

Welcome to E-XFL.COM

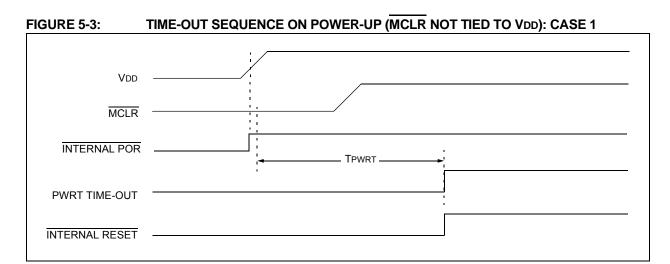
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	34
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	<u> </u>
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	2.15V ~ 3.6V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f45j11t-i-pt


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	Pin N	umber	Pin	Buffer				
Pin Name	44- QFN	44- TQFP			Description			
					PORTC (continued)			
RC6/PMA5/TX1/CK1/RP17	44	44						
RC6			I/O	ST	Digital I/O.			
PMA5			0	DIG	Parallel Master Port address.			
TX1			0	DIG	EUSART1 asynchronous transmit.			
CK1			I/O	ST	EUSART1 synchronous clock (see related RX1/DT1).			
RP17			I/O	DIG	Remappable peripheral pin 17.			
RC7/PMA4/RX1/DT1/RP18	1	1						
RC7			I/O	ST	Digital I/O.			
PMA4			0	DIG	Parallel Master Port address.			
RX1			I	ST	EUSART1 asynchronous receive.			
DT1			I/O	ST	EUSART1 synchronous data (see related TX1/CK1)			
RP18			I/O	DIG	Remappable peripheral pin 18.			
Legend: TTL = TTL compatible i	nput			(CMOS = CMOS compatible input or output			
ST = Schmitt Trigger i	nput with	n CMOS	levels	A	Analog = Analog input			
I = Input				(O = Output			
P = Power				(DD = Open-Drain (no P diode to VDD)			
DIG = Digital output								

TABLE 1-4: PIC18F4XJ11 PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: RA7 and RA6 will be disabled if OSC1 and OSC2 are used for the clock function.

FIGURE 5-4: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2

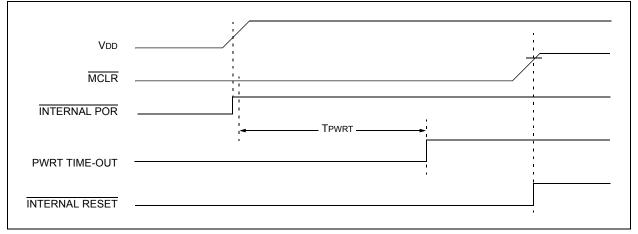
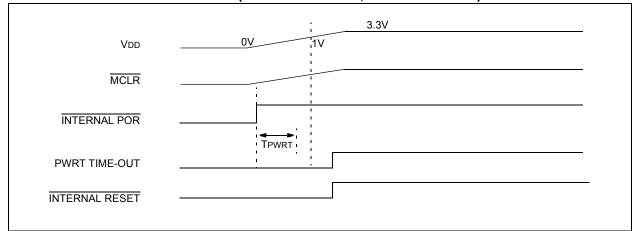



FIGURE 5-5:

SLOW RISE TIME (MCLR TIED TO VDD, VDD RISE > TPWRT)

NOTES:

6.4 Data Addressing Modes

Note:	The execution of some instructions in the									
	core PIC18 instruction set is changed									
	when the PIC18 extended instruction set is									
	enabled. See Section 6.6 "Data Memory									
	and the Extended Instruction Set" for									
	more information.									

While the program memory can be addressed in only one way, through the PC, information in the data memory space can be addressed in several ways. For most instructions, the addressing mode is fixed. Other instructions may use up to three modes, depending on which operands are used and whether or not the extended instruction set is enabled.

The addressing modes are:

- Inherent
- Literal
- Direct
- Indirect

An additional addressing mode, Indexed Literal Offset, is available when the extended instruction set is enabled (XINST Configuration bit = 1). Its operation is discussed in more detail in **Section 6.6.1 "Indexed Addressing with Literal Offset**".

6.4.1 INHERENT AND LITERAL ADDRESSING

Many PIC18 control instructions do not need any argument at all; they either perform an operation that globally affects the device, or they operate implicitly on one register. This addressing mode is known as Inherent Addressing. Examples include SLEEP, RESET and DAW.

Other instructions work in a similar way, but require an additional explicit argument in the opcode. This is known as Literal Addressing mode, because they require some literal value as an argument. Examples include ADDLW and MOVLW, which respectively, add or move a literal value to the W register. Other examples include CALL and GOTO, which include a 20-bit program memory address.

6.4.2 DIRECT ADDRESSING

Direct Addressing specifies all or part of the source and/or destination address of the operation within the opcode itself. The options are specified by the arguments accompanying the instruction.

In the core PIC18 instruction set, bit-oriented and byte-oriented instructions use some version of Direct Addressing by default. All of these instructions include some 8-bit Literal Address as their LSB. This address specifies either a register address in one of the banks of data RAM (Section 6.3.3 "General Purpose

Register File"), or a location in the Access Bank (Section 6.3.2 "Access Bank") as the data source for the instruction.

The Access RAM bit, 'a', determines how the address is interpreted. When 'a' is '1', the contents of the BSR (Section 6.3.1 "Bank Select Register") are used with the address to determine the complete 12-bit address of the register. When 'a' is '0', the address is interpreted as being a register in the Access Bank. Addressing that uses the Access RAM is sometimes also known as Direct Forced Addressing mode.

A few instructions, such as MOVFF, include the entire 12-bit address (either source or destination) in their opcodes. In these cases, the BSR is ignored entirely.

The destination of the operation's results is determined by the destination bit, 'd'. When 'd' is '1', the results are stored back in the source register, overwriting its original contents. When 'd' is '0', the results are stored in the W register. Instructions without the 'd' argument have a destination that is implicit in the instruction; their destination is either the target register being operated on or the W register.

6.4.3 INDIRECT ADDRESSING

Indirect Addressing allows the user to access a location in data memory without giving a fixed address in the instruction. This is done by using File Select Registers (FSRs) as pointers to the locations to be read or written to. Since the FSRs are themselves located in RAM as SFRs, they can also be directly manipulated under program control. This makes FSRs very useful in implementing data structures such as tables and arrays in data memory.

The registers for Indirect Addressing are also implemented with Indirect File Operands (INDFs) that permit automatic manipulation of the pointer value with auto-incrementing, auto-decrementing or offsetting with another value. This allows for efficient code using loops, such as the example of clearing an entire RAM bank in Example 6-5. It also enables users to perform Indexed Addressing and other Stack Pointer operations for program memory in data memory.

