extended instruction set, the user must enable support for the instructions and the Indexed Addressing mode in their language tool(s). Depending on the environment being used, this may be done in several ways:

- A menu option or dialog box within the environment that allows the user to configure the language tool and its settings for the project
- A command line option
- · A directive in the source code

These options vary between different compilers, assemblers and development environments. Users are encouraged to review the documentation accompanying their development systems for the appropriate information.