

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	34
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	2.15V ~ 3.6V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f44j11-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 5-4: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2

FIGURE 5-5:

SLOW RISE TIME (MCLR TIED TO VDD, VDD RISE > TPWRT)

PIC18F46J11 FAMILY

TABLE J-Z.							
Register	Applicabl	e Devices	Power-on Reset, Brown-out Reset, Wake From Deep Sleep	MCLR Resets WDT Reset RESET Instruction Stack Resets CM Resets	Wake-up via WDT or Interrupt		
INDF2	PIC18F2XJ11	PIC18F4XJ11	N/A	N/A	N/A		
POSTINC2	PIC18F2XJ11	PIC18F4XJ11	N/A	N/A	N/A		
POSTDEC2	PIC18F2XJ11	PIC18F4XJ11	N/A	N/A	N/A		
PREINC2	PIC18F2XJ11	PIC18F4XJ11	N/A	N/A	N/A		
PLUSW2	PIC18F2XJ11	PIC18F4XJ11	N/A	N/A	N/A		
FSR2H	PIC18F2XJ11	PIC18F4XJ11	0000	0000	uuuu		
FSR2L	PIC18F2XJ11	PIC18F4XJ11	xxxx xxxx	uuuu uuuu	uuuu uuuu		
STATUS	PIC18F2XJ11	PIC18F4XJ11	x xxxx	u uuuu	u uuuu		
TMR0H	PIC18F2XJ11	PIC18F4XJ11	0000 0000	0000 0000	uuuu uuuu		
TMR0L	PIC18F2XJ11	PIC18F4XJ11	xxxx xxxx	uuuu uuuu	uuuu uuuu		
TOCON	PIC18F2XJ11	PIC18F4XJ11	1111 1111	1111 1111	uuuu uuuu		
OSCCON	PIC18F2XJ11	PIC18F4XJ11	0110 q100	0110 q100	0110 qluu		
CM1CON	PIC18F2XJ11	PIC18F4XJ11	0001 1111	0001 1111	uuuu uuuu		
CM2CON	PIC18F2XJ11	PIC18F4XJ11	0001 1111	0001 1111	uuuu uuuu		
RCON ⁽⁴⁾	PIC18F2XJ11	PIC18F4XJ11	0-11 11qq	0-qq qquu	u-qq qquu		
TMR1H	PIC18F2XJ11	PIC18F4XJ11	xxxx xxxx	uuuu uuuu	uuuu uuuu		
TMR1L	PIC18F2XJ11	PIC18F4XJ11	xxxx xxxx	uuuu uuuu	uuuu uuuu		
T1CON	PIC18F2XJ11	PIC18F4XJ11	0000 0000	uuuu uuuu	uuuu uuuu		
TMR2	PIC18F2XJ11	PIC18F4XJ11	0000 0000	0000 0000	uuuu uuuu		
PR2	PIC18F2XJ11	PIC18F4XJ11	1111 1111	1111 1111	uuuu uuuu		
T2CON	PIC18F2XJ11	PIC18F4XJ11	-000 0000	-000 0000	-uuu uuuu		
SSP1BUF	PIC18F2XJ11	PIC18F4XJ11	xxxx xxxx	uuuu uuuu	uuuu uuuu		
SSP1ADD	PIC18F2XJ11	PIC18F4XJ11	0000 0000	0000 0000	uuuu uuuu		
SSP1MSK	PIC18F2XJ11	PIC18F4XJ11	1111 1111	1111 1111	uuuu uuuu		
SSP1STAT	PIC18F2XJ11	PIC18F4XJ11	0000 0000	0000 0000	uuuu uuuu		
SSP1CON1	PIC18F2XJ11	PIC18F4XJ11	0000 0000	0000 0000	uuuu uuuu		
SSP1CON2	PIC18F2XJ11	PIC18F4XJ11	0000 0000	0000 0000	uuuu uuuu		
ADRESH	PIC18F2XJ11	PIC18F4XJ11	xxxx xxxx	uuuu uuuu	uuuu uuuu		
ADRESL	PIC18F2XJ11	PIC18F4XJ11	xxxx xxxx	uuuu uuuu	uuuu uuuu		
ADCON0	PIC18F2XJ11	PIC18F4XJ11	0000 0000	0000 0000	uuuu uuuu		
ADCON1	PIC18F2XJ11	PIC18F4XJ11	0000 0000	0000 0000	uuuu uuuu		
WDTCON	PIC18F2XJ11	PIC18F4XJ11	1qq- q000	1qq- 0000	uqq- uuuu		

TABLE 5-2: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition.

Note 1: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

3: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

- 4: See Table 5-1 for Reset value for specific condition.
- 5: Not implemented for PIC18F2XJ11 devices.
- 6: Not implemented on "LF" devices.