EXAMPLE 6-5: HOW TO CLEAR RAM (BANK 1) USING INDIRECT ADDRESSING

	LFSR	FSR0, 0x100	; (
NEXT	CLRF	POSTINC0	;	Clear INDF
			;	register then
			;	inc pointer
	BTFSS	FSROH, 1	;	All done with
			;	Bank1?
	BRA	NEXT	;	NO, clear next
CONTINU	E		;	YES, continue

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1					
SSP2IP	BCL2IP	RC2IP	TX2IP	TMR4IP	CTMUIP	TMR3GIP	RTCCIP					
bit 7	•	•	·		•		bit C					
												
Legend:												
R = Readab		W = Writable			nented bit, read							
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own					
bit 7	SSDOID, Ma	ster Synchronou	a Sorial Dort	2 Interrunt Drier	ity bit							
	1 = High privations	,										
	0 = Low price	•										
bit 6	BCL2IP: Bus	s Collision Interr	upt Priority bit	(MSSP2 modu	le)							
	1 = High pri			,	,							
	0 = Low pric	ority										
bit 5	RC2IP: EUSART2 Receive Interrupt Priority bit											
	1 = High priority											
1.11.4	0 = Low price	•										
bit 4		EUSART2 Transmit Interrupt Priority bit										
	1 = High pri-0 = Low price	•										
bit 3		•	rupt Priority b	it								
	TMR4IE: TMR4 to PR4 Interrupt Priority bit 1 = High priority											
	0 = Low price	•										
bit 2	CTMUIP: Ch	arge Time Mea	surement Unit	(CTMU) Interru	pt Priority bit							
	1 = High priority											
	-	0 = Low priority										
bit 1		ïmer3 Gate Inte	rrupt Priority b	bit								
	1 = High pri-0 = Low price											
bit 0	-	CC Interrupt Pri	ority bit									
	1 = High pri		only bit									
	0 = Low price	•										

REGISTER 9-12: IPR3: PERIPHERAL INTERRUPT PRIORITY REGISTER 3 (ACCESS FA5h)

REGISTER 10-21: RPOR0: PERIPHERAL PIN SELECT OUTPUT REGISTER 0 (BANKED EC6h)⁽¹⁾

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_		RP0R4	RP0R3	RP0R2	RP0R1	RP0R0
bit 7							bit 0

Legend:	R/\overline{W} = Readable, Writable	R/\overline{W} = Readable, Writable if IOLOCK = 0							
R = Readable bit	W = Writable bit	/ritable bit U = Unimplemented bit, read as '0'							
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown						

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP0R<4:0>:** Peripheral Output Function is Assigned to RP0 Output Pin bits (see Table 10-14 for peripheral function numbers)

Note 1: Register values can be changed only if PPSCON<IOLOCK> = 0.

REGISTER 10-22: RPOR1: PERIPHERAL PIN SELECT OUTPUT REGISTER 1 (BANKED EC7h)

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	— — R		RP1R3	RP1R2	RP1R1	RP1R0
bit 7							bit 0

Legend:	R/\overline{W} = Readable, Writable if IOLOCK = 0							
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'						
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown					

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP1R<4:0>:** Peripheral Output Function is Assigned to RP1 Output Pin bits (see Table 10-14 for peripheral function numbers)

REGISTER 10-23: RPOR2: PERIPHERAL PIN SELECT OUTPUT REGISTER 2 (BANKED EC8h)

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_		RP2R4	RP2R3	RP2R2	RP2R1	RP2R0
bit 7							bit 0

Legend:	R/\overline{W} = Readable, Writable	R/\overline{W} = Readable, Writable if IOLOCK = 0							
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'							
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown						

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP2R<4:0>:** Peripheral Output Function is Assigned to RP2 Output Pin bits (see Table 10-14 for peripheral function numbers)

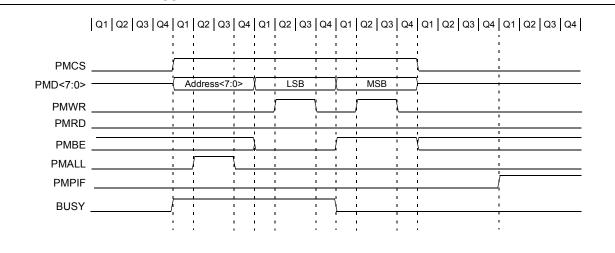
11.1.2 DATA REGISTERS

The PMP module uses eight registers for transferring data into and out of the microcontroller. They are arranged as four pairs to allow the option of 16-bit data operations:

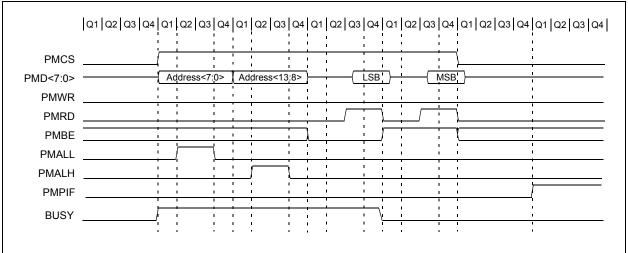
- PMDIN1H and PMDIN1L
- PMDIN2H and PMDIN2L
- PMADDRH/PMDOUT1H and PMADDRL/PMDOUT1L
- PMDOUT2H and PMDOUT2L

The PMDIN1 register is used for incoming data in Slave modes and both input and output data in Master modes. The PMDIN2 register is used for buffering input data in select Slave modes.

The PMADDR/PMDOUT1 registers are actually a single register pair; the name and function are dictated by the module's operating mode. In Master modes, the registers function as the PMADDRH and PMADDRL registers and contain the address of any incoming or outgoing data. In Slave modes, the registers function as PMDOUT1H and PMDOUT1L and are used for outgoing data.


PMADDRH differs from PMADDRL in that it can also have limited PMP control functions. When the module is operating in select Master mode configurations, the upper two bits of the register can be used to determine the operation of chip select signals. If these are not used, PMADDR simply functions to hold the upper 8 bits of the address. Register 11-9 provides the function of the individual bits in PMADDRH.

The PMDOUT2H and PMDOUT2L registers are only used in Buffered Slave modes and serve as a buffer for outgoing data.


11.1.3 PAD CONFIGURATION CONTROL REGISTER

In addition to the module level configuration options, the PMP module can also be configured at the I/O pin for electrical operation. This option allows users to select either the normal Schmitt Trigger input buffer on digital I/O pins shared with the PMP, or use TTL level compatible buffers instead. Buffer configuration is controlled by the PMPTTL bit in the PADCFG1 register.

FIGURE 11-24: WRITE TIMING, 16-BIT MULTIPLEXED DATA, PARTIALLY MULTIPLEXED ADDRESS

FIGURE 11-25: READ TIMING, 16-BIT MULTIPLEXED DATA, FULLY MULTIPLEXED 16-BIT ADDRESS

FIGURE 11-26: WRITE TIMING, 16-BIT MULTIPLEXED DATA, FULLY MULTIPLEXED 16-BIT ADDRESS

	Q1 Q2 Q3 Q4	Q1 Q2 Q3	Q4	Q1 Q2 Q	3 Q4 Q	1 Q2 Q3	Q4 Q	1 Q2 Q3	Q4 Q1	Q2 Q3 Q4	Q1 Q2 Q3 Q4
PMCS	/	Address<7:		Address<		LSB		MSB	; ;		
PMD<7:0> PMWR		Auuress<7.	<u>- 1</u>	Address<	13.0-2		i A İ				
PMRD PMBE		, , , ,						1 1 1	ι ι ι ι ι γ		
PMALL	i i				- A 			1 1 1	1 k 1 1 1 1		I I
PMALH PMPIF						1 1 1		1 	1 1 + +		· •
BUSY			· · · · · · · · · · · · · · · · · · ·					- I - I - I - I	1 1 1 1 1 1 1 1		/
	i	1		1	1 I 1 I	1		1			1

12.3 Prescaler

An 8-bit counter is available as a prescaler for the Timer0 module. The prescaler is not directly readable or writable. Its value is set by the PSA and T0PS<2:0> bits (T0CON<3:0>), which determine the prescaler assignment and prescale ratio.

