

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	34
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	2.15V ~ 3.6V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f44j11t-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.4.1 CONSIDERATIONS FOR CERAMIC CAPACITORS

In recent years, large value, low-voltage, surface-mount ceramic capacitors have become very cost effective in sizes up to a few tens of microfarad. The low-ESR, small physical size and other properties make ceramic capacitors very attractive in many types of applications.

Ceramic capacitors are suitable for use with the VDDCORE voltage regulator of this microcontroller. However, some care is needed in selecting the capacitor to ensure that it maintains sufficient capacitance over the intended operating range of the application.

Typical low-cost, 10 μ F ceramic capacitors are available in X5R, X7R and Y5V dielectric ratings (other types are also available, but are less common). The initial tolerance specifications for these types of capacitors are often specified as ±10% to ±20% (X5R and X7R), or -20%/+80% (Y5V). However, the effective capacitance that these capacitors provide in an application circuit will also vary based on additional factors, such as the applied DC bias voltage and the temperature. The total in-circuit tolerance is, therefore, much wider than the initial tolerance specification.

The X5R and X7R capacitors typically exhibit satisfactory temperature stability (ex: $\pm 15\%$ over a wide temperature range, but consult the manufacturer's data sheets for exact specifications). However, Y5V capacitors typically have extreme temperature tolerance specifications of $\pm 22\%/-82\%$. Due to the extreme temperature tolerance, a 10 µF nominal rated Y5V type capacitor may not deliver enough total capacitance to meet minimum VDDCORE voltage regulator stability and transient response requirements. Therefore, Y5V capacitors are not recommended for use with the VDDCORE regulator if the application must operate over a wide temperature range.

In addition to temperature tolerance, the effective capacitance of large value ceramic capacitors can vary substantially, based on the amount of DC voltage applied to the capacitor. This effect can be very significant, but is often overlooked or is not always documented.

A typical DC bias voltage vs. capacitance graph for X7R type and Y5V type capacitors is shown in Figure 2-4.

FIGURE 2-4: DC BIAS VOLTAGE vs. CAPACITANCE **CHARACTERISTICS** Change (%) 0 -10 6V Capacitor -20 -30 Capacitance -40 10V Capacitor -50 -60 -70 6.3V Capacitor -80 -9 10 11 12 13 0 2 3 7 8 14 15 16 DC Bias Voltage (VDC)

When selecting a ceramic capacitor to be used with the VDDCORE voltage regulator, it is suggested to select a high-voltage rating, so that the operating voltage is a small percentage of the maximum rated capacitor voltage. For example, choose a ceramic capacitor rated at 16V for the 2.5V VDDCORE voltage. Suggested capacitors are shown in Table 2-1.

2.5 ICSP Pins

The PGC and PGD pins are used for In-Circuit Serial ProgrammingTM (ICSPTM) and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of ohms, not to exceed 100 Ω .

Pull-up resistors, series diodes, and capacitors on the PGC and PGD pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits, and pin input voltage high (VIH) and input low (VIL) requirements.

For device emulation, ensure that the "Communication Channel Select" (i.e., PGCx/PGDx pins), programmed into the device, matches the physical connections for the ICSP to the Microchip debugger/emulator tool.

For more information on available Microchip development tools connection requirements, refer to **Section 28.0 "Development Support"**.

R/W-0							
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
INTSRC	PLLEN	TUN5	TUN4	TUN3	TUN2	TUN1	TUN0
it 7							bit (
.egend:							
.egenu. R = Readable bi	•	W = Writable b	. :+		contod bit road		
			JIL	•	nented bit, read		
n = Value at PC	R	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
:	1 = 31.25 kHz	z device clock d	erived from 8	cy Source Sele 3 MHz INTOSC rom INTRC inte	source (divide-	by-256 enabled	I)
:	PLLEN: Frequ 1 = PLL enab 0 = PLL disab		⁻ Enable bit				
	011111 = Ma 011110 • • •	requency Tunin ximum frequen nter frequency;	су	odule is running	at the calibrate	ed frequency	

REGISTER 3-1: OSCTUNE: OSCILLATOR TUNING REGISTER (ACCESS F9Bh)

3.3 Clock Sources and Oscillator Switching

Like previous PIC18 enhanced devices, the PIC18F46J11 family includes a feature that allows the device clock source to be switched from the main oscillator to an alternate, low-frequency clock source. PIC18F46J11 family devices offer two alternate clock sources. When an alternate clock source is enabled, the various power-managed operating modes are available.

Essentially, there are three clock sources for these devices:

- Primary Oscillators
- · Secondary Oscillators
- Internal Oscillator Block

The **Primary Oscillators** include the External Crystal and Resonator modes, the External Clock modes and the internal oscillator block. The particular mode is defined by the FOSC<2:0> Configuration bits. The details of these modes are covered earlier in this chapter. The **Secondary Oscillators** are external sources that are not connected to the OSC1 or OSC2 pins. These sources may continue to operate even after the controller is placed in a power-managed mode.

PIC18F46J11 family devices offer the Timer1 oscillator as a secondary oscillator. This oscillator, in all power-managed modes, is often the time base for functions such as a Real-Time Clock (RTC). Most often, a 32.768 kHz watch crystal is connected between the RC0/T1OSO/T1CKI/RP11 and RC1/T1OSI/RP12 pins. Like the HS Oscillator mode circuits, loading capacitors are also connected from each pin to ground. The Timer1 oscillator is discussed in more detail in **Section 13.5 "Timer1 Oscillator"**.

In addition to being a primary clock source, the **postscaled internal clock** is available as a power-managed mode clock source. The INTRC source is also used as the clock source for several special features, such as the WDT and Fail-Safe Clock Monitor (FSCM).

5.2 Master Clear (MCLR)

The Master Clear Reset (MCLR) pin provides a method for triggering a hard external Reset of the device. A Reset is generated by holding the pin low. PIC18 extended microcontroller devices have a noise filter in the MCLR Reset path, which detects and ignores small pulses.

The $\overline{\text{MCLR}}$ pin is not driven low by any internal Resets, including the WDT.

5.3 Power-on Reset (POR)

A POR condition is generated on-chip whenever VDD rises above a certain threshold. This allows the device to start in the initialized state when VDD is adequate for operation.

To take advantage of the POR circuitry, tie the $\overline{\text{MCLR}}$ pin through a resistor (1 k Ω to 10 k Ω) to VDD. This will eliminate external RC components usually needed to create a POR delay.

When the device starts normal operation (i.e., exits the Reset condition), device operating parameters (voltage, frequency, temperature, etc.) must be met to ensure operation. If these conditions are not met, the device must be held in Reset until the operating conditions are met.

POR events are captured by the \overrightarrow{POR} bit (RCON<1>). The state of the bit is set to '0' whenever a Power-on Reset occurs; it does not change for any other Reset event. \overrightarrow{POR} is not reset to '1' by any hardware event. To capture multiple events, the user manually resets the bit to '1' in software following any POR.

5.4 Brown-out Reset (BOR)

"F" devices incorporate two types of BOR circuits: one which monitors VDDCORE and one which monitors VDD. Only one BOR circuit can be active at a time. When in normal Run mode, Idle or normal Sleep modes, the BOR circuit that monitors VDDCORE is active and will cause the device to be held in BOR if VDDCORE drops below VBOR (parameter D005). Once VDDCORE rises back above VBOR, the device will be held in Reset until the expiration of the Power-up Timer, with period, TPWRT (parameter 33).

During Deep Sleep operation, the on-chip core voltage regulator is disabled and VDDCORE is allowed to drop to ground levels. If the Deep Sleep BOR circuit is enabled by the DSBOREN Configuration bit (CONFIG3L<2> = 1), it will monitor VDD. If VDD drops below the VDSBOR threshold, the device will be held in a Reset state similar to POR. All registers will be set back to their POR Reset values and the contents of the DSGPR0 and DSGPR1 holding registers will be lost.

Additionally, if any I/O pins had been configured as outputs during Deep Sleep, these pins will be tri-stated and the device will no longer be held in Deep Sleep. Once the VDD voltage recovers back above the VDSBOR threshold, and once the core voltage regulator achieves a VDDCORE voltage above VBOR, the device will begin executing code again normally, but the DS bit in the WDTCON register will not be set. The device behavior will be similar to hard cycling all power to the device.