Pin	Function	TRIS Setting	I/O	l/O Type	Description			
RA5/AN4/SS1/	RA5	0	0	DIG	LATA<5> data output; not affected by analog input.			
HLVDIN/RP2		1	I	TTL	PORTA<5> data input; disabled when analog input enabled.			
	AN4	1	Ι	ANA	A/D input channel 4. Default configuration on POR.			
	SS1	1	Ι	TTL	Slave select input for MSSP1.			
	HLVDIN	1	Ι	ANA	ANA High/Low-Voltage Detect external trip point reference in			
	RP2	1	I	ST	Remappable Peripheral pin 2 input.			
		0	0	DIG	Remappable Peripheral pin 2 output.			
OSC2/CLKO/	OSC2	x	0	ANA	Main oscillator feedback output connection (HS mode).			
RA6	CLKO	x	0	DIG	System cycle clock output (Fosc/4) in RC and EC Oscillator modes.			
	RA6	1	Ι	TTL	PORTA<6> data input.			
		0	0	DIG	LATA<6> data output.			
OSC1/CLKI/RA7	OSC1	1	Ι	ANA	Main oscillator input connection.			
	CLKI	1	Ι	ANA	Main clock input connection.			
	RA7	1	I	TTL	PORTA<6> data input.			
		0	0	DIG	LATA<6> data output.			

TABLE 10-3: PORTA I/O SUMMARY (CONTINUED)

Legend: DIG = Digital level output; TTL = TTL input buffer; ST = Schmitt Trigger input buffer; ANA = Analog level input/output; x = Don't care (TRIS bit does not affect port direction or is overridden for this option)

Note 1: This bit is only available on 44-pin devices.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
PORTA	RA7	RA6	RA5	_	RA3	RA2	RA1	RA0	87
LATA	LAT7	LAT6	LAT5	_	LAT3	LAT2	LAT1	LAT0	87
TRISA	TRIS7	TRIS6	TRISA5	—	TRISA3	TRISA2	TRISA1	TRISA0	87
ANCON0	PCFG7 ⁽¹⁾	PCFG6 ⁽¹⁾	PCFG5 ⁽¹⁾	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0	88
CMxCON	CON	COE	CPOL	EVPOL1	EVPOL0	CREF	CCH1	CCH0	87
CVRCON	CVREN	CVROE	CVRR	CVRSS	CVR3	CVR2	CVR1	CVR0	88

TABLE 10-4: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Legend: — = unimplemented, read as '0'. Shaded cells are not used by PORTA.

Note 1: These bits are only available in 44-pin devices.

Pin	Function	TRIS Setting	I/O	l/O Type	Description
RC5/SDO1/	RC5	1	Ι	ST	PORTC<5> data input.
RP16		0	0	DIG	LATC<5> data output.
	SDO1	0	0	DIG	SPI data output (MSSP1 module).
	RP16	1	I	ST	Remappable peripheral pin 16 input.
		0	0	DIG	Remappable peripheral pin 16 output.
RC6/PMA5/	RC6	1	I	ST	PORTC<6> data input.
TX1/CK1/RP17		0	0	DIG	LATC<6> data output.
	PMA5 ⁽¹⁾	0	0	DIG	Parallel Master Port address.
	TX1	0	0	DIG	Asynchronous serial transmit data output (EUSART module); takes priority over port data. User must configure as output.
	CK1	1	Ι	ST	Synchronous serial clock input (EUSART module).
		0	0	DIG	Synchronous serial clock output (EUSART module); takes priority over port data.
	RP17	1	Ι	ST	Remappable peripheral pin 17 input.
		0	0	DIG	Remappable peripheral pin 17 output.
RC7/PMA4/	RC7	1	Ι	ST	PORTC<7> data input.
RX1/DT1/RP18		0	0	DIG	LATC<7> data output.
	PMA4 ⁽¹⁾	0	0	DIG	Parallel Master Port address.
	RX1	1	Ι	ST	Asynchronous serial receive data input (EUSART module).
	DT1	1	1	ST	Synchronous serial data input (EUSART module). User must configure as an input.
		0	0	DIG	Synchronous serial data output (EUSART module); takes priority over port data.
	RP18	1	Ι	ST	Remappable peripheral pin 18 input.
		0	0	DIG	Remappable peripheral pin 18 output.

TABLE 10-7: PORTC I/O SUMMARY (CONTINUED)

Legend: DIG = Digital level output; TTL = TTL input buffer; ST = Schmitt Trigger input buffer; ANA = Analog level input/output; $l^2C/SMB = l^2C/SMB$ us input buffer; x = Don't care (TRIS bit does not affect port direction or is overridden for this option)

Note 1: This bit is only available on 44-pin devices.