Clearing the PSA bit assigns the prescaler to the Timer0 module. When it is assigned, prescale values from 1:2 through 1:256 in power-of-2 increments are selectable.

When assigned to the Timer0 module, all instructions writing to the TMR0 register (e.g., CLRF TMR0, MOVWF TMR0, BSF TMR0, etc.) clear the prescaler count.

Note:	Writing to TMR0 when the prescaler is
	assigned to Timer0 will clear the prescaler
	count but will not change the prescaler
	assignment.

12.3.1 SWITCHING PRESCALER ASSIGNMENT

The prescaler assignment is fully under software control and can be changed "on-the-fly" during program execution.

12.4 Timer0 Interrupt

The TMR0 interrupt is generated when the TMR0 register overflows from FFh to 00h in 8-bit mode, or from FFFFh to 0000h in 16-bit mode. This overflow sets the TMR0IF flag bit. The interrupt can be masked by clearing the TMR0IE bit (INTCON<5>). Before re-enabling the interrupt, the TMR0IF bit must be cleared in software by the Interrupt Service Routine (ISR).

Since Timer0 is shut down in Sleep mode, the TMR0 interrupt cannot awaken the processor from Sleep.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:
TMR0L	Timer0 Reg	Timer0 Register Low Byte						91	
TMR0H	Timer0 Register High Byte						91		
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	90
T0CON	TMR0ON	T08BIT	TOCS	T0SE	PSA	T0PS2	T0PS1	T0PS0	91

 TABLE 12-1:
 REGISTERS ASSOCIATED WITH TIMER0

Legend: — = unimplemented, read as '0'. Shaded cells are not used by Timer0.

REGISTER 17-11: HOURS: HOURS VALUE REGISTER (ACCESS F98h, PTR 01b)⁽¹⁾

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	HRTEN1	HRTEN0	HRONE3	HRONE2	HRONE1	HRONE0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6	Unimplemented: Read as '0'
bit 5-4	HRTEN<1:0>: Binary Coded Decimal Value of Hour's Tens Digit bits Contains a value from 0 to 2.
bit 3-0	HRONE<3:0>: Binary Coded Decimal Value of Hour's Ones Digit bits Contains a value from 0 to 9.

Note 1: A write to this register is only allowed when RTCWREN = 1.

REGISTER 17-12: MINUTES: MINUTES VALUE REGISTER (ACCESS F99h, PTR 00b)

U-0	R/W-x						
—	MINTEN2	MINTEN1	MINTEN0	MINONE3	MINONE2	MINONE1	MINONE0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	Unimplemented: Read as '0'
bit 6-4	MINTEN<2:0>: Binary Coded Decimal Value of Minute's Tens Digit bits Contains a value from 0 to 5.
bit 3-0	MINONE<3:0>: Binary Coded Decimal Value of Minute's Ones Digit bits Contains a value from 0 to 9.

REGISTER 17-13: SECONDS: SECONDS VALUE REGISTER (ACCESS F98h, PTR 00b)

U-0	R/W-x						
—	SECTEN2	SECTEN1	SECTEN0	SECONE3	SECONE2	SECONE1	SECONE0
bit 7							bit 0

Legend:				
R = Reada	ble bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 7	Unimple	mented: Read as '0'		
bit 6-4	SECTEN<2:0>: Binary Coded Decimal Value of Second's Tens Digit bits Contains a value from 0 to 5.			

bit 3-0 SECONE<3:0>: Binary Coded Decimal Value of Second's Ones Digit bits Contains a value from 0 to 9. In addition to the expanded range of modes available through the CCPxCON and ECCPxAS registers, the ECCP modules have two additional registers associated with Enhanced PWM operation and auto-shutdown features. They are:

- ECCPxDEL (Enhanced PWM Control)
- PSTRxCON (Pulse Steering Control)

18.1 ECCP Outputs and Configuration

The Enhanced CCP module may have up to four PWM outputs, depending on the selected operating mode. These outputs, designated PxA through PxD, are routed through the Peripheral Pin Select (PPS) module. Therefore, individual functions may be mapped to any of the remappable I/O pins, RPn. The outputs that are active depend on the ECCP operating mode selected. The pin assignments are summarized in Table 18-4.

To configure the I/O pins as PWM outputs, the proper PWM mode must be selected by setting the PxM<1:0> and CCPxM<3:0> bits. The appropriate TRIS direction bits for the port pins must also be set as outputs and the output functions need to be assigned to I/O pins in the PPS module. (For details on configuring the module, see **Section 10.7 "Peripheral Pin Select (PPS)"**.)

18.1.1 ECCP MODULE AND TIMER RESOURCES

The ECCP modules utilize Timers 1, 2, 3 or 4, depending on the mode selected. Timer1 and Timer3 are available to modules in Capture or Compare modes, while Timer2 and Timer4 are available for modules in PWM mode.

TABLE 18-1:ECCP MODE – TIMER
RESOURCE

ECCP Mode	Timer Resource
Capture	Timer1 or Timer3
Compare	Timer1 or Timer3
PWM	Timer2 or Timer4

The assignment of a particular timer to a module is determined by the Timer-to-ECCP enable bits in the TCLKCON register (Register 13-3). The interactions between the two modules are depicted in Figure 18-1. Capture operations are designed to be used when the timer is configured for Synchronous Counter mode. Capture operations may not work as expected if the associated timer is configured for Asynchronous Counter mode.

18.2 Capture Mode

In Capture mode, the CCPRxH:CCPRxL register pair captures the 16-bit value of the TMR1 or TMR3 registers when an event occurs on the corresponding ECCPx pin. An event is defined as one of the following:

- · Every falling edge
- · Every rising edge
- Every 4th rising edge
- Every 16th rising edge

The event is selected by the mode select bits, CCPxM<3:0>, of the CCPxCON register. When a capture is made, the interrupt request flag bit, CCPxIF, is set; it must be cleared by software. If another capture occurs before the value in register CCPRx is read, the old captured value is overwritten by the new captured value.

18.2.1 ECCP PIN CONFIGURATION

In Capture mode, the appropriate ECCPx pin should be configured as an input by setting the corresponding TRIS direction bit.

Additionally, the ECCPx input function needs to be assigned to an I/O pin through the Peripheral Pin Select module. For details on setting up the remappable pins, see Section 10.7 "Peripheral Pin Select (PPS)".

Note:	If the ECCPx pin is configured as an out-
	put, a write to the port can cause a capture
	condition.

18.2.2 TIMER1/TIMER3 MODE SELECTION

The timers that are to be used with the capture feature (Timer1 and/or Timer3) must be running in Timer mode or Synchronized Counter mode. In Asynchronous Counter mode, the capture operation may not work. The timer to be used with each ECCP module is selected in the TCLKCON register (Register 13-3).