On "LF" devices, the VDDCORE BOR circuit is always disabled because the internal core voltage regulator is disabled. Instead of monitoring VDDCORE, PIC18LF devices in this family can use the VDD BOR circuit to monitor VDD excursions below the VDSBOR threshold. The VDD BOR circuit can be disabled by setting the DSBOREN bit = 0.

The VDD BOR circuit is enabled when DSBOREN = 1 on "LF" devices, or on "F" devices while in Deep Sleep with DSBOREN = 1. When enabled, the VDD BOR circuit is extremely low power (typ. 40 nA) during normal operation above ~2.3V on VDD. If VDD drops below this DSBOR arming level when the VDD BOR circuit is enabled, the device may begin to consume additional current (typ. 50 μ A) as internal features of the circuit power up. The higher current is necessary to achieve more accurate sensing of the VDD level. However, the device will not enter Reset until VDD falls below the VDSBOR threshold.

5.4.1 DETECTING BOR

The BOR bit always resets to '0' on any VDDCORE, BOR or POR event. This makes it difficult to determine if a Brown-out Reset event has occurred just by reading the state of BOR alone. A more reliable method is to simultaneously check the state of both POR and BOR. This assumes that the POR bit is reset to '1' in software immediately after any Power-on Reset event. If BOR is '0' while POR is '1', it can be reliably assumed that a Brown-out Reset event has occurred.

If the voltage regulator is disabled (LF devices), the VDDCORE BOR functionality is disabled. In this case, the BOR bit cannot be used to determine a Brown-out Reset event. The BOR bit is still cleared by a Power-on Reset event.

TABLE 6-3: NON-ACCESS BANK SPECIAL FUNCTION REGISTER MAP

Address	Name	Address	Name	Address	Name	Address	Name	Address	Name
F5Fh	PMCONH ⁽¹⁾	F3Fh	RTCCFG	F1Fh	—	EFFh	PPSCON	EDFh	_
F5Eh	PMCONL ⁽¹⁾	F3Eh	RTCCAL	F1Eh	_	EFEh	RPINR24	EDEh	RPOR24 ⁽¹⁾
F5Dh	PMMODEH ⁽¹⁾	F3Dh	REFOCON	F1Dh	_	EFDh	RPINR23	EDDh	RPOR23 ⁽¹⁾
F5Ch	PMMODEL ⁽¹⁾	F3Ch	PADCFG1	F1Ch	_	EFCh	RPINR22	EDCh	RPOR22 ⁽¹⁾
F5Bh	PMDOUT2H ⁽¹⁾	F3Bh	_	F1Bh	_	EFBh	RPINR21	EDBh	RPOR21 ⁽¹⁾
F5Ah	PMDOUT2L ⁽¹⁾	F3Ah	_	F1Ah	_	EFAh	_	EDAh	RPOR20 ⁽¹⁾
F59h	PMDIN2H ⁽¹⁾	F39h	_	F19h	_	EF9h	_	ED9h	RPOR19 ⁽¹⁾
F58h	PMDIN2L ⁽¹⁾	F38h	_	F18h	_	EF8h	_	ED8h	RPOR18
F57h	PMEH ⁽¹⁾	F37h	_	F17h	_	EF7h	RPINR17	ED7h	RPOR17
F56h	PMEL ⁽¹⁾	F36h		F16h	—	EF6h	RPINR16	ED6h	RPOR16
F55h	PMSTATH ⁽¹⁾	F35h		F15h	—	EF5h	_	ED5h	RPOR15
F54h	PMSTATL ⁽¹⁾	F34h		F14h	—	EF4h	_	ED4h	RPOR14
F53h	CVRCON	F33h		F13h	—	EF3h	_	ED3h	RPOR13
F52h	TCLKCON	F32h		F12h	—	EF2h	_	ED2h	RPOR12
F51h	-	F31h		F11h	—	EF1h	_	ED1h	RPOR11
F50h	-	F30h		F10h	—	EF0h	_	ED0h	RPOR10
F4Fh	DSGPR1 ⁽²⁾	F2Fh		F0Fh	—	EEFh	_	ECFh	RPOR9
F4Eh	DSGPR0 ⁽²⁾	F2Eh	—	F0Eh	—	EEEh	RPINR8	ECEh	RPOR8
F4Dh	DSCONH ⁽²⁾	F2Dh	—	F0Dh	—	EEDh	RPINR7	ECDh	RPOR7
F4Ch	DSCONL ⁽²⁾	F2Ch	_	F0Ch	—	EECh	RPINR6	ECCh	RPOR6
F4Bh	DSWAKEH ⁽²⁾	F2Bh	_	F0Bh	—	EEBh	—	ECBh	RPOR5
F4Ah	DSWAKEL ⁽²⁾	F2Ah	_	F0Ah	—	EEAh	RPINR4	ECAh	RPOR4
F49h	ANCON1	F29h	_	F09h	—	EE9h	RPINR3	EC9h	RPOR3
F48h	ANCON0	F28h	_	F08h	—	EE8h	RPINR2	EC8h	RPOR2
F47h	—	F27h	_	F07h	—	EE7h	RPINR1	EC7h	RPOR1
F46h	—	F26h	_	F06h	—	EE6h	—	EC6h	RPOR0
F45h	—	F25h	_	F05h	—	EE5h	—	EC5h	—
F44h	—	F24h	_	F04h	—	EE4h	—	EC4h	—
F43h	_	F23h	_	F03h	_	EE3h	_	EC3h	_
F42h	ODCON1	F22h	—	F02h	_	EE2h	—	EC2h	—
F41h	ODCON2	F21h	_	F01h	_	EE1h	—	EC1h	_
F40h	ODCON3	F20h	_	F00h	_	EE0h	_	EC0h	—

Note 1: This register is not available on 28-pin devices.

2: Deep Sleep registers are not available on LF devices.

File Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value on POR, BOR DMACON2 DLYCYC3 DLYCYC2 DLYCYC1 DLYCYC0 INTLVL3 INTLVL2 INTLVL1 INTLVL0 0000 0000 HUVDCON VDIRMAG BGVST IRVST HLVDLN HLVDL3 HLVDL2 HLVDL1 HLVDL0 0000 0000 PORTE RDPU REPU — — — RE2 RE1 RE0 00xxxx PORTD RD7 RD6 RD5 RD4 RD3 RD2 RD1 RD0 xxxx xxxx PORTB RB7 R86 RB5 RE4 RB3 RB2 RB1 RB0 xxxx xxxx PORTA RA7 RA6 RA5 — RA3 RA2 RA1 RA0 xxxx xxxx SPBRGH1 EUSART1 Baud Rate Generator Register High Byte 0000 0000 0000 BAUDCON2 ABDOVF RCIDL<	Details on Page: 72, 285 72 72 72 72 72 72 72 72 72, 330 72 72, 330 73
HLVDCON VDIRMAG BGVST IRVST HLVDL3 HLVDL3 HLVDL1 HLVDL0 0000 0000 PORTE RDPU REPU — — RE2 RE1 RE0 00xxx PORTD RD7 RD6 RD5 RD4 RD3 RD2 RD1 RD0 xxxx xxxx PORTC RC7 RC6 RC5 RC4 RC4 RC2 RC1 RC0 xxxx xxxx PORTA RA7 RA6 RA5 — RA3 RA2 RA1 RA0 xxx- xxxx PORTA RA7 RA6 RA5 — RA3 RA2 RA1 RA0 xxx- xxxx SPBRGH1 EUSART1 Bauf Rate Generator Register High Byte 0000	72 72 72 72 72 72 72 72 72, 330 72 72, 330
PORTE RDPU REPU — — RE2 RE1 RE0 00xxx PORTD RD7 RD6 RD5 RD4 RD3 RD2 RD1 RD0 xxxx xxxx PORTC RC7 RC6 RC5 RC4 RC4 RC2 RC1 RC0 xxxx xxxx PORTB RB7 RB6 RB5 RB4 RB3 RB2 RB1 RB0 xxxx xxxx PORTA RA7 RA6 RA5 — RA3 RA2 RA1 RA0 xxx- xxxx SPBRGH1 EUSART1 Baud Rate Generator Register High Byte 0000 00	72 72 72 72 72 72 72, 330 72 72, 330
PORTD RD7 RD6 RD5 RD4 RD3 RD2 RD1 RD0 xxxx xxxx PORTC RC7 RC6 RC5 RC4 RC4 RC2 RC1 RC0 xxxx xxxx PORTB RB7 RB6 RB5 RB4 RB3 RB2 RB1 RB0 xxxx xxxx PORTA RA7 RA6 RA5 — RA3 RA2 RA1 RA0 xxx- xxxx SPBRGH1 EUSART1 Baud Rate Generator Register High Byte 0000 <	72 72 72 72 72 72, 330 72 72, 330
PORTC RC7 RC6 RC5 RC4 RC4 RC2 RC1 RC0 xxxx xxxx PORTB RB7 RB6 RB5 RB4 RB3 RB2 RB1 RB0 xxxx xxxx PORTA RA7 RA6 RA5 — RA3 RA2 RA1 RA0 xxxx xxxx SPBRGH1 EUSART1 Baud Rate Generator Register High Byte 0000 0000 0000 0000 0000 BAUDCON1 ABDOVF RCIDL RXDTP TXCKP BRG16 — WUE ABDEN 0100 0-00 SPBRGH2 EUSART2 Baud Rate Generator Register High Byte 0000 0000 0000 BAUDCON2 ABDOVF RCIDL RXDTP TXCKP BRG16 — WUE ABDEN 0100 0-00 TMR3H Timer3 Register High Byte xxxx xxxx xxxx xxxx xxxx xxxx Xxxx xxxx TMR3L Timer4 Register V WUE ABDEN 0100 0000 0000	72 72 72 72, 330 72 72, 330
PORTB RB7 RB6 RB5 RB4 RB3 RB2 RB1 RB0 xxxx xxxx PORTA RA7 RA6 RA5 — RA3 RA2 RA1 RA0 xxx- xxxx SPBRGH1 EUSART1 Baud Rate Generator Register High Byte 0000 0000 0000 0000 BAUDCON1 ABDOVF RCIDL RXDTP TXCKP BRG16 — WUE ABDEN 0100 0-00 SPBRGH2 EUSART2 Baud Rate Generator Register High Byte 0000 0000 0000 0000 BAUDCON2 ABDOVF RCIDL RXDTP TXCKP BRG16 — WUE ABDEN 0100 0-00 TMR3H Timer3 Register High Byte xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx TMR3L Timer3 Register Low Byte xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx TMR4 Timer4 Register 0000 0000	72 72 72, 330 72 72, 330
PORTA RA7 RA6 RA5 — RA3 RA2 RA1 RA0 xxx-xxxx SPBRGH1 EUSART1 Baud Rate Generator Register High Byte 0000 0000 0000 0000 0000 BAUDCON1 ABDOVF RCIDL RXDTP TXCKP BRG16 — WUE ABDEN 0100 0-00 SPBRGH2 EUSART2 Baud Rate Generator Register High Byte 0000 0000 0000 0000 0000 0000 BAUDCON2 ABDOVF RCIDL RXDTP TXCKP BRG16 — WUE ABDEN 0100 0-00 TMR3H Timer3 Register High Byte xxxx xxxx xxxx xxxx xxxx xxxx Xxxx xxxx T3CON TMR3CS1 TMR3CS0 T3CKPS1 T3CKPS0 — T3SYNC RD16 TMR3ON 0000 -000 TMR4 Timer4 Register 0100 0-00 TMR4 Timer4 Register 1111 1111 1111 1111 T4CON — T40UTPS3 T40UTPS2 T40UTPS0 TMR4ON T4CKPS0 -0000 0000 <t< td=""><td>72 72, 330 72, 330 72 72, 330</td></t<>	72 72, 330 72, 330 72 72, 330
SPBRGH1 EUSART1 Baud Rate Generator Register High Byte 0000 0000 BAUDCON1 ABDOVF RCIDL RXDTP TXCKP BRG16 — WUE ABDEN 0100 0-00 SPBRGH2 EUSART2 Baud Rate Generator Register High Byte 0000 0000 0000 BAUDCON2 ABDOVF RCIDL RXDTP TXCKP BRG16 — WUE ABDEN 0100 0-00 TMR3H Timer3 Register High Byte xxxx xxxx XXXX XXXX XXXX XXXX TMR3L Timer3 Register Low Byte xxxx XXXX XXXX XXXX XXXX TMR4 Timer4 Register 0000 0000 0000 0000 PR4 Timer4 Period Register T40UTPS2 T40UTPS1 T40UTPS0 TMR4ON T4CKPS1 74CKPS0 -0000 0000 SSP2BUF MSSP2 Address Register (I ² C™ Slave mode), MSSP2 Baud Rate Reload Register (I ² C Master mode) 0000 0000 0000 SSP2MSK ⁽⁴⁾ MSK7 MSK6 MSK5 MSK4 <td>72 72, 330 72 72, 330</td>	72 72, 330 72 72, 330
BAUDCON1 ABDOVF RCIDL RXDTP TXCKP BRG16 — WUE ABDEN 0100 0-00 SPBRGH2 EUSART2 Baud Rate Generator Register High Byte 0000 0000 0000 0000 BAUDCON2 ABDOVF RCIDL RXDTP TXCKP BRG16 — WUE ABDEN 0100 0-00 TMR3H Timer3 Register High Byte	72, 330 72 72, 330
SPBRGH2 EUSART2 Baud Rate Generator Register High Byte 0000 0000 BAUDCON2 ABDOVF RCIDL RXDTP TXCKP BRG16 — WUE ABDEN 0100 0-00 TMR3H Timer3 Register High Byte xxxx xxxx xxxx	72 72, 330
BAUDCON2 ABDOVF RCIDL RXDTP TXCKP BRG16 — WUE ABDEN 0100 0-00 TMR3H Timer3 Register High Byte xxxx	72, 330
TMR3H Timer3 Register High Byte xxxx xxxx TMR3L Timer3 Register Low Byte xxxx xxxx T3CON TMR3CS1 TMR3CS0 T3CKPS1 T3CKPS0 — T3SYNC RD16 TMR3ON 0000 -000 TMR4 Timer4 Register 0000 0000 - 0000 0000 - 0000 0000 - 0000 0000 - 0000 0000 - 0000 0000 - 0000 0000 - 0000 0000 - 0000 0000 - 0000 0000 - 0000 0000 - 0000 0000 - 0000	
TMR3L Timer3 Register Low Byte xxxx xxxx T3CON TMR3CS1 TMR3CS0 T3CKPS1 T3CKPS0 — T3SYNC RD16 TMR3ON 0000 -000 TMR4 Timer4 Register 0000 0000 0000 0000 0000 0000 PR4 Timer4 Register 1111	73
T3CON TMR3CS1 TMR3CS0 T3CKPS1 T3CKPS0 — T3SYNC RD16 TMR3ON 0000 -000 TMR4 Timer4 Register 0000 <t< td=""><td></td></t<>	
TMR4 Timer4 Register 0000 0000 PR4 Timer4 Period Register 1111	73
PR4 Timer4 Period Register 1111 1111 T4CON — T40UTPS3 T40UTPS2 T40UTPS1 T40UTPS0 TMR4ON T4CKPS1 T4CKPS0 -000 0000 SSP2BUF MSSP2 Receive Buffer/Transmit Register xxxx xxxx xxxx xxxx xxxx xxxx SSP2ADD/ SSP2MSK ⁽⁴⁾ MSK7 MSK6 MSK5 MSK4 MSK3 MSK2 MSK1 MSK0 1111 1111 SSP2STAT SMP CKE D/Ā P S R/W UA BF 0000 0000 SSP2CON1 WCOL SSPOV SSPEN CKP SSPM3 SSPM2 SSPM1 SSPM0 0000 0000 SSP2CON2 GCEN ACKSTAT ACKDT ACKEN RCEN PEN RSEN SEN 0000 0000 CMSTAT — — — — — — — — — — — — — — — — … … …	73, 215
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	73
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	73
SSP2ADD/ SSP2MSK ⁽⁴⁾ MSSP2 Address Register (l ² C ™ Slave mode), MSSP2 Baud Rate Reload Register (l ² C Master mode) 0000 0000 SSP2MSK ⁽⁴⁾ MSK7 MSK6 MSK5 MSK4 MSK3 MSK2 MSK1 MSK0 1111 1111 SSP2MSK ⁽⁴⁾ SMP CKE D/Ā P S R/₩ UA BF 0000 0000 SSP2CON1 WCOL SSPOV SSPEN CKP SSPM3 SSPM2 SSPM1 SSPM0 0000 0000 SSP2CON2 GCEN ACKSTAT ACKDT ACKEN RCEN PEN RSEN SEN CMSTAT — — — — — COUT2 COUT1	73, 225
SSP2MSK ⁽⁴⁾ MSK7 MSK6 MSK5 MSK4 MSK3 MSK2 MSK1 MSK0 1111 1111 SSP2STAT SMP CKE D/Ā P S R/W UA BF 0000 0000 SSP2CON1 WCOL SSPOV SSPEN CKP SSPM3 SSPM2 SSPM1 SSPM0 0000 0000 SSP2CON2 GCEN ACKSTAT ACKDT ACKEN RCEN PEN RSEN SEN 0000	73
Imisko Imisko<	73, 295
SSP2CON1 WCOL SSPOV SSPEN CKP SSPM3 SSPM2 SSPM1 SSPM0 0000	73, 295
SSP2CON2 GCEN ACKSTAT ACKDT ACKEN RCEN PEN RSEN SEN 0000 0000 GCEN ACKSTAT ADMSK5 ⁽⁴⁾ ADMSK4 ⁽⁴⁾ ADMSK3 ⁽⁴⁾ ADMSK2 ⁽⁴⁾ ADMSK1 ⁽⁴⁾ SEN 0000 0000 0000 CMSTAT - - - - - COUT2 COUT1 11	73, 273
GCEN ACKSTAT ADMSK5 ⁽⁴⁾ ADMSK4 ⁽⁴⁾ ADMSK3 ⁽⁴⁾ ADMSK2 ⁽⁴⁾ ADMSK1 ⁽⁴⁾ SEN CMSTAT - - - - - COUT2 COUT1 11	73, 293
CMSTAT - - - - COUT2 COUT1 11	73, 294
PMADDRH/ — CS1 Parallel Master Port Address High Byte	73, 363
	73, 179
PMDOUT1H ⁽⁵⁾ Parallel Port Out Data High Byte (Buffer 1) 0000 0000	73, 179
PMADDRL/ Parallel Master Port Address Low Byte 0000 0000	73, 179
PMDOUT1L ⁽⁵⁾ Parallel Port Out Data Low Byte (Buffer 0) 0000 0000	73, 179
PMDIN1H ⁽⁵⁾ Parallel Port In Data High Byte (Buffer 1) 0000 0000	73
PMDIN1L ⁽⁵⁾ Parallel Port In Data Low Byte (Buffer 0) 0000 0000	73
TXADDRL SPI DMA Transit Data Pointer Low Byte 0000 0000	73
TXADDRH — — — SPI DMA Transit Data Pointer High Byte 0000	73
RXADDRL SPI DMA Receive Data Pointer Low Byte 0000 0000	
RXADDRH — — — SPI DMA Receive Data Pointer High Byte 0000	73
DMABCL SPI DMA Byte Count Low Byte 0000 0000	
DMABCH — — — — SPI DMA Receive Data 00 Pointer High Byte Pointer High Byte	73
PMCONH ⁽⁵⁾ PMPEN — — ADRMUX1 ADRMUX0 PTBEEN PTWREN PTRDEN 00 0000	73 73
PMCONL ⁽⁵⁾ CSF1 CSF0 ALP — CS1P BEP WRSP RDSP 000-0000	73 73 73
PMMODEH ⁽⁵⁾ BUSY IRQM1 IRQM0 INCM1 INCM0 MODE16 MODE1 MODE0 0000 0000	73 73 73 73 73
PMMODEL ⁽⁵⁾ WAITB1 WAITB0 WAITM3 WAITM2 WAITM1 WAITM0 WAITE1 WAITE0 0000 0000	73 73 73 73 73 73, 172