TABLE 10-8: SUMMARY OF REGISTERS ASSOCIATED WITH PORTC

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page:
PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	87
LATC	LATC7	LATC6	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	87
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	87

10.7.3.2 Output Mapping

In contrast to inputs, the outputs of the PPS options are mapped on the basis of the pin. In this case, a control register associated with a particular pin dictates the peripheral output to be mapped. The RPORx registers are used to control output mapping. The value of the bit field corresponds to one of the peripherals and that peripheral's output is mapped to the pin (see Table 10-14).

Because of the mapping technique, the list of peripherals for output mapping also includes a null value of '00000'. This permits any given pin to remain disconnected from the output of any of the pin selectable peripherals.

Function	Output Function Number ⁽¹⁾	Output Name
NULL	0	NULL ⁽²⁾
C1OUT	1	Comparator 1 Output
C2OUT	2	Comparator 2 Output
TX2/CK2	5	EUSART2 Asynchronous Transmit/Asynchronous Clock Output
DT2	6	EUSART2 Synchronous Transmit
SDO2	9	SPI2 Data Output
SCK2	10	SPI2 Clock Output
SSDMA	12	SPI DMA Slave Select
ULPOUT	13	Ultra Low-Power Wake-up Event
CCP1/P1A	14	ECCP1 Compare or PWM Output Channel A
P1B	15	ECCP1 Enhanced PWM Output, Channel B
P1C	16	ECCP1 Enhanced PWM Output, Channel C
P1D	17	ECCP1 Enhanced PWM Output, Channel D
CCP2/P2A	18	ECCP2 Compare or PWM Output
P2B	19	ECCP2 Enhanced PWM Output, Channel B
P2C	20	ECCP2 Enhanced PWM Output, Channel C
P2D	21	ECCP2 Enhanced PWM Output, Channel D

TABLE 10-14: SELECTABLE OUTPUT SOURCES (MAPS FUNCTION TO OUTPUT)

Note 1: Value assigned to the RPn<4:0> pins corresponds to the peripheral output function number.

2: The NULL function is assigned to all RPn outputs at device Reset and disables the RPn output function.

11.1.2 DATA REGISTERS

The PMP module uses eight registers for transferring data into and out of the microcontroller. They are arranged as four pairs to allow the option of 16-bit data operations:

- PMDIN1H and PMDIN1L
- PMDIN2H and PMDIN2L
- PMADDRH/PMDOUT1H and PMADDRL/PMDOUT1L
- PMDOUT2H and PMDOUT2L

The PMDIN1 register is used for incoming data in Slave modes and both input and output data in Master modes. The PMDIN2 register is used for buffering input data in select Slave modes.

The PMADDR/PMDOUT1 registers are actually a single register pair; the name and function are dictated by the module's operating mode. In Master modes, the registers function as the PMADDRH and PMADDRL registers and contain the address of any incoming or outgoing data. In Slave modes, the registers function as PMDOUT1H and PMDOUT1L and are used for outgoing data.

PMADDRH differs from PMADDRL in that it can also have limited PMP control functions. When the module is operating in select Master mode configurations, the upper two bits of the register can be used to determine the operation of chip select signals. If these are not used, PMADDR simply functions to hold the upper 8 bits of the address. Register 11-9 provides the function of the individual bits in PMADDRH.

The PMDOUT2H and PMDOUT2L registers are only used in Buffered Slave modes and serve as a buffer for outgoing data.

11.1.3 PAD CONFIGURATION CONTROL REGISTER

In addition to the module level configuration options, the PMP module can also be configured at the I/O pin for electrical operation. This option allows users to select either the normal Schmitt Trigger input buffer on digital I/O pins shared with the PMP, or use TTL level compatible buffers instead. Buffer configuration is controlled by the PMPTTL bit in the PADCFG1 register.

13.8.3 TIMER1 GATE TOGGLE MODE

When Timer1 Gate Toggle mode is enabled, it is possible to measure the full cycle length of a Timer1 gate signal, as opposed to the duration of a single level pulse.

The Timer1 gate source is routed through a flip-flop that changes state on every incrementing edge of the signal. See Figure 13-5 for timing details.

FIGURE 13-5: TIMER1 GATE TOGGLE MODE

The T1GVAL bit will indicate when the Toggled mode is active and the timer is counting.

The Timer1 Gate Toggle mode is enabled by setting the T1GTM bit of the T1GCON register. When the T1GTM bit is cleared, the flip-flop is cleared and held clear. This is necessary in order to control which edge is measured.