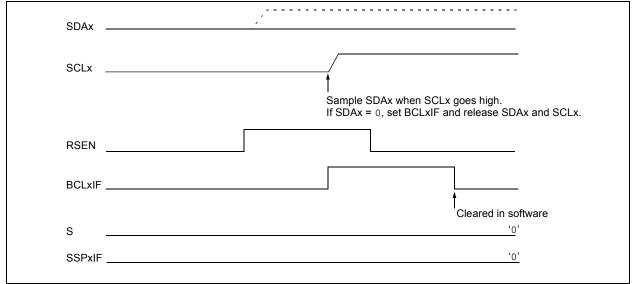
18.2.3 SOFTWARE INTERRUPT

When the Capture mode is changed, a false capture interrupt may be generated. The user should keep the CCPxIE interrupt enable bit clear to avoid false interrupts. The interrupt flag bit, CCPxIF, should also be cleared following any such change in operating mode.

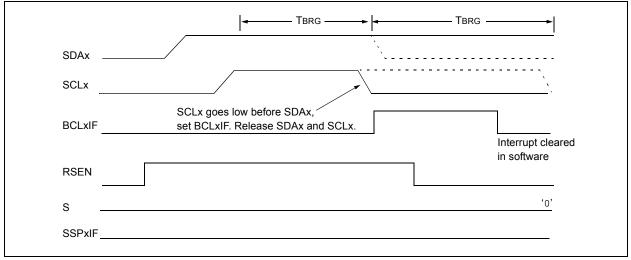
19.5.17.2 Bus Collision During a Repeated Start Condition

During a Repeated Start condition, a bus collision occurs if:

- a) A low level is sampled on SDAx when SCLx goes from a low level to a high level.
- SCLx goes low before SDAx is asserted low, indicating that another master is attempting to transmit a data '1'.


When the user deasserts SDAx and the pin is allowed to float high, the BRG is loaded with SSPxADD<6:0> and counts down to 0. The SCLx pin is then deasserted and when sampled high, the SDAx pin is sampled.

If SDAx is low, a bus collision has occurred (i.e., another master is attempting to transmit a data '0', see Figure 19-31). If SDAx is sampled high, the BRG is reloaded and begins counting. If SDAx goes from high-to-low before the BRG times out, no bus collision occurs because no two masters can assert SDAx at exactly the same time.


If SCLx goes from high-to-low before the BRG times out and SDAx has not already been asserted, a bus collision occurs. In this case, another master is attempting to transmit a data '1' during the Repeated Start condition (see Figure 19-32).

If, at the end of the BRG time-out, both SCLx and SDAx are still high, the SDAx pin is driven low and the BRG is reloaded and begins counting. At the end of the count, regardless of the status of the SCLx pin, the SCLx pin is driven low and the Repeated Start condition is complete.

FIGURE 19-31: BUS COLLISION DURING A REPEATED START CONDITION (CASE 1)

The ANCON0 and ANCON1 registers are used to configure the operation of the I/O pin associated with each analog channel. Setting any one of the PCFG bits configures the corresponding pin to operate as a digital only I/O. Clearing a bit configures the pin to operate as an analog input for either the A/D Converter or the comparator module; all digital peripherals are disabled and digital inputs read as '0'. As a rule, I/O pins that are multiplexed with analog inputs default to analog operation on device Resets.

In order to correctly perform A/D conversions on the VBG band gap reference (ADCON0<5:2> = 1111), the reference circuit must be powered on first. The VBGEN bit in the ANCON1 register allows the firmware to manually

request that the band gap reference circuit should be enabled. For best accuracy, firmware should allow a settling time of at least 10 ms prior to performing the first acquisition on this channel after enabling the band gap reference.

The reference circuit may already have been turned on if some other hardware module (such as comparators or HLVD) has already requested it. In this case, the initial turn-on settling time may have already elapsed and firmware does not need to wait as long before measuring VBG. Once the acquisition is complete, firmware may clear the VBGEN bit, which will save a small amount of power if no other modules are still requesting the VBG reference.

REGISTER 21-3:	ANCON0: A/D PORT CONFIGURATION REGISTER 2 (BANKED F48h)
----------------	---

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PCFG7 ⁽¹⁾	PCFG6 ⁽¹⁾	PCFG5 ⁽¹⁾	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	hit	U = Unimplem	nented bit read	as '0'	

-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
R = Readable bit	vv = vvritable bit	U = Unimplemented bit, read	as '0'

bit 7-0 **PCFG<7:0>:** Analog Port Configuration bits (AN<7:0>) 1 = Pin configured as a digital port 0 = Pin configured as an analog channel – digital input disabled and reads '0'

Note 1: These bits are not implemented on 28-pin devices.

REGISTER 21-4: ANCON1: A/D PORT CONFIGURATION REGISTER 1 (BANKED F49h)

R/W-0	r	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
VBGEN	—	—	PCFG12	PCFG11	PCFG10	PCFG9	PCFG8
bit 7							bit 0

Legend:	r = Reserved			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

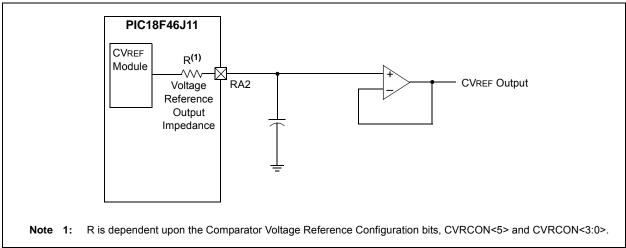
bit 7	VBGEN: 1.2V Band Gap Reference Enable bit 1 = 1.2V band gap reference is powered on 0 = 1.2V band gap reference is turned off to save power (if no other modules are requesting it)
bit 6	Reserved: Always maintain as '0' for lowest power consumption
bit 5	Unimplemented: Read as '0'
bit 4-0	PCFG<12:8>: Analog Port Configuration bits (AN<12:8>)
	 1 = Pin configured as a digital port 0 = Pin configured as an analog channel – digital input disabled and reads '0'

23.2 Voltage Reference Accuracy/Error

The full range of voltage reference cannot be realized due to the construction of the module. The transistors on the top and bottom of the resistor ladder network (see Figure 23-1) keep CVREF from approaching the reference source rails. The voltage reference is derived from the reference source; therefore, the CVREF output changes with fluctuations in that source. The tested absolute accuracy of the voltage reference can be found in **Section 29.0 "Electrical Characteristics"**.

23.3 Connection Considerations

The voltage reference module operates independently of the comparator module. The output of the reference generator may be connected to the RA2 pin if the CVROE bit is set. Enabling the voltage reference output onto RA2 when it is configured as a digital input will increase current consumption. Connecting RA2 as a digital output with CVRSS enabled will also increase current consumption. The RA2 pin can be used as a simple D/A output with limited drive capability. Due to the limited current drive capability, a buffer must be used on the voltage reference output for external connections to VREF. See Figure 23-2 for an example buffering technique.


23.4 Operation During Sleep

When the device wakes up from Sleep through an interrupt or a Watchdog Timer time-out, the contents of the CVRCON register are not affected. To minimize current consumption in Sleep mode, the voltage reference should be disabled.