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition, r = reserved. Bold indicates shared access SFRs.

Note 1: Bit 21 of the PC is only available in Serial Programming (SP) modes.

2: Reset value is '0' when Two-Speed Start-up is enabled and '1' if disabled.

3: The SSPxMSK registers are only accessible when SSPxCON2<3:0> = 1001.

4: Alternate names and definitions for these bits when the MSSP module is operating in I²C™ Slave mode. See Section 19.5.3.2 "Address Masking Modes" for details.

5: These bits and/or registers are only available in 44-pin devices; otherwise, they are unimplemented and read as '0'. Reset values are shown for 44-pin devices.

6: The PMADDRH/PMDOUT1H and PMADDRL/PMDOUT1L register pairs share the same physical registers and addresses, but have different functions determined by the module's operating mode. See Section 11.1.2 "Data Registers" for more information.

7.5.3 WRITE VERIFY

Depending on the application, good programming practice may dictate that the value written to the memory should be verified against the original value. This should be used in applications where excessive writes can stress bits near the specification limit.

7.5.4 UNEXPECTED TERMINATION OF WRITE OPERATION

If a write is terminated by an unplanned event, such as loss of power or an unexpected Reset, the memory location just programmed should be verified and reprogrammed if needed. If the write operation is interrupted by a MCLR Reset or a WDT time-out Reset during normal operation, the user can check the WRERR bit and rewrite the location(s) as needed.

7.6 Flash Program Operation During Code Protection

See Section 26.6 "Program Verification and Code Protection" for details on code protection of Flash program memory.

TABLE 7-2:	REGISTERS ASSOCIATED WITH PROGRAM FLASH MEMORY
------------	--

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:
TBLPTRU	bit 21 Program Memory Table Pointer Upper Byte (TBLPTR<20:16>)							69	
TBPLTRH	Program Memory Table Pointer High Byte (TBLPTR<15:8>)							69	
TBLPTRL	Program Memory Table Pointer Low Byte (TBLPTR<7:0>)								69
TABLAT	Program Memory Table Latch								69
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INTOIF	RBIF	69
EECON2	Program Memory Control Register 2 (not a physical register)								71
EECON1	—	_	WPROG	FREE	WRERR	WREN	WR	—	71

Legend: — = unimplemented, read as '0'. Shaded cells are not used during Flash program memory access.

PIC18F46J11 FAMILY

R/W-0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
SSP2IF	BCL2IF	RC2IF	TX2IF	TMR4IF	CTMUIF	TMR3GIF	RTCCIF
bit 7							bit (
Legend:							
R = Readabl	le bit	W = Writable	bit		nented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
b :+ 7		ton Cumphrone	o Coriol Dort		L:4		
bit 7		•		2 Interrupt Flag		2)	
		o transmit/recep	•	te (must be clea	ired in soltware	e)	
bit 6	•			ISSP2 module)			
	1 = A bus co	llision occurred	(must be clea	ared in software)		
	0 = No bus c	ollision occurre	d				
bit 5	RC2IF: EUSA	ART2 Receive I	nterrupt Flag	bit			
				32, is full (cleare	ed when RCRE	EG2 is read)	
		SART2 receive I		·			
bit 4		RT2 Transmit I					
		SART2 transmit		32, is empty (cl	eared when 12	KREG2 is writte	n)
bit 3		R4 to PR4 Mate		aa hit			
				be cleared in sof	ftware)		
		4 to PR4 match	· ·		(Indi O)		
bit 2	CTMUIF: Cha	arge Time Meas	surement Unit	Interrupt Flag b	bit		
			``	e cleared in soft	ware)		
	$0 = CTMU e^{i}$	vent has not oc	curred				
bit 1		mer3 Gate Eve	•	•			
		•	• •	be cleared in s	oftware)		
		r3 gate event co	•				
bit 0		CC Interrupt Fla	-		,		
		terrupt occurred C interrupt occu		ared in software	e)		
	0 = 100 KIGC		iieu				

REGISTER 9-6: PIR3: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 3 (ACCESS FA4h)

REGISTER 10-21: RPOR0: PERIPHERAL PIN SELECT OUTPUT REGISTER 0 (BANKED EC6h)⁽¹⁾

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_		RP0R4	RP0R3	RP0R2	RP0R1	RP0R0
bit 7							bit 0

Legend:	R/\overline{W} = Readable, Writable if IOLOCK = 0						
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP0R<4:0>:** Peripheral Output Function is Assigned to RP0 Output Pin bits (see Table 10-14 for peripheral function numbers)

Note 1: Register values can be changed only if PPSCON<IOLOCK> = 0.