		_		1 1 1	1 1
00	(Single Output)	PxA Modulated	[J	1
		PxA Modulated		Delav ⁽¹⁾	
10	(Half-Bridge)	PxB Modulated			
		PxA Active	i		
01	(Full-Bridge,	PxB Inactive			; ; ; ;
	r orward)	PxC Inactive	<u> </u>		I
		PxD Modulated			
		PxA Inactive		1 1 1	1 1 1
11	(Full-Bridge,	PxB Modulated			1
	Reverse)	PxC Active	— i — ·	1 	i
		PxD Inactive			
Relati	onships: • Period = 4 * Tosc • Pulse Width = Tosc • Delay = 4 * Tosc	* (PR2 + 1) * (TMR2 Pres sc * (CCPRxL<7:0>:CCP> * (FCCPxDE1 <6:0>)	scale Value) (CON<5:4>) * (TMR2 Presc	ale Value)	

FIGURE 18-7: EXAMPLE ENHANCED PWM OUTPUT RELATIONSHIPS (ACTIVE-LOW STATE)

REGISTER 19-4: DMACON2: DMA CONTROL REGISTER 2 (ACCESS F86h) (CONTINUED)

bit 3-0 INTLVL<3:0>: Watermark Interrupt Enable bits These bits specify the amount of remaining data yet to be transferred (transmitted and/or received) upon which an interrupt is generated. 1111 = Amount of remaining data to be transferred is 576 bytes 1110 = Amount of remaining data to be transferred is 512 bytes 1101 = Amount of remaining data to be transferred is 448 bytes 1100 = Amount of remaining data to be transferred is 384 bytes 1011 = Amount of remaining data to be transferred is 320 bytes 1010 = Amount of remaining data to be transferred is 256 bytes 1001 = Amount of remaining data to be transferred is 192 bytes 1000 = Amount of remaining data to be transferred is 128 bytes 0111 = Amount of remaining data to be transferred is 67 bytes 0110 = Amount of remaining data to be transferred is 32 bytes 0101 = Amount of remaining data to be transferred is 16 bytes 0100 = Amount of remaining data to be transferred is 8 bytes 0011 = Amount of remaining data to be transferred is 4 bytes 0010 = Amount of remaining data to be transferred is 2 bytes 0001 = Amount of remaining data to be transferred is 1 byte

0000 = Transfer complete

REGISTER 19-8: SSPxCON2: MSSPx CONTROL REGISTER 2 – I²C[™] SLAVE MODE (ACCESS FC5h/F71h)

							1
R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
GCEN	ACKSTAT ⁽²⁾	ADMSK5	ADMSK4	ADMSK3	ADMSK2	ADMSK1	SEN ⁽¹⁾
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable I	oit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
bit 7	GCEN: Genera	al Call Enable	bit (Slave mod	le only)			
	1 = Enables in	terrupt when a	general call a	ddress (0000h)	is received in	the SSPxSR	
	0 = General ca	all address disa	abled				
bit 6	ACKSTAT: Acl	knowledge Sta	itus bit ⁽²⁾				
	Unused in Slav	ve mode.					
bit 5-2	ADMSK<5:2>	: Slave Addres	s Mask Select	bits (5-Bit Add	ress Masking)		
	1 = Masking of	f correspondin	g bits of SSPx	ADD enabled			
	0 = Masking of	f correspondin	g bits of SSPx	ADD disabled			
bit 1	ADMSK1: Slav	ve Address Le	ast Significant	bit(s) Mask Se	lect bit		
	In 7-Bit Addres	sing mode:					
	1 = Masking of	f SSPxADD<1	> only enabled	1			
		I SSPXADD< I	> only disabled	1			
	$\frac{\text{In } 10\text{-Bit Address}}{1 - \text{Masking of}}$.0> enabled				
	\perp = Masking of SSPXADD<1:0> enabled 0 = Masking of SSPXADD<1:0> disabled						
bit 0	SEN: Start Cor	ndition Enable	/Stretch Enable	e bit ⁽¹⁾			
	1 = Clock stret	ching is enable	ed for both sla	ve transmit and	slave receive	(stretch enable	ed)
	0 = Clock stret	ching is disabl	ed			,	
Note 1. If	the 1 ² C module i	a activa thaca	hite may not h	a aat (na anaal	ing) and the C		at he written

- **Note 1:** If the I²C module is active, these bits may not be set (no spooling) and the SSPxBUF may not be written (or writes to the SSPxBUF are disabled).
 - **2:** This bit is unimplemented in I^2C Slave mode.

REGISTER 19-9: SSPxMSK: I²C[™] SLAVE ADDRESS MASK REGISTER – 7-BIT MASKING MODE (ACCESS FC8h/F74h)⁽¹⁾

| R/W-1 |
|-------|-------|-------|-------|-------|-------|-------|---------------------|
| MSK7 | MSK6 | MSK5 | MSK4 | MSK3 | MSK2 | MSK1 | MSK0 ⁽²⁾ |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 MSK<7:0>: Slave Address Mask Select bits 1 = Masking of corresponding bit of SSPxADD enabled

0 = Masking of corresponding bit of SSPxADD disabled

Note 1: This register shares the same SFR address as SSPxADD and is only addressable in select MSSP operating modes. See Section 19.5.3.4 "7-Bit Address Masking Mode" for more details.