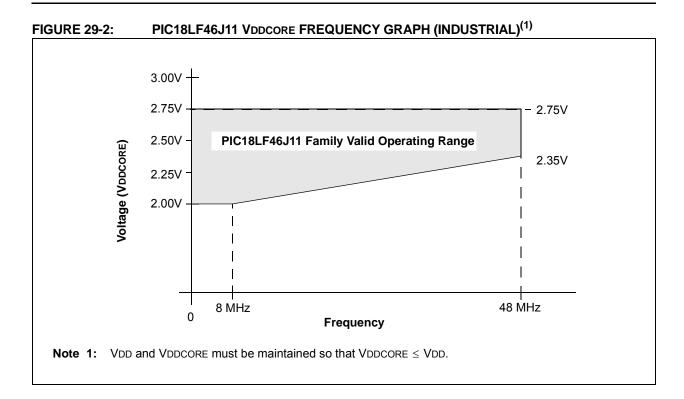
23.5 Effects of a Reset

A device Reset disables the voltage reference by clearing bit, CVREN (CVRCON<7>). This Reset also disconnects the reference from the RA2 pin by clearing bit, CVROE (CVRCON<6>) and selects the high-voltage range by clearing bit, CVRR (CVRCON<5>). The CVR value select bits are also cleared.

TABLE 23-1: REGISTERS ASSOCIATED WITH COMPARATOR VOLTAGE REFERENCE
--

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:
CVRCON	CVREN	CVROE	CVRR	CVRSS	CVR3	CVR2	CVR1	CVR0	74
CM1CON	CON	COE	CPOL	EVPOL1	EVPOL0	CREF	CCH1	CCH0	70
CM2CON	CON	COE	CPOL	EVPOL1	EVPOL0	CREF	CCH1	CCH0	70
TRISA	TRISA7	TRISA6	TRISA5	—	TRISA3	TRISA2	TRISA1	TRISA0	72
ANCON0	PCFG7 ⁽¹⁾	PCFG6 ⁽¹⁾	PCFG5 ⁽¹⁾	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0	74
ANCON1	VBGEN	r	_	PCFG12	PCFG11	PCFG10	PCFG9	PCFG8	74

Legend: — = unimplemented, read as '0', r = reserved. Shaded cells are not used with the comparator voltage reference.


Note 1: These bits are only available on 44-pin devices.

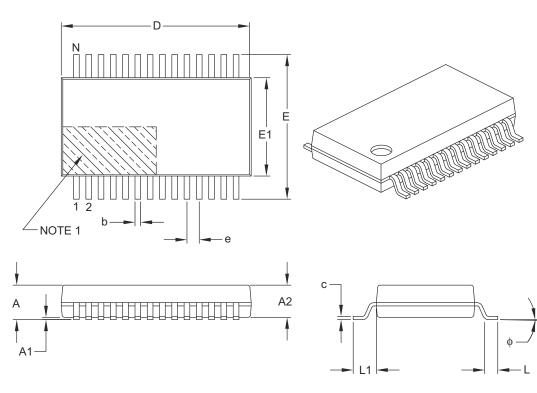
BCF	Bit Clear f			BN
Syntax:	BCF f, b	{,a}		Syntax:
Operands:	$0 \leq f \leq 255$			Operands
	0 ≤ b ≤ 7 a ∈ [0,1]			Operation
Operation:	$0 \rightarrow f \le b >$			Status Affe
Status Affected:	None			Encoding:
Encoding:	1001	bbba ff:	ff ffff	Descriptio
Description:	Bit 'b' in reg	jister 'f' is clea	red.	
		he BSR is use	nk is selected. d to select the	
	set is enabl in Indexed I mode when Section 27 Bit-Oriente	nd the extended ed, this instruc- Literal Offset A lever $f \le 95$ (5 .2.3 "Byte-Or ed Instruction set Mode" for	ction operates Addressing Fh). See iented and s in Indexed	Words: Cycles: Q Cycle A
Words:	1			If Jump:
Cycles:	1			De
Q Cycle Activity:				
Q1	Q2	Q3	Q4	
Decode	Read register 'f'	Process Data	Write register 'f'	ope If No Jum
	register i	Data	register i	ii No Suii
Example:		LAG_REG,	7, 0	De
Before Instruc	tion EG = C7h			
After Instruction				Example:
FLAG_R	EG = 47h			Befor
				After

BN		Branch if N	legative	
Synta	ax:	BN n		
Oper	ands:	-128 ≤ n ≤ 1	27	
Oper	ation:	if Negative (PC) + 2 + 2		
Statu	s Affected:	None		
Enco	ding:	1110	0110 nnn	in nnnn
Desc	ription:	If the Negat program wi	ive bit is '1', th I branch.	ien the
		added to th have incren instruction,	nplement numl e PC. Since the nented to fetch the new addree n. This instruct istruction.	e PC will the next ess will be
Word	ls:	1		
Cycle	es:	1(2)		
Q C If Ju	ycle Activity: mp:			
i	Q1	Q2	Q3	Q4
	Decode	Read literal 'n'	Process Data	Write to PC
	No operation	No operation	No operation	No operation
If No	y Jump:			
	Q1	Q2	Q3	Q4
	Decode	Read literal	Process	No
		'n'	Data	operation
<u>Exam</u>	<u>nple:</u>	HERE	BN Jump	
	Before Instruc PC After Instructio If Negativ PC	= ade on ve = 1;	dress (HERE)	
	If Negativ PC	ve = 0;	dress (HERE	+ 2)

SLEEP	Enter Sle	ep Mode		
Syntax:	SLEEP			
Operands:	None			
Operation:	$\begin{array}{l} 00h \rightarrow WI \\ 0 \rightarrow WDT \\ 1 \rightarrow \overline{TO}, \\ 0 \rightarrow PD \end{array}$,	er,	
Status Affected:	TO, PD			
Encoding:	0000	0000	0000	0011
Description:	The Powe cleared. T is set. The postscaler	he Time-o Watchdo	out statu og Timer	s bit (TO)
	The proce with the os	•		eep mode
Words:	1			
Cycles:	1			
Q Cycle Activity:				
Q1	Q2	Q3		Q4
Decode	No operation	Proces Data		Go to Sleep
Example:	SLEEP			
Before Instruct TO = PD = After Instructio TO = PD =	? ? on 1 †			
+ If WDT causes	0 wake-up, this I	oit is clea	red.	