REGISTER 10-22: RPOR1: PERIPHERAL PIN SELECT OUTPUT REGISTER 1 (BANKED EC7h)

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—	—	RP1R4	RP1R3	RP1R2	RP1R1	RP1R0	
bit 7 bit 0								

Legend:	R/\overline{W} = Readable, Writable if IOLOCK = 0						
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP1R<4:0>:** Peripheral Output Function is Assigned to RP1 Output Pin bits (see Table 10-14 for peripheral function numbers)

REGISTER 10-23: RPOR2: PERIPHERAL PIN SELECT OUTPUT REGISTER 2 (BANKED EC8h)

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_		RP2R4	RP2R3	RP2R2	RP2R1	RP2R0
bit 7							bit 0

Legend:	R/\overline{W} = Readable, Writable if IOLOCK = 0				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP2R<4:0>:** Peripheral Output Function is Assigned to RP2 Output Pin bits (see Table 10-14 for peripheral function numbers)

REGISTER 11-9: PMADDRH: PARALLEL PORT ADDRESS REGISTER HIGH BYTE – MASTER MODES ONLY (ACCESS F6Fh)⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	CS1		Parallel	Master Port Addr	ess High Byt	e<13:8>	
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable bit		U = Unimpleme	nted bit, read	as '0' r = Re	eserved
-n = Value at POR '1' = Bit is set				'0' = Bit is cleare	ed	x = Bit is unkr	nown
bit 7	Unimplemen	ted: Read as '0'					
bit 6	CS1: Chip Se	elect bit					
	If PMCON<7:	<u>6> = 10:</u>					
	1 = Chip sele	ct is active					
	0 = Chip sele	ct is inactive					
	If PMCON<7:6> = 11 or 00:						
	Bit functions a	as ADDR<14>.					
bit 5-0	Parallel Mast	ter Port Address:	High Byte<	<13:8> bits			

Note 1: In Enhanced Slave mode, PMADDRH functions as PMDOUT1H, one of the Output Data Buffer registers.

REGISTER 11-10: PMADDRL: PARALLEL PORT ADDRESS REGISTER LOW BYTE – MASTER MODES ONLY (ACCESS F6Eh)⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		Parallel	Master Port A	Address Low Byte	<7:0>		
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	oit	U = Unimplemer	nted bit, read	as '0' r = F	Reserved
-n = Value at P		'1' = Bit is set		'0' = Bit is cleare	d	x = Bit is unl	nown

bit 7-0 Parallel Master Port Address: Low Byte<7:0> bits

Note 1: In Enhanced Slave mode, PMADDRL functions as PMDOUT1L, one of the Output Data Buffer registers.

18.3 Compare Mode

In Compare mode, the 16-bit CCPRx register value is constantly compared against either the TMR1 or TMR3 register pair value. When a match occurs, the ECCPx pin can be:

- Driven high
- Driven low
- Toggled (high-to-low or low-to-high)
- Remain unchanged (that is, reflects the state of the I/O latch)

The action on the pin is based on the value of the mode select bits (CCPxM<3:0>). At the same time, the interrupt flag bit, CCPxIF, is set.

18.3.1 ECCP PIN CONFIGURATION

Users must configure the ECCPx pin as an output by clearing the appropriate TRIS bit.

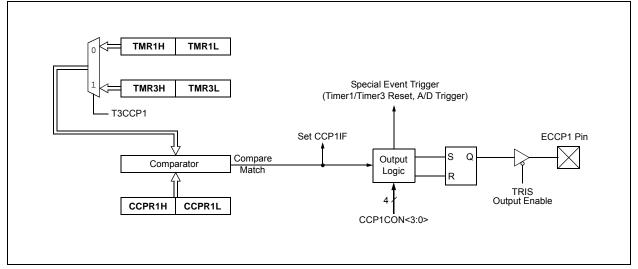
Note:	Clearing the CCPxCON register will force
	the ECCPx compare output latch
	(depending on device configuration) to the
	default low level. This is not the PORTx
	I/O data latch.

18.3.2 TIMER1/TIMER3 MODE SELECTION

Timer1 and/or Timer3 must be running in Timer mode or Synchronized Counter mode if the ECCP module is using the compare feature. In Asynchronous Counter mode, the compare operation will not work reliably.

18.3.3 SOFTWARE INTERRUPT MODE

When the Generate Software Interrupt mode is chosen (CCPxM<3:0> = 1010), the ECCPx pin is not affected; only the CCPxIF interrupt flag is affected.


18.3.4 SPECIAL EVENT TRIGGER

The ECCP module is equipped with a Special Event Trigger. This is an internal hardware signal generated in Compare mode to trigger actions by other modules. The Special Event Trigger is enabled by selecting the Compare Special Event Trigger mode (CCPxM<3:0> = 1011).

The Special Event Trigger resets the Timer register pair for whichever timer resource is currently assigned as the module's time base. This allows the CCPRx registers to serve as a programmable period register for either timer.

The Special Event Trigger can also start an A/D conversion. In order to do this, the A/D converter must already be enabled.

FIGURE 18-2: COMPARE MODE OPERATION BLOCK DIAGRAM

ECCP Mode	PxM<1:0>	PxA	PxB	PxC	PxD
Single	00	Yes ⁽¹⁾	Yes ⁽¹⁾	Yes ⁽¹⁾	Yes ⁽¹⁾
Half-Bridge	10	Yes	Yes	No	No
Full-Bridge, Forward	01	Yes	Yes	Yes	Yes
Full-Bridge, Reverse	11	Yes	Yes	Yes	Yes

TABLE 18-4: EXAMPLE PIN ASSIGNMENTS FOR VARIOUS PWM ENHANCED MODES

Note 1: Outputs are enabled by pulse steering in Single mode (see Register 18-4).

FIGURE 18-6: EXAMPLE PWM (ENHANCED MODE) OUTPUT RELATIONSHIPS (ACTIVE-HIGH STATE)

				Period	→
00	(Single Output)	PxA Modulated	Delay ⁽¹⁾	Delay ⁽¹⁾	
		PxA Modulated			
10	(Half-Bridge)	PxB Modulated	i i		i
		PxA Active	_ <u> </u>	·	
01	(Full-Bridge,	PxB Inactive	- ;	1	1 1 1
01	Forward)	PxC Inactive	_ ;		
		PxD Modulated			
		PxA Inactive	_ ¦	1 1	
11	(Full-Bridge,	PxB Modulated		į	
	Reverse)	PxC Active	: - :		 I
		PxD Inactive			

Delay = 4 * Tosc * (ECCPxDEL<6:0>)

Note 1: Dead-band delay is programmed using the ECCPxDEL register (Section 18.5.6 "Programmable Dead-Band Delay Mode").

19.5.3.4 7-Bit Address Masking Mode

Unlike 5-Bit Address Masking mode, 7-Bit Address Masking mode uses a mask of up to eight bits (in 10-bit addressing) to define a range of addresses than can be Acknowledged, using the lowest bits of the incoming address. This allows the module to Acknowledge up to 127 different addresses with 7-bit addressing, or 255 with 10-bit addressing (see Example 19-4). This mode is the default configuration of the module, and is selected when MSSPMSK is unprogrammed ('1').

The address mask for 7-Bit Address Masking mode is stored in the SSPxMSK register, instead of the SSPxCON2 register. SSPxMSK is a separate hardware register within the module, but it is not directly addressable. Instead, it shares an address in the SFR space with the SSPxADD register. To access the SSPxMSK register, it is necessary to select MSSP mode, '1001' (SSPCON1<3:0> = 1001), and then read or write to the location of SSPxADD.

To use 7-Bit Address Masking mode, it is necessary to initialize SSPxMSK with a value before selecting the I^2C Slave Addressing mode. Thus, the required sequence of events is:

- 1. Select SSPxMSK Access mode (SSPxCON2<3:0> = 1001).
- Write the mask value to the appropriate SSPxADD register address (FC8h for MSSP1, F6Eh for MSSP2).
- 3. Set the appropriate I²C Slave mode (SSPxCON2<3:0> = 0111 for 10-bit addressing, 0110 for 7-bit addressing).