2: MSK0 is not used as a mask bit in 7-bit addressing.

19.5.3.2 Address Masking Modes

Masking an address bit causes that bit to become a "don't care". When one address bit is masked, two addresses will be Acknowledged and cause an interrupt. It is possible to mask more than one address bit at a time, which greatly expands the number of addresses Acknowledged.

The l^2C slave behaves the same way, whether address masking is used or not. However, when address masking is used, the l^2C slave can Acknowledge multiple addresses and cause interrupts. When this occurs, it is necessary to determine which address caused the interrupt by checking SSPxBUF.

The PIC18F46J11 family of devices is capable of using two different Address Masking modes in I²C slave operation: 5-Bit Address Masking and 7-Bit Address Masking. The Masking mode is selected at device configuration using the MSSPMSK Configuration bit. The default device configuration is 7-Bit Address Masking.

Both Masking modes, in turn, support address masking of 7-bit and 10-bit addresses. The combination of Masking modes and addresses provide different ranges of Acknowledgable addresses for each combination.

While both Masking modes function in roughly the same manner, the way they use address masks is different.

19.5.3.3 5-Bit Address Masking Mode

As the name implies, 5-Bit Address Masking mode uses an address mask of up to five bits to create a range of addresses to be Acknowledged, using bits 5 through 1 of the incoming address. This allows the module to Acknowledge up to 31 addresses when using 7-bit addressing, or 63 addresses with 10-bit addressing (see Example 19-3). This Masking mode is selected when the MSSPMSK Configuration bit is programmed ('0').

The address mask in this mode is stored in the SSPxCON2 register, which stops functioning as a control register in I²C Slave mode (Register 19-8). In 7-Bit Address Masking mode, address mask bits, ADMSK<5:1> (SSPxCON2<5:1>), mask the corresponding address bits in the SSPxADD register. For any ADMSK bits that are set (ADMSK<n> = 1), the corresponding address bit is ignored (SSPxADD<n> = x). For the module to issue an address Acknowledge, it is sufficient to match only on addresses that do not have an active address mask.

In 10-Bit Address Masking mode, bits, ADMSK<5:2>, mask the corresponding address bits in the SSPxADD register. In addition, ADMSK1 simultaneously masks the two LSbs of the address (SSPxADD<1:0>). For any ADMSK bits that are active (ADMSK<n> = 1), the corresponding address bit is ignored (SPxADD<n> = x). Also note, that although in 10-Bit Address Masking mode, the upper address bits reuse part of the SSPxADD register bits. The address mask bits do not interact with those bits; they only affect the lower address bits.

- **Note 1:** ADMSK1 masks the two Least Significant bits of the address.
 - 2: The two MSbs of the address are not affected by address masking.

EXAMPLE 19-3: ADDRESS MASKING EXAMPLES IN 5-BIT MASKING MODE

7-Bit Addressing:

SSPxADD<7:1>= A0h (1010000) (SSPxADD<0> is assumed to be '0')

ADMSK<5:1> = 00111

Addresses Acknowledged: A0h, A2h, A4h, A6h, A8h, AAh, ACh, AEh

10-Bit Addressing:

SSPxADD<7:0> = A0h (10100000) (The two MSbs of the address are ignored in this example, since they are not affected by masking)

ADMSK<5:1> = 00111

Addresses Acknowledged: A0h, A1h, A2h, A3h, A4h, A5h, A6h, A7h, A8h, A9h, AAh, ABh, ACh, ADh, AEh, AFh