SUBFWB	Subtract f fi	om W with Bo	orrow
Syntax:	SUBFWB	f {,d {,a}}	
Operands:	$0 \le f \le 255$		
	d ∈ [0,1] a ∈ [0,1]		
Operation:	(W) – (f) – ($\overline{C}) \rightarrow \text{dest}$	
Status Affected:	N, OV, C, D(,	
Encoding:	0101	01da fff	f ffff
Description:		ister 'f' and Ca	
	(borrow) from method). If 'd	n W (2's compl d' is '0', the res ', the result is s	ement ult is stored in
		e Access Bank BSR is used to default).	
	set is enable Indexed Lite whenever f ≤ Section 27.2 Bit-Oriented	d the extended d, this instruction ral Offset Addro ≨ 95 (5Fh). See 2.3 "Byte-Orie I Instructions	on operates in essing mode nted and in Indexed
		et Mode" for de	etails.
Words:	1		
Cycles:	1		
Q Cycle Activity:			
Q1	Q2	Q3	Q4
Decode	Read register 'f'	Process Data	Write to destination
L			destination
Example 1:			
Poforo Instruo	SUBFWB	REG, 1, 0	
Before Instruc RFG	tion	REG, 1, 0	
REG W	tion = 3 = 2	REG, 1, 0	
REG W C	tion = 3 = 2 = 1	REG, 1, 0	
REG W	tion = 3 = 2 = 1	REG, 1, 0	
REG W C After Instructio REG W	tion = 3 = 2 = 1 on = FF = 2	REG, 1, 0	
REG W C After Instructio REG	tion = 3 = 2 = 1 on = FF = 2 = 0 = 0		
REG W C After Instructio REG W C Z N	tion = 3 = 2 = 1 on = FF = 2 = 0 = 0 = 1 ; re	esult is negative	9
REG W C After Instructio REG W C Z N Example 2:	tion = 3 = 2 = 1 on = FF = 2 = 0 = 0 = 1 ; re SUBFWB		9
REG W C After Instruction REG W C Z N <u>Example 2:</u> Before Instruct	tion = 3 = 2 = 1 on = FF = 2 = 0 = 0 = 1 ; re SUBFWB tion	esult is negative	9
REG W C After Instructio REG W C Z N Example 2: Before Instruc REG W	tion = 3 = 2 = 1 on = FF = 2 = 0 = 0 = 0 = 1 ; re SUBFWB tion = 2 = 5	esult is negative	9
REG W C After Instructio REG W C Z N Example 2: Before Instruct REG W C	tion = 3 = 2 = 1 on = FF = 2 = 0 = 0 = 0 = 0 = 1; re SUBFWB tion = 2 = 5 = 1	esult is negative	9
REG W C After Instructio REG W C Z N <u>Example 2:</u> Before Instruc REG W	tion = 3 = 2 = 1 on = FF = 2 = 0 = 0 = 0 = 1; re SUBFWB tion = 2 = 5 = 1 on	esult is negative	9
REG W C After Instruction REG W C Example 2: Before Instruct REG W C After Instruction REG W	tion = 3 = 2 = 1 on = FF = 2 = 0 = 0 = 1; re SUBFWB tion = 2 = 5 = 1 on = 2 = 3	esult is negative	9
REG W C After Instructio REG W C Z N <u>Example 2:</u> Before Instruct REG W C After Instructio REG	tion = 3 = 2 = 1 on = FF = 2 = 0 = 0 = 0 = 1; re SUBFWB tion = 2 = 5 = 1 on = 2 = 1 = 2 = 0 = 0; re = 2 = 0; re = 2 = 0; re = 1 = 0; re = 2 = 0; re = 0; re = 1; re = 2 = 0; re = 1; re = 2 = 0; re = 0; re = 2 = 0; re = 0; re = 2 = 0; re = 1; re = 2 = 0; re = 2 = 0; re = 1; re = 2 = 0; re = 2 = 0; re = 1; re = 2 = 0; re = 1; re = 2 = 0; re = 2 = 0; re = 2 = 0; re = 0; re = 2 = 1; re = 2; re = 1; re	esult is negative	9
REG W C After Instruction REG W C Example 2: Before Instructor REG W C After Instruction REG W C	tion = 3 = 2 = 1 on = FF = 2 = 0 = 0 = 0 = 1; re SUBFWB tion = 2 = 5 = 1 on = 2 = 3 = 1 = 0 = 1 = 0 = 2 = 0 = 1 = 1 = 0 = 0 = 1 = 1 = 0 = 1 = 1 = 0 = 1 = 1 = 0 = 1 = 1 = 1 = 0 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1	esult is negative	9
REG W C After Instruction REG W C Z N Example 2: Before Instruction REG W C After Instruction REG W C After Instruction REG W C Z N N Example 3:	tion = 3 = 2 = 1 on = FF = 2 = 0 = 0 = 0; rest SUBFWB	esult is negative	9
REG W C After Instruction REG W C Z N Example 2: Before Instruction REG W C After Instruction REG W C Z N Example 3: Before Instruction REG	tion = 3 = 2 = 1 on = FF = 2 = 0 = 0; rest SUBFWB tion = 2 = 1 = 0 = 0; rest SUBFWB tion	esult is negative REG, 0, 0	9
REG W C After Instruction REG W C Z N Example 2: Before Instruction REG W C After Instruction REG W C Z N Example 3:	tion = 3 = 2 = 1 on = FF = 2 = 0 = 0 = 0; rest SUBFWB	esult is negative REG, 0, 0	9
REG W C After Instructio REG W C Z N Example 2: Before Instructio REG W C After Instructio REG W C Z N Example 3: Before Instructio REG W C Z N	tion = 3 = 2 = 1 on = FF = 2 = 0 = 0 = 0; re SUBFWB tion = 2 = 1 = 0 = 0; re SUBFWB tion = 2 = 0; re tion = 2 = 0 = 0; re = 0; re = 0; re = 0; re = 0; re = 0; re = 0;	esult is negative REG, 0, 0	9
REG W C After Instructio REG W C Z N Example 2: Before Instructio REG W C After Instructio REG W C Z N Example 3: Before Instructio REG W C After Instructio	tion = 3 = 2 = 1 on = FF = 2 = 0 = 0 = 0 = 1; re SUBFWB tion = 2 = 3 = 1 = 0 = 0; re SUBFWB tion = 2 = 3 = 1 = 0 = 0; re o; re SUBFWB	esult is negative REG, 0, 0	9
REG W C After Instructio REG W C Z N Example 2: Before Instructio REG W C After Instructio REG W C Z N Example 3: Before Instruct REG W C Z N	tion = 3 = 2 = 1 on = FF = 2 = 0 = 0 = 0 = 1; re SUBFWB tion = 2 = 3 = 1 = 0 = 0; re SUBFWB tion = 2 = 3 = 1 = 0 = 0; re o; re SUBFWB	esult is negative REG, 0, 0	9

29.2 DC Characteristics: Power-Down and Supply Current PIC18F46J11 Family (Industrial) (Continued)


PIC18LFXXJ11 Family		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial							
PIC18FXXJ11 Family		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial							
Param No.	Device	Тур	Max	Units	Conditions				
	Supply Current (IDD) ⁽²⁾								
	PIC18LFXXJ11	0.879	1.25	mA	-40°C				
		0.881	1.25	mA	+25°C	VDD = 2.0V, VDDCORE = 2.0V			
		0.891	1.36	mA	+85°C				
	PIC18LFXXJ11	1.35	1.70	mA	-40°C	$\lambda = 2.0 \lambda$	Fosc = 4 MHz, PRI_RUN mode, EC Oscillator		
		1.30	1.70	mA	+25°C	VDD = 2.0V, VDDCORE = 2.0V			
		1.27	1.82	mA	+85°C				
	PIC18FXXJ11	1.09	1.60	mA	-40°C	VDD = 2.15V,			
		1.09	1.60	mA	+25°C	VDDCORE = $10 \mu F$			
		1.11	1.70	mA	+85°C	Capacitor			
	PIC18FXXJ11	1.36	1.95	mA	-40°C	VDD = 3.3V,			
		1.36	1.89	mA	+25°C	VDDCORE = 10 µF			
		1.41	1.92	mA	+85°C	Capacitor			
	PIC18LFXXJ11	10.9	14.8	mA	-40°C	VDD = 2.5V,	Fosc = 48 MHz, PRI_RUN		
		10.6	14.8	mA	+25°C	VDD = 2.5V, VDDCORE = 2.5V			
		10.6	15.2	mA	+85°C				
	PIC18FXXJ11		23.2	mA	-40°C	VDD = 3.3V,	mode, EC Oscillator		
		12.8	22.7	mA	+25°C	VDDCORE = $10 \mu F$			
		12.7	22.7	mA	+85°C	Capacitor			

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSs and all features that add delta current disabled (such as WDT, Timer1 oscillator, BOR, etc.).