Setting or clearing mask bits in SSPxMSK behaves in the opposite manner of the ADMSK bits in 5-Bit Address Masking mode. That is, clearing a bit in SSPxMSK causes the corresponding address bit to be masked; setting the bit requires a match in that position. SSPxMSK resets to all '1's upon any Reset condition and, therefore, has no effect on the standard MSSP operation until written with a mask value.

With 7-Bit Address Masking mode, SSPxMSK<7:1> bits mask the corresponding address bits in the SSPxADD register. For any SSPxMSK bits that are active (SSPxMSK<n> = 0), the corresponding SSPxADD address bit is ignored (SSPxADD<n> = x). For the module to issue an address Acknowledge, it is sufficient to match only on addresses that do not have an active address mask.

With 10-Bit Address Masking mode, SSPxMSK<7:0> bits mask the corresponding address bits in the SSPxADD register. For any SSPxMSK bits that are active (= 0), the corresponding SSPxADD address bit is ignored (SSPxADD<n> = x).

Note: The two MSbs of the address are not affected by address masking.

EXAMPLE 19-4: ADDRESS MASKING EXAMPLES IN 7-BIT MASKING MODE

7-Bit Addressing:

SSPxADD<7:1>= 1010 000

SSPxMSK<7:1>= 1111 001

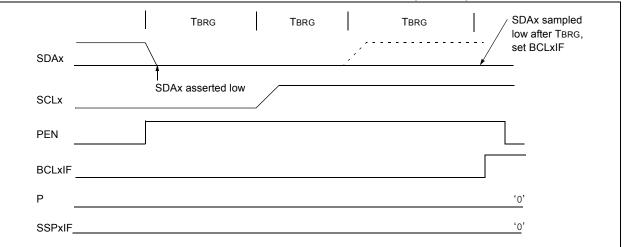
Addresses Acknowledged = ACh, A8h, A4h, A0h

10-Bit Addressing:

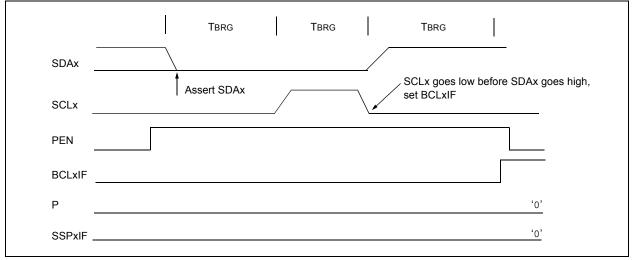
SSPxADD<7:0> = 1010 0000 (The two MSbs are ignored in this example since they are not affected)

SSPxMSK<7:0> = 1111 0011

Addresses Acknowledged = ACh, A8h, A4h, A0h


19.5.17.3 Bus Collision During a Stop Condition

Bus collision occurs during a Stop condition if:


- a) After the SDAx pin has been deasserted and allowed to float high, SDAx is sampled low after the BRG has timed out.
- b) After the SCLx pin is deasserted, SCLx is sampled low before SDAx goes high.

The Stop condition begins with SDAx asserted low. When SDAx is sampled low, the SCLx pin is allowed to float. When the pin is sampled high (clock arbitration), the BRG is loaded with SSPxADD<6:0> and counts down to 0. After the BRG times out, SDAx is sampled. If SDAx is sampled low, a bus collision has occurred. This is due to another master attempting to drive a data '0' (Figure 19-33). If the SCLx pin is sampled low before SDAx is allowed to float high, a bus collision occurs. This is another case of another master attempting to drive a data '0' (Figure 19-34).

FIGURE 19-33: BUS COLLISION DURING A STOP CONDITION (CASE 1)