REGISTER	20-2: RCS	TAx: RECEIV	E STATUS A	AND CONTRO	L REGISTE	R (ACCESS F	ACh/F9Ch)				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-x				
SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D				
bit 7							bit 0				
Legend:											
R = Readab	ole bit	W = Writable	W = Writable bit U = Unimplemented bit, read as '0'								
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown				
bit 7	SPEN: Seria	I Port Enable b	it								
	1 = Serial point0 = Serial point	ort enabled ort disabled (he	ld in Reset)								
bit 6	RX9: 9-Bit R	eceive Enable	bit								
	1 = Selects 0 = Selects	9-bit reception 8-bit reception									
bit 5	SREN: Singl	e Receive Enal	ole bit								
	Don't care.	Asynchronous mode: Don't care.									
	Synchronous 1 = Enables 0 = Disables This bit is cla	Synchronous mode – Master: 1 = Enables single receive 0 = Disables single receive This bit is cleared after recention is complete									
	Synchronous Don't care.	s mode – Slave		516.							
bit 4	CREN: Cont	CREN: Continuous Receive Enable bit									
	Asynchronou 1 = Enables 0 = Disables	<u>is mode:</u> receiver receiver									
	Synchronous 1 = Enables 0 = Disables	<u>s mode:</u> continuous rec s continuous rec	eive until enat	ole bit, CREN, is	cleared (CRI	EN overrides SR	EN)				
bit 3	ADDEN: Add	ADDEN: Address Detect Enable bit									
	Asynchronou 1 = Enables 0 = Disables	Asynchronous mode 9-Bit (RX9 = 1): 1 = Enables address detection, enables interrupt and loads the receive buffer when RSR<8> is set 0 = Disables address detection, all bytes are received and ninth bit can be used as parity bit									
	<u>Asynchronou</u> Don't care.	<u>ıs mode 8-Bit (</u> I	RX9 = <u>0</u>) :								
bit 2	FERR: Fram	ing Error bit									
	1 = Framing 0 = No fram	error (can be o ing error	leared by read	ding RCREGx re	egister and ree	ceiving next valio	d byte)				
bit 1	OERR: Over	run Error bit									
	1 = Overrun overun e	error (can be error is cleared.	cleared by clea	aring bit CREN)	. UART recep	tion will be disca	arded until the				
hit 0		t of Received D	ata								
Sit U	This can be a	address/data bi	t or a parity bit	and must be ca	lculated by us	ser firmware.					

20.3 EUSART Synchronous Master Mode

The Synchronous Master mode is entered by setting the CSRC bit (TXSTAx<7>). In this mode, the data is transmitted in a half-duplex manner (i.e., transmission and reception do not occur at the same time). When transmitting data, the reception is inhibited and vice versa. Synchronous mode is entered by setting bit, SYNC (TXSTAx<4>). In addition, enable bit, SPEN (RCSTAx<7>), is set in order to configure the TXx and RXx pins to CKx (clock) and DTx (data) lines, respectively.

The Master mode indicates that the processor transmits the master clock on the CKx line. Clock polarity is selected with the TXCKP bit (BAUDCONx<4>). Setting TXCKP sets the Idle state on CKx as high, while clearing the bit sets the Idle state as low. This option is provided to support Microwire devices with this module.

20.3.1 EUSART SYNCHRONOUS MASTER TRANSMISSION

The EUSART transmitter block diagram is shown in Figure 20-3. The heart of the transmitter is the Transmit (Serial) Shift Register (TSR). The Shift register obtains its data from the Read/Write Transmit Buffer register, TXREGx. The TXREGx register is loaded with data in software. The TSR register is not loaded until the last bit has been transmitted from the previous load. As soon as the last bit is transmitted, the TSR is loaded with new data from the TXREGx (if available).

Once the TXREGx register transfers the data to the TSR register (occurs in one TcY), the TXREGx is empty and the TXxIF flag bit is set. The interrupt can be enabled or disabled by setting or clearing the interrupt enable bit, TXxIE. TXxIF is set regardless of the state of enable bit, TXxIE; it cannot be cleared in software. It will reset only when new data is loaded into the TXREGx register.

While flag bit, TXxIF, indicates the status of the TXREGx register, another bit, TRMT (TXSTAx<1>), shows the status of the TSR register. TRMT is a read-only bit which is set when the TSR is empty. No interrupt logic is tied to this bit, so the user must poll this bit in order to determine if the TSR register is empty. The TSR is not mapped in data memory so it is not available to the user.

To set up a Synchronous Master Transmission:

- 1. Initialize the SPBRGHx:SPBRGx registers for the appropriate baud rate. Set or clear the BRG16 bit, as required, to achieve the required baud rate.
- 2. Enable the synchronous master serial port by setting bits, SYNC, SPEN and CSRC.
- 3. If interrupts are desired, set enable bit, TXxIE.
- 4. If 9-bit transmission is required, set bit, TX9.
- 5. Enable the transmission by setting bit, TXEN.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit, TX9D.
- 7. Start transmission by loading data to the TXREGx register.
- If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

FIGURE 20-11: SYNCHRONOUS TRANSMISSION

The analog reference voltage is software selectable to either the device's positive and negative supply voltage (AVDD and AVSS), or the voltage level on the RA3/AN3/VREF+/C1INB and RA2/AN2/VREF-/CVREF/C2INB pins.

The A/D Converter has a unique feature of being able to operate while the device is in Sleep mode. To operate in **Sleep**, the A/D conversion clock must be derived from the A/D's internal RC oscillator.

The output of the sample and hold is the input into the Converter, which generates the result via successive approximation.

Each port pin associated with the A/D Converter can be configured as an analog input or as a digital I/O. The ADRESH and ADRESL registers contain the result of the A/D conversion. When the A/D conversion is complete, the result is loaded into the ADRESH:ADRESL register pair, the GO/DONE bit (ADCON0<1>) is cleared and the A/D Interrupt Flag bit, ADIF, is set.