- 2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption. All features that add delta current are disabled (WDT, etc.). The test conditions for all IDD measurements in active operation mode are:
 - OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD/VSS;
 - MCLR = VDD; WDT disabled unless otherwise specified.
- **3:** Low-Power Timer1 with standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.

28-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimensior	Dimension Limits		NOM	MAX
Number of Pins	Ν		28	
Pitch	е	0.65 BSC		
Overall Height	Α	-	-	2.00
Molded Package Thickness	A2	1.65	1.75	1.85
Standoff	A1	0.05	-	-
Overall Width	E	7.40	7.80	8.20
Molded Package Width	E1	5.00	5.30	5.60
Overall Length	D	9.90	10.20	10.50
Foot Length	L	0.55	0.75	0.95
Footprint	L1	1.25 REF		
Lead Thickness	с	0.09	-	0.25
Foot Angle	¢	0°	4°	8°
Lead Width	b	0.22	_	0.38

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.

- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-073B

Power-up Timer (PWRT)4	6, 66
Time-out Sequence	
Prescaler, Timer0	
Prescaler, Timer2 (Timer4)	
PRI IDLE Mode	
PRI RUN Mode	
Product Identification System	
Program Counter	
PCL, PCH and PCU Registers	
PCLATH and PCLATU Registers	
Program Memory	
ALU Status	96
Extended Instruction Set	
Flash Configuration Words	
Hard Memory Vectors	
Instructions	
Two-Word	
Interrupt Vector	
Look-up Tables	
Memory Maps	
Hard Vectors and Configuration Words	
Reset Vector	
Program Verification and Code Protection	
Programming, Device Instructions	
Pulse Steering	
PUSH	
PUSH and POP Instructions	
PUSH and POP Instructions	
PWM (CCP Module)	. 400
Associated Registers	054
Duty Cycle	
Example Frequencies/Resolutions	
Operation Setup	
Period	
PR2/PR4 Registers	
TMR2 (TMR4) to PR2 (PR4) Match	. 252
PWM (ECCP Module)	000
Effects of a Reset	
Operation in Power-Managed Modes	
Operation with Fail-Safe Clock Monitor	
Pulse Steering	
Steering Synchronization	
TMR4 to PR4 Match	
PWM Mode. See Enhanced Capture/Compare/PWM	. 255
Q	

Q Clock	
---------	--

R

RAM. See Data Memory.	
RBIF Bit	
RC IDLE Mode	
RC RUN Mode	
RCALL	
RCON Register	
Bit Status During Initialization	
Reader Response	
Real-Time Clock and Calendar (RTCC)	
Operation	
Registers	
Reference Clock Output	
Register File	
Register File Summary	
Registers	
ADCON0 (A/D Control 0)	
ADCON1 (A/D Control 1)	