FIGURE 19-34: BUS COLLISION DURING A STOP CONDITION (CASE 2)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:
GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	69
PMPIF ⁽¹⁾	ADIF	RC1IF	TX1IF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	72
PMPIE ⁽¹⁾	ADIE	RC1IE	TX1IE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	72
PMPIP ⁽¹⁾	ADIP	RC1IP	TX1IP	SSP1IP	CCP1IP	TMR2IP	TMR1IP	72
OSCFIF	CM2IF	CM1IF	—	BCL1IF	LVDIF	TMR3IF	CCP2IF	72
OSCFIE	CM2IE	CM1IE	_	BCL1IE	LVDIE	TMR3IE	CCP2IE	72
OSCFIP	CM2IP	CM1IP	_	BCL1IP	LVDIP	TMR3IP	CCP2IP	72
A/D Result	t Register Hi	gh Byte						70
A/D Result	t Register Lo	w Byte						70
VCFG1	VCFG0	CHS3	CHS3	CHS1	CHS0	GO/DONE	ADON	70
PCFG7 ⁽¹⁾	PCFG6 ⁽¹⁾	PCFG5 ⁽¹⁾	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0	74
ADFM	ADCAL	ACQT2	ACQT1	ACQT0	ADCS2	ADCS1	ADCS0	70
VBGEN	<mark>۲</mark> (2)	_	PCFG12	PCFG11	PCFG10	PCFG9	PCFG8	74
PxM1	PxM0	DCxB1	DCxB0	CCPxM3	CCPxM2	CCPxM1	CCPxM0	71
RA7	RA6	RA5	_	RA3	RA2	RA1	RA0	72
TRISA7	TRISA6	TRISA5	_	TRISA3	TRISA2	TRISA1	TRISA0	72
	GIE/GIEH PMPIF ⁽¹⁾ PMPIE ⁽¹⁾ OSCFIF OSCFIF OSCFIP A/D Resul A/D Resul VCFG1 PCFG7 ⁽¹⁾ ADFM VBGEN PxM1 RA7	GIE/GIEHPEIE/GIELPMPIF(1)ADIFPMPIE(1)ADIEPMPIP(1)ADIPOSCFIFCM2IFOSCFIECM2IEOSCFIECM2IEOSCFIPCM2IPA/D Result Register HiA/D Result Register LCVCFG1VCFG0PCFG7(1)PCFG6(1)ADFMADCALVBGENr ⁽²⁾ PxM1PxM0RA7RA6	GIE/GIEH PEIE/GIEL TMR0IE PMPIF ⁽¹⁾ ADIF RC1IF PMPIE ⁽¹⁾ ADIE RC1IE PMPIE ⁽¹⁾ ADIE RC1IF PMPIE ⁽¹⁾ ADIE RC1IF PMPIE ⁽¹⁾ ADIE RC1IF OSCFIF CM2IF CM1IF OSCFIE CM2IE CM1IF OSCFIP CM2IP CM1IF ADResult Register Hutter Byte A/D Result Register LUT Byte VCFG1 VCFG0 CHS3 PCFG7 ⁽¹⁾ PCFG6 ⁽¹⁾ PCFG5 ⁽¹⁾ ADFM ADCAL ACQT2 VBGEN r ⁽²⁾ — PXM1 PXM0 DCxB1 RA7 RA6 RA5	GIE/GIEH PEIE/GIEL TMR0IE INT0IE PMPIF ⁽¹⁾ ADIF RC1IF TX1IF PMPIE ⁽¹⁾ ADIE RC1IE TX1IE PMPIE ⁽¹⁾ ADIE RC1IE TX1IF PMPIE ⁽¹⁾ ADIE RC1IE TX1IF PMPIE ⁽¹⁾ ADIE RC1IP TX1IP OSCFIF CM2IF CM1IF OSCFIE CM2IE CM1IE OSCFIF CM2IP CM1IP OSCFIF CM2IP CM1IE OSCFIF CM2IP CM1IP OSCFIF CM2IP CM1IP ADResultRegisterLUT VCFG1 VCFG0 CHS3 CHS3 PCFG7 ⁽¹⁾ PCFG6 ⁽¹⁾ PCFG5 ⁽¹⁾ PCFG4 ADFM ADCAL ACQT2 ACQT1 VBGEN r ⁽²⁾ PCFG12 PXM1 PXM0 DCXB1 DCXB0	GIE/GIEHPEIE/GIELTMROIEINTOIERBIEPMPIF(1)ADIFRC1IFTX1IFSSP1IFPMPIE(1)ADIERC1IETX1IESSP1IEPMPIP(1)ADIPRC1IPTX1IPSSP1IPOSCFIFCM2IFCM1IF—BCL1IFOSCFIECM2IECM1IE—BCL1IFOSCFIPCM2IPCM1IP—BCL1IPOSCFIPCM2IPCM1IP—BCL1IPAD Result Register Hubter-BCL1IPA/D Result Register LubterStressonCHS3CHS3VCFG1VCFG0CHS3CHS3CHS1PCFG7(1)PCFG6(1)PCFG5(1)PCFG4PCFG3ADFMADCALACQT2ACQT1ACQT0VBGENr ⁽²⁾ —PCFG12PCFG11PXM1PXM0DCxB1DCxB0CCPxM3RA7RA6RA5—RA3	GIE/GIEHPEIE/GIELTMROIEINTOIERBIETMROIFPMPIF(1)ADIFRC1IFTX1IFSSP1IFCCP1IFPMPIE(1)ADIERC1IETX1IESSP1IECCP1IEPMPIP(1)ADIERC1IPTX1IPSSP1IECCP1IPOSCFIFCM2IFCM1IF—BCL1IFLVDIFOSCFIECM2IECM1IE—BCL1IELVDIFOSCFIFCM2IPCM1IP—BCL1IPLVDIFOSCFIFCM2IPCM1IP—BCL1IPLVDIFOSCFIFCM2IPCM1IP—BCL1IPLVDIFOSCFIFCM2IPCM1IP—BCL1IPLVDIFOSCFIFCM2IPCM1IP—BCL1IPLVDIFVSCFIFCM2IPCM1IP—BCL1IPLVDIFVCFG1PCFG1PCFG1PCFG1PCFG1PCFG2VCFG1VCFG0CHS3CHS3CHS3CHS1CHS0PCFG7(1)PCFG6(1)PCFG5(1)PCFG4PCFG3PCFG2ADFMADCALACQT2ACQT1ACQT0ADCS2VBGENr(2)—PCFG12PCFG11PCFG10PXM1PXM0DCXB1DCXB0CCPXM3CCPXM2RA7RA6RA5—RA3RA2	GIE/GIEHPEIE/GIELTMROIEINTOIERBIETMROIFINTOIFPMPIF(1)ADIFRC1IFTX1IFSSP1IFCCP1IFTMR2IFPMPIE(1)ADIERC1IETX1IESSP1IECCP1IETMR2IEPMPIP(1)ADIPRC1IPTX1IPSSP1IPCCP1IPTMR2IFOSCFIFCM2IFCM1IF—BCL1IFLVDIFTMR3IFOSCFIFCM2IECM1IE—BCL1IELVDIFTMR3IFOSCFIPCM2IPCM1IP—BCL1IPLVDIPTMR3IFOSCFIPCM2IPCM1IP—BCL1IPLVDIPTMR3IFOSCFIPCM2IPCM1IP—BCL1IPLVDIPTMR3IFOSCFIPCM2IPCM1PPBCL1IPLVDIPTMR3IFOSCFIPCM2IPCM1PPBCL1IPLVDIPTMR3IFOSCFIPCM2IPCM1PPBCL1IPLVDIPTMR3IFOSCFIPCM2IPCM1PPBCL1IPLVDIPTMR3IFOSCFIPCM2IPCM1PPBCL1IPLVDIPTMR3IFOSCFIPCM2IPCM1PPBCL1IPLVDIPTMR3IFOSCFIPCM2IPCM1PPBCL1IPLVDIPTMR3IFOSCFIPCM2IPCM1PPPBCL1IPLVDIPTMR3IFADRSUTRESTERSTMESTMESTMESTMESTMESTMESTMEVEFG1VEFG0CHS3CHS3CHS3CHS3	GIE/GIEHPEIE/GIELTMROIEINTOIERBIETMROIFINTOIFRBIFPMPIF(1)ADIFRC1IFTX1IFSSP1IFCCP1IFTMR2IFTMR1IFPMPIE(1)ADIERC1IETX1IESSP1IECCP1IETMR2IETMR1IEPMPIP(1)ADIPRC1IPTX1IPSSP1IPCCP1IPTMR2IPTMR1IPOSCFIFCM2IFCM1IFBCL1IFLVDIFTMR3IFCCP2IFOSCFIECM2IECM1IEBCL1IELVDIFTMR3IECCP2IPOSCFIFCM2IPCM1IPBCL1IPLVDIPTMR3IPCCP2IPOSCFIFCM2IPCM1IPBCL1IPLVDIPTMR3IFCCP2IPOSCFIFCM2IPCM1IPBCL1IPLVDIPTMR3IPCCP2IPA/D ResutFegister/ByteBCL1IPLVDIPTMR3IPCCP2IPA/D ResutFegister/ByteBCL1IPLVDIPTMR3IPCCP2IPA/D ResutFegister/ByteBCL1IPLVDIPTMR3IPCCP2IPA/D ResutFegister/ByteBCL1IPLVDIPTMR3IPCCP2IPA/D ResutFegister/ByteBCL1IPLVDIPTMR3IPCCP2IPA/D ResutFegister/ByteBCL1IPLVDIPTMR3IPADONPCFG1VCFG0CHS3CHS3CHS3CHS1ADOSADOSA/D ResutFegister/BytePCFG3PCFG2

TABLE 21-2: SUMMARY OF A/D REGISTERS

Legend: — = unimplemented, read as '0'. Shaded cells are not used for A/D conversion.

Note 1: These bits are only available on 44-pin devices.

2: Reserved. Always maintain as '0' for minimum power consumption.

22.7 Comparator Operation During Sleep

When a comparator is active and the device is placed in Sleep mode, the comparator remains active and the interrupt is functional if enabled. This interrupt will wake-up the device from Sleep mode when enabled. Each operational comparator will consume additional current. To minimize power consumption while in Sleep mode, turn off the comparators (CON = 0) before entering Sleep. If the device wakes up from Sleep, the contents of the CMxCON register are not affected.

22.8 Effects of a Reset

A device Reset forces the CMxCON registers to their Reset state. This forces both comparators and the voltage reference to the OFF state.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	69
PIR2	OSCFIF	CM2IF	CM1IF		BCL1IF	LVDIF	TMR3IF	CCP2IF	72
PIE2	OSCFIE	CM2IE	CM1IE	_	BCL1IE	LVDIE	TMR3IE	CCP2IE	72
IPR2	OSCFIP	CM2IP	CM1IP	_	BCL1IP	LVDIP	TMR3IP	CCP2IP	72
CMxCON	CON	COE	CPOL	EVPOL1	EVPOL0	CREF	CCH1	CCH0	70
CVRCON	CVREN	CVROE	CVRR	CVRSS	CVR3	CVR2	CVR1	CVR0	74
CMSTAT	_	_	_	_		_	COUT2	COUT1	73
ANCON0	PCFG7 ⁽¹⁾	PCFG6 ⁽¹⁾	PCFG5 ⁽¹⁾	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0	74
PORTA	RA7	RA6	RA5	_	RA3	RA2	RA1	RA0	72
TRISA	TRISA7	TRISA6	TRISA5	_	TRISA3	TRISA2	TRISA1	TRISA0	72

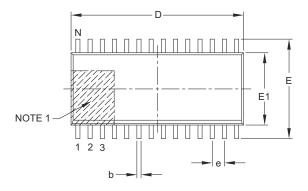
 TABLE 22-3:
 REGISTERS ASSOCIATED WITH COMPARATOR MODULE

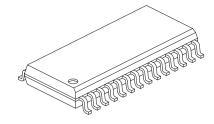
Legend: — = unimplemented, read as '0', r = reserved. Shaded cells are not related to comparator operation.

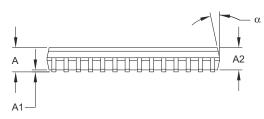
Note 1: These bits and/or registers are not implemented on 28-pin devices.