A device Reset forces all registers to their Reset state. This forces the A/D module to be turned off and any conversion in progress is aborted. The value in the ADRESH:ADRESL register pair is not modified for a Power-on Reset (POR). These registers will contain unknown data after a POR.

Figure 21-1 provides the block diagram of the A/D module.

FIGURE 21-1: A/D BLOCK DIAGRAM

21.2 Selecting and Configuring Automatic Acquisition Time

The ADCON1 register allows the user to select an acquisition time that occurs each time the GO/\overline{DONE} bit is set.

When the GO/DONE bit is set, sampling is stopped and a conversion begins. The user is responsible for ensuring the required acquisition time has passed between selecting the desired input channel and setting the GO/DONE bit. This occurs when the ACQT<2:0> bits (ADCON1<5:3>) remain in their Reset state ('000') and is compatible with devices that do not offer programmable acquisition times.

If desired, the ACQT bits can be set to select a programmable acquisition time for the A/D module. When the GO/DONE bit is set, the A/D module continues to sample the input for the selected acquisition time, then automatically begins a conversion. Since the acquisition time is programmed, there may be no need to wait for an acquisition time between selecting a channel and setting the GO/DONE bit.

In either case, when the conversion is completed, the GO/DONE bit is cleared, the ADIF flag is set and the A/D begins sampling the currently selected channel again. If an acquisition time is programmed, there is nothing to indicate if the acquisition time has ended or if the conversion has begun.

21.3 Selecting the A/D Conversion Clock

The A/D conversion time per bit is defined as TAD. The A/D conversion requires 11 TAD per 10-bit conversion. The source of the A/D conversion clock is software selectable.

There are seven possible options for TAD:

- 2 Tosc
- 4 Tosc
- 8 Tosc
- 16 Tosc
- 32 Tosc
- 64 Tosc
- Internal RC Oscillator

For correct A/D conversions, the A/D conversion clock (TAD) must be as short as possible but greater than the minimum TAD (see parameter 130 in Table 29-31 for more information).

Table 21-1 provides the resultant TAD times derived from the device operating frequencies and the A/D clock source selected.

TABLE 21-1: TAD vs. DEVICE OPERATING FREQUENCIES

AD Clock S	Maximum	
Operation	Operation ADCS<2:0>	
2 Tosc	000	2.86 MHz
4 Tosc	100	5.71 MHz
8 Tosc	001	11.43 MHz
16 Tosc	101	22.86 MHz
32 Tosc	010	45.71 MHz
64 Tosc	64 Tosc 110	
RC ⁽²⁾	011	1.00 MHz ⁽¹⁾

Note 1: The RC source has a typical TAD time of $4 \ \mu s$.

2: For device frequencies above 1 MHz, the device must be in Sleep mode for the entire conversion or the A/D accuracy may be out of specification.

21.4 Configuring Analog Port Pins

The ANCON0, ANCON1 and TRISA registers control the operation of the A/D port pins. The port pins needed as analog inputs must have their corresponding TRIS bits set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.

The A/D operation is independent of the state of the CHS<3:0> bits and the TRIS bits.

- Note 1: When reading the PORT register, all pins configured as analog input channels will read as cleared (a low level). Pins configured as digital inputs will convert an analog input. Analog levels on a digitally configured input will be accurately converted.
 - Analog levels on any pin defined as a digital input may cause the digital input buffer to consume current out of the device's specification limits.

NOTES:

PIC18F46J11 FAMILY

MULLW	Multiply L	iteral with W			MULWF	Multiply W	with f	
Syntax:	MULLW k			Syntax:	MULWF f	MULWF f {,a}		
Operands:	ands: $0 \le k \le 255$			Operands:	$0 \le f \le 255$			
Operation: (W) $x k \rightarrow PRODH:PRODL$				a ∈ [0,1]				
Status Affected: None			Operation:	(W) x (f) \rightarrow PRODH:PRODL				
Encoding: 0000 1101 kkkk kkkk			Status Affected:	None				
Description:	An unsigned multiplication is carried out between the contents of W and the 8-bit literal 'k'. The 16-bit result is placed in PRODH:PRODL register pair. PRODH contains the high byte. W is unchanged.		Encoding: Description:	0000 001a ffff ffff An unsigned multiplication is carried out between the contents of W and the register file location 'f'. The 16-bit result is stored in the PRODH:PRODL register pair. PRODH contains the high byte. Both W and 'f' are unchanged.				
	None of the	None of the Status flags are affected.				None of the Status flags are affected.		
	Note that neither Overflow nor Carry is possible in this operation. A Zero result is possible but not detected.				Note that neither Overflow nor Carry is possible in this operation. A Zero result is possible but not detected.			
Words:	1					If 'a' is '0', th	e Access Ban	k is selected. If
Cycles: Q Cycle Activity [.]	1					'a' is '1', the GPR bank (o	BSR is used to lefault).	o select the
Q1 Decode	Q2 Read literal 'k'	Q3 Process Data	Q4 Write registers PRODH: PRODL			If 'a' is '0' an is enabled, t Indexed Lite whenever f ≤ Section 27.2 Bit-Orientee	d the extended his instruction ral Offset Addi 95 (5Fh). See 2.3 "Byte-Orie I Instructions	l instruction set operates in ressing mode e mted and in Indexed
Example:	MULLW	0xC4				Literal Offso	et Mode" for d	etails.
Before Instruc W PRODH	tion = E2 = ?	2h			Words: Cycles:	1 1		
PRODL After Instruction	= ?				Q Cycle Activity.	Q2	Q3	Q4
Anter Instructio W PRODH PRODL	= E2 = A[= 08	2h Dh Bh			Decode	Read register 'f'	Process Data	Write registers PRODH: PRODL
					<u>Example:</u> Before Instru	MULWF	REG, 1	