ALRMCFG (Alarm Configuration)	
ALRMDAY (Alarm Day Value)	236
ALRMHR (Alarm Hours Value)	237
ALRMMIN (Alarm Minutes Value)	238
ALRMMNTH (Alarm Month Value)	236
ALRMRPT (Alarm Calibration)	
ALRMSEC (Alarm Seconds Value)	
ALRMWD (Alarm Weekday Value)	237
ANCON0 (A/D Port Configuration 2)	
ANCON1 (A/D Port Configuration 1)	353
Associated with Comparator	
Associated with Watchdog Timer	
BAUDCONx (Baud Rate Control)	
CCPxCON (Enhanced Capture/Compare/PWM	
x Control)	248
CMSTAT (Comparator Status)	
CMxCON (Comparator Control x)	
CONFIG1H (Configuration 1 High)	398
CONFIG1L (Configuration 1 Low)	397
CONFIG2H (Configuration 2 High)	
CONFIG2L (Configuration 2 Low)	
CONFIG3H (Configuration 3 High)	
CONFIG3L (Configuration 3 Low)	
CONFIG4H (Configuration 4 High)	403
CONFIG4L (Configuration 4 Low)	
CTMUCONH (CTMU Control High)	
CTMUCONL (CTMU Control Low)	
CTMUICON (CTMU Current Control)	
CVRCON (Comparator Voltage Reference	555
	270
Control) DAY (Day Value)	
DEVID1 (Device ID 1)	
DEVID2 (Device ID 2)	
DMACON1 (DMA Control 1)	
DMACON2 (DMA Control 2)	
DSCONH (Deep Sleep Control High Byte)	
DSCONL (Deep Sleep Control Low Byte)	58
DSGPR0 (Deep Sleep Persistent General	50
Purpose 0)	59
DSGPR1 (Deep Sleep Persistent General	50
Purpose 1)	59
DSWAKEH (Deep Sleep Wake High Byte)	60
DSWAKEL (Deep Sleep Wake Low Byte)	
ECCPxAS (ECCPx Auto-Shutdown Control)	60
E(((DvI)E) (Enhanced D)//// (Control)	. 60 263
ECCPxDEL (Enhanced PWM Control)	. 60 263 266
EECON1 (EEPROM Control 1)	60 263 266 105
EECON1 (EEPROM Control 1) HLVDCON (High/Low-Voltage Detect Control)	. 60 263 266 105 373
EECON1 (EEPROM Control 1) HLVDCON (High/Low-Voltage Detect Control) HOURS (Hours Value)	. 60 263 266 105 373 235
EECON1 (EEPROM Control 1) HLVDCON (High/Low-Voltage Detect Control) HOURS (Hours Value) I ² C Mode (MSSP)	60 263 266 105 373 235 291
EECON1 (EEPROM Control 1) HLVDCON (High/Low-Voltage Detect Control) HOURS (Hours Value) I ² C Mode (MSSP) INTCON (Interrupt Control)	60 263 266 105 373 235 291 117
EECON1 (EEPROM Control 1) HLVDCON (High/Low-Voltage Detect Control) HOURS (Hours Value) I ² C Mode (MSSP) INTCON (Interrupt Control) INTCON2 (Interrupt Control 2)	60 263 266 105 373 235 291 117 118
EECON1 (EEPROM Control 1) HLVDCON (High/Low-Voltage Detect Control) HOURS (Hours Value) I ² C Mode (MSSP) INTCON (Interrupt Control) INTCON2 (Interrupt Control 2) INTCON3 (Interrupt Control 3)	60 263 266 105 373 235 291 117 118 119
EECON1 (EEPROM Control 1) HLVDCON (High/Low-Voltage Detect Control) HOURS (Hours Value) I ² C Mode (MSSP) INTCON (Interrupt Control) INTCON2 (Interrupt Control 2) INTCON3 (Interrupt Control 3) IPR1 (Peripheral Interrupt Priority 1)	60 263 266 105 373 235 291 117 118 119 126
EECON1 (EEPROM Control 1) HLVDCON (High/Low-Voltage Detect Control) HOURS (Hours Value) I ² C Mode (MSSP) INTCON (Interrupt Control) INTCON2 (Interrupt Control 2) INTCON3 (Interrupt Control 3) IPR1 (Peripheral Interrupt Priority 1) IPR2 (Peripheral Interrupt Priority 2)	60 263 266 105 373 235 291 117 118 119 126 127
EECON1 (EEPROM Control 1) HLVDCON (High/Low-Voltage Detect Control) HOURS (Hours Value) I ² C Mode (MSSP) INTCON (Interrupt Control) INTCON2 (Interrupt Control 2) INTCON3 (Interrupt Control 3) IPR1 (Peripheral Interrupt Priority 1) IPR2 (Peripheral Interrupt Priority 2) IPR3 (Peripheral Interrupt Priority 3)	60 263 266 105 373 235 291 117 118 119 126 127 128
EECON1 (EEPROM Control 1) HLVDCON (High/Low-Voltage Detect Control) HOURS (Hours Value) I ² C Mode (MSSP) INTCON (Interrupt Control) INTCON2 (Interrupt Control 2) INTCON3 (Interrupt Control 3) IPR1 (Peripheral Interrupt Priority 1) IPR2 (Peripheral Interrupt Priority 2) IPR3 (Peripheral Interrupt Priority 3) MINUTES (Minutes Value)	60 263 266 105 373 235 291 117 118 119 126 127 128 235
EECON1 (EEPROM Control 1) HLVDCON (High/Low-Voltage Detect Control) HOURS (Hours Value) I ² C Mode (MSSP) INTCON (Interrupt Control) INTCON2 (Interrupt Control 2) INTCON3 (Interrupt Control 3) IPR1 (Peripheral Interrupt Priority 1) IPR2 (Peripheral Interrupt Priority 2) IPR3 (Peripheral Interrupt Priority 3) MINUTES (Minutes Value) MONTH (Month Value)	60 263 266 105 373 235 291 117 118 129 126 127 128 235 233
EECON1 (EEPROM Control 1) HLVDCON (High/Low-Voltage Detect Control) HOURS (Hours Value) I ² C Mode (MSSP) INTCON (Interrupt Control) INTCON2 (Interrupt Control 2) INTCON3 (Interrupt Control 3) IPR1 (Peripheral Interrupt Priority 1) IPR2 (Peripheral Interrupt Priority 2) IPR3 (Peripheral Interrupt Priority 3) MINUTES (Minutes Value) ODCON1 (Peripheral Open-Drain Control 1)	60 263 266 105 373 235 291 117 118 119 126 127 128 235 233 133
EECON1 (EEPROM Control 1) HLVDCON (High/Low-Voltage Detect Control) HOURS (Hours Value) I ² C Mode (MSSP) INTCON (Interrupt Control 2) INTCON2 (Interrupt Control 3) INTCON3 (Interrupt Control 3) IPR1 (Peripheral Interrupt Priority 1) IPR2 (Peripheral Interrupt Priority 2) IPR3 (Peripheral Interrupt Priority 3) MINUTES (Minutes Value) ODCON1 (Peripheral Open-Drain Control 1) ODCON2 (Peripheral Open-Drain Control 2)	60 263 266 105 373 235 291 117 118 119 126 127 128 235 233 133 133
EECON1 (EEPROM Control 1) HLVDCON (High/Low-Voltage Detect Control) HOURS (Hours Value) I ² C Mode (MSSP) INTCON (Interrupt Control 2) INTCON2 (Interrupt Control 3) INTCON3 (Interrupt Control 3) IPR1 (Peripheral Interrupt Priority 1) IPR2 (Peripheral Interrupt Priority 2) IPR3 (Peripheral Interrupt Priority 3) MINUTES (Minutes Value) ODCON1 (Peripheral Open-Drain Control 1) ODCON2 (Peripheral Open-Drain Control 2) ODCON3 (Peripheral Open-Drain Control 3)	60 263 266 105 373 235 291 117 118 119 126 127 128 235 233 133 133 134
EECON1 (EEPROM Control 1) HLVDCON (High/Low-Voltage Detect Control) HOURS (Hours Value) I ² C Mode (MSSP) INTCON (Interrupt Control 2) INTCON2 (Interrupt Control 3) INTCON3 (Interrupt Control 3) IPR1 (Peripheral Interrupt Priority 1) IPR2 (Peripheral Interrupt Priority 2) IPR3 (Peripheral Interrupt Priority 3) MINUTES (Minutes Value) ODCON1 (Peripheral Open-Drain Control 1) ODCON2 (Peripheral Open-Drain Control 2) ODCON3 (Peripheral Open-Drain Control 3) OSCCON (Oscillator Control)	60 263 266 105 373 235 291 117 118 119 126 127 128 235 233 133 133 134 44
EECON1 (EEPROM Control 1) HLVDCON (High/Low-Voltage Detect Control) HOURS (Hours Value) I ² C Mode (MSSP) INTCON (Interrupt Control 2) INTCON2 (Interrupt Control 3) INTCON3 (Interrupt Control 3) IPR1 (Peripheral Interrupt Priority 1) IPR2 (Peripheral Interrupt Priority 2) IPR3 (Peripheral Interrupt Priority 3) MINUTES (Minutes Value) ODCON1 (Peripheral Open-Drain Control 1) ODCON2 (Peripheral Open-Drain Control 2) ODCON3 (Peripheral Open-Drain Control 3) OSCCON (Oscillator Control) OSCTUNE (Oscillator Tuning)	60 263 266 105 373 235 291 117 118 119 126 127 128 235 233 133 133 134 44 42
EECON1 (EEPROM Control 1) HLVDCON (High/Low-Voltage Detect Control) HOURS (Hours Value) I ² C Mode (MSSP) INTCON (Interrupt Control 2) INTCON2 (Interrupt Control 3) INTCON3 (Interrupt Control 3) IPR1 (Peripheral Interrupt Priority 1) IPR2 (Peripheral Interrupt Priority 2) IPR3 (Peripheral Interrupt Priority 3) MINUTES (Minutes Value) ODCON1 (Peripheral Open-Drain Control 1) ODCON2 (Peripheral Open-Drain Control 2) ODCON3 (Peripheral Open-Drain Control 3) OSCCON (Oscillator Control) OSCTUNE (Oscillator Tuning) PADCFG1 (Pad Configuration Control 1)	60 263 266 105 373 235 291 117 118 119 126 127 128 233 133 133 133 134 44 42 134
EECON1 (EEPROM Control 1) HLVDCON (High/Low-Voltage Detect Control) HOURS (Hours Value) I ² C Mode (MSSP) INTCON (Interrupt Control 2) INTCON2 (Interrupt Control 3) INTCON3 (Interrupt Control 3) IPR1 (Peripheral Interrupt Priority 1) IPR2 (Peripheral Interrupt Priority 2) IPR3 (Peripheral Interrupt Priority 3) MINUTES (Minutes Value) ODCON1 (Peripheral Open-Drain Control 1) ODCON2 (Peripheral Open-Drain Control 2) ODCON3 (Peripheral Open-Drain Control 3) OSCCON (Oscillator Control) OSCTUNE (Oscillator Tuning)	60 263 266 105 373 235 291 117 118 119 126 127 128 235 233 133 134 44 42 134 230