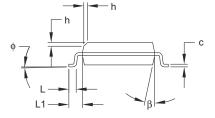
PIC18F46J11 FAMILY

ANDWF	AND W wit	th f		BC		Branch if (Carry	
Syntax:	ANDWF	f {,d {,a}}		Synt	ax:	BC n		
Operands:	$0 \leq f \leq 255$			Oper	ands:	-128 ≤ n ≤ ′	127	
	$\begin{array}{l} d \in [0,1] \\ a \in [0,1] \end{array}$			Oper	ation:	if Carry bit i (PC) + 2 + 2		
Operation:	(W) .AND.	(f) \rightarrow dest		Statu	s Affected:	None		
Status Affected:	N, Z			Enco	odina:	1110	0010 nn	nn nnnn
Encoding:	0001	01da ff	ff ffff		ription:		bit is '1', then	
Description:	The conten	ts of W are AN	NDed with	Dest		will branch.		nic program
	in W. If 'd' is '1', the result is stored back in register 'f' (default). If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the		egister 'f'. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f' (default). f 'a' is '0', the Access Bank is selected. f 'a' is '1', the BSR is used to select the			added to th have increr instruction, PC + 2 + 2	nplement num e PC. Since the nented to fetc the new addr n. This instruc	ne PC will h the next ess will be
	GPR bank	(default).				two-cycle ir	nstruction.	
		ind the extend		Word	ls:	1		
set is enabled, this instruction oper in Indexed Literal Offset Addressin		•	Cycle	es:	1(2)			
	mode wher	never f ≤ 95 (5 7.2.3 "Byte-Or	Fh). See	Q C If Ju	ycle Activity: Imp:			
		ed Instruction			Q1	Q2	Q3	Q4
	Literal Off	set Mode" for	details.		Decode	Read literal	Process	Write to
Words:	1					ʻn'	Data	PC
Cycles:	1				No operation	No operation	No operation	No operation
Q Cycle Activity:				If N	Jump:	operation	operation	operation
Q1	Q2	Q3	Q4		Q1	Q2	Q3	Q4
Decode	Read	Process	Write to		Decode	Read literal	Process	No
	register 'f'	Data	destination			'n'	Data	operation
Example:	ANDWF	REG, 0, 0		Exar	nple:	HERE	BC 5	
Before Instru W REG After Instruct	REG = C2h				Before Instru PC After Instructi	= ad	dress (HERE)
W REG	= 02h = C2h				If Carry PC If Carry PC	= 0;	dress (HERE dress (HERE	


PIC18F46J11 FAMILY


BCF	Bit Clear f			BN
Syntax:	BCF f, b	{,a}		Syntax:
Operands:	$0 \leq f \leq 255$			Operands
	0 ≤ b ≤ 7 a ∈ [0,1]			Operation
Operation:	$0 \rightarrow f \le b >$			Status Affe
Status Affected:	None			Encoding:
Encoding:	1001	bbba ff:	ff ffff	Descriptio
Description:	Bit 'b' in reg	jister 'f' is clea	red.	
		he BSR is use	nk is selected. d to select the	
	set is enabl in Indexed I mode when Section 27 Bit-Oriente	nd the extended ed, this instruc- Literal Offset A lever $f \le 95$ (5 .2.3 "Byte-Or ed Instruction set Mode" for	ction operates Addressing Fh). See iented and s in Indexed	Words: Cycles: Q Cycle A
Words:	1			If Jump:
Cycles:	1			De
Q Cycle Activity:				
Q1	Q2	Q3	Q4	
Decode	Read register 'f'	Process Data	Write register 'f'	ope If No Jum
	register i	Data	register i	ii No Suii
Example:		LAG_REG,	7, 0	De
Before Instruc	tion EG = C7h			
After Instruction				Example:
FLAG_R	EG = 47h			Befor
				After


BN		Branch if N	legative				
Synta	ax:	BN n	BN n				
Oper	ands:	-128 ≤ n ≤ 1	27				
Oper	ation:	if Negative (PC) + 2 + 2					
Statu	s Affected:	None					
Enco	ding:	1110	0110 nnn	in nnnn			
Desc	ription:	If the Negat program wi	ive bit is '1', th I branch.	ien the			
		added to th have incren instruction,	nplement numl e PC. Since the nented to fetch the new addree n. This instruct istruction.	e PC will the next ess will be			
Word	ls:	1					
Cycle	es:	1(2)					
Q C If Ju	ycle Activity: mp:						
i	Q1	Q2	Q3	Q4			
	Decode	Read literal 'n'	Process Data	Write to PC			
	No operation	No operation	No operation	No operation			
If No	y Jump:						
	Q1	Q2	Q3	Q4			
	Decode	Read literal	Process	No			
		'n'	Data	operation			
<u>Exam</u>	<u>nple:</u>	HERE	BN Jump				
	Before Instruc PC After Instructio If Negativ PC	= ade on ve = 1;	dress (HERE)				
	If Negativ PC	ve = 0;	dress (HERE	+ 2)			


28-Lead Plastic Small Outline (SO) – Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

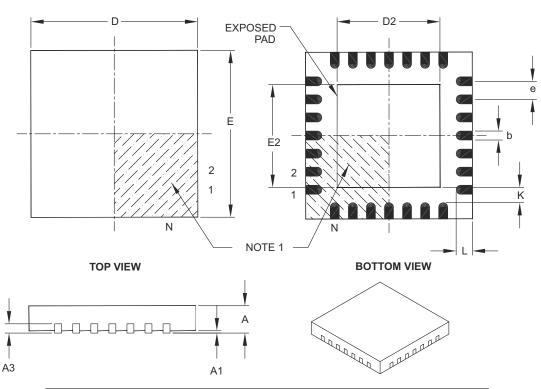
	Units		MILLIMETERS		
Dimensi	on Limits	MIN	NOM	MAX	
Number of Pins	Ν	28			
Pitch	е	1.27 BSC			
Overall Height	А	-	-	2.65	
Molded Package Thickness	A2	2.05	-	-	
Standoff §	A1	0.10	-	0.30	
Overall Width	E	10.30 BSC			
Molded Package Width	E1	7.50 BSC			
Overall Length	D	17.90 BSC			
Chamfer (optional)	h	0.25	-	0.75	
Foot Length	L	0.40	-	1.27	
Footprint	L1	1.40 REF			
Foot Angle Top	φ	0°	_	8°	
Lead Thickness	С	0.18	-	0.33	
Lead Width	b	0.31	-	0.51	
Mold Draft Angle Top	α	5°	_	15°	
Mold Draft Angle Bottom	β	5°	_	15°	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.


- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-052B

28-Lead Plastic Quad Flat, No Lead Package (ML) – 6x6 mm Body [QFN] with 0.55 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

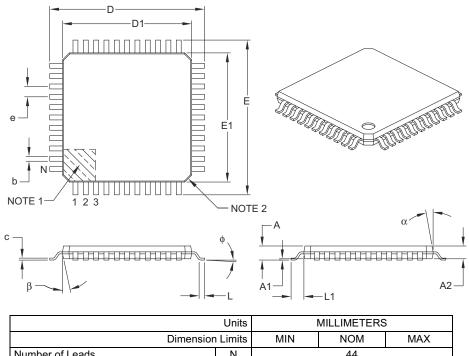
	Units	MILLIMETERS		
Dimension	Dimension Limits		NOM	MAX
Number of Pins	Ν	28		
Pitch	е	0.65 BSC		
Overall Height	А	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Contact Thickness	A3	0.20 REF		
Overall Width	E	6.00 BSC		
Exposed Pad Width	E2	3.65	3.70	4.20
Overall Length	D	6.00 BSC		
Exposed Pad Length	D2	3.65	3.70	4.20
Contact Width	b	0.23	0.30	0.35
Contact Length	L	0.50	0.55	0.70
Contact-to-Exposed Pad	K	0.20	_	_

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-105B

44-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Onito			
	Dimension Limits		NOM	MAX
Number of Leads	N	44		
Lead Pitch	е	0.80 BSC		
Overall Height	A	-	-	1.20
Molded Package Thickness	A2	0.95	1.00	1.05
Standoff	A1	0.05	-	0.15
Foot Length	L	0.45	0.60	0.75
Footprint	L1	1.00 REF		
Foot Angle	¢	0°	3.5°	7°
Overall Width	E	12.00 BSC		
Overall Length	D	12.00 BSC		
Molded Package Width	E1	10.00 BSC		
Molded Package Length	D1	10.00 BSC		
Lead Thickness	С	0.09	-	0.20
Lead Width	b	0.30	0.37	0.45
Mold Draft Angle Top	α	11°	12°	13°
Mold Draft Angle Bottom	β	11°	12°	13°

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-076B