Before Instruction		
W	=	C4h
REG	=	B5h
PRODH	=	?
PRODL	=	?
After Instruction		
W	=	C4h
REG	=	B5h
PRODH	=	8Ah
PRODL	=	94h

PIC18F46J11 FAMILY

Subtract Literal from FSR2 and Return

SUBULNK

SUB	BFSR Subtract Literal from FSR						
Synta	ax:	SUBFSR	SUBFSR f, k				
Oper	ands:	$0 \le k \le 63$	$0 \le k \le 63$				
		$f \in [\ 0, \ 1,$	2]				
Oper	ation:	FSRf – k	\rightarrow FSRf				
Statu	is Affected:	None					
Enco	Encoding: 1110 1001 ffkk kkkk						
Description: The 6-bit literal 'k' is subtracted fro the contents of the FSR specified by 'f'.					ted from cified		
Word	ls:	1					
Cycle	es:	1					
QC	ycle Activity:						
Q1		Q2	Q3		Q4		
	Decode	Read	Proce	ss \	Vrite to		
		register 'f'	Data	a de	stination		

SUBFSR 2, 0x23

Synta	ax:	SUBULNK k					
Oper	ands:	$0 \le k \le 63$					
Oper	ation:	$FSR2 - k \rightarrow FSR2$,					
		$(TOS) \rightarrow PC$					
Statu	s Affected:	None					
Enco	ding:	1110 1	001	11kk	kkkk		
Desc	ription:	The 6-bit literal 'k' is subtracted from the contents of the FSR2. A RETURN is then executed by loading the PC with the TOS.					
		The instruction takes two cycles to execute; a NOP is performed during the second cycle.					
	This may be thought of as a special case of the SUBFSR instruction, where f = 3 (binary '11'): it operates only on FSR2.						
Word	ls:	1					
Cycle	es:	2					
QC	ycle Activity:						
	Q1	Q2	C	23	Q4		
	Decode	Read	Pro	cess	Write to		
		register 'f'	Da	ata	destination		
	No	No	N	lo	No		
	Operation	ration Operation Operation Operatio					

Example:	SUBULNK	0x23
Before Instruction	n	
5050		

FSRZ	-	031111
PC	=	0100h
After Instructi	on	
FSR2	=	03DCh
PC	=	(TOS)

Before Instruction FSR2 = 03FFh After Instruction

Example:

FSR2 = 03DCh

APPENDIX A: REVISION HISTORY

Revision A (October 2008)

Original data sheet for the PIC18F46J11 family of devices.

Revision B (February 2009)

Changes to the Electrical Characteristics and minor edits throughout text.

Revision C (October 2009)

Removed "Preliminary" marking.

Revision D (March 2011)

Committed data sheet errata changes and minor corrections throughout text.

APPENDIX B: DEVICE DIFFERENCES

The differences between the devices listed in this data sheet are shown in Table B-1,

TABLE B-1: DEVICE DIFFERENCES BETWEEN PIC18F46J11 FAMILY MEMBERS

Features	PIC18F24J11	PIC18F25J11	PIC18F26J11	PIC18F44J11	PIC18F45J11	PIC18F46J11
Program Memory	16K	32K	64K	16K	32K	64K
Program Memory (Instructions)	8,192	16,384	32,768	8,192	16,384	32,768
I/O Ports (Pins)	Ports A, B, C			Ports A, B, C, D, E		
10-Bit ADC Module	10 Input Channels			13 Input Channels		
Packages	28-Pin QFN, SOIC, SSOP and SPDIP (300 mil)			44-Pin QFN and TQFP		

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8528-2100 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460

Fax: 86-25-8473-2470 China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-6578-300 Fax: 886-3-6578-370

Taiwan - Kaohsiung Tel: 886-7-213-7830 Fax: 886-7-330-9305

Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820

02/18/11