
Microchip Technology - PIC18LF24J11-I/ML Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor PIC

Core Size 8-Bit

Speed 48MHz

Connectivity I²C, SPI, UART/USART

Peripherals Brown-out Detect/Reset, POR, PWM, WDT

Number of I/O 16

Program Memory Size 16KB (8K x 16)

Program Memory Type FLASH

EEPROM Size -

RAM Size 3.8K x 8

Voltage - Supply (Vcc/Vdd) 2V ~ 3.6V

Data Converters A/D 10x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 28-VQFN Exposed Pad

Supplier Device Package 28-QFN (6x6)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/pic18lf24j11-i-ml

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/pic18lf24j11-i-ml-4390901
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

PIC18F46J11 FAMILY
Pin Diagrams (Continued)

10
11

2
3

6

1

1
8

1
9

2
0

2
1

2
21
2

1
3

1
4

1
5

3
8

8
7

4
4

4
3

4
2

4
1

4
0

3
9

1
6

1
7

29
30
31
32
33

23
24
25
26
27
28

3
6

3
4

3
5

9

PIC18F4XJ11

3
7

R
A

3
/A

N
3/

V
R

E
F
+

/C
1

IN
B

R
A

2
/A

N
2/

V
R

E
F
-/

C
V

R
E

F
-/

C
2

IN
B

R
A

1
/A

N
1/

C
2

IN
A

/P
M

A
7

/R
P

1
R

A
0

/A
N

0/
C

1
IN

A
/U

LP
W

U
/P

M
A

6/
R

P
0

M
C

L
R

N
C

R
B

7/
K

B
I3

/P
G

D
/R

P
10

R
B

6
/K

B
I2

/P
G

C
/R

P
9

R
B

5/
P

M
A

0
/K

B
I1

/R
P

8
R

B
4

/P
M

A
1/

K
B

I0
/R

P
7

N
C

R
C

6
/P

M
A

5/
T

X
1/

C
K

1
/R

P
17

R
C

5
/S

D
O

1/
R

P
1

6
R

C
4

/S
D

I1
/S

D
A

1
/R

P
15

R
D

3
/P

M
D

3
/R

P
20

R
D

2
/P

M
D

2
/R

P
19

R
D

1
/P

M
D

1
/S

D
A

2
R

D
0

/P
M

D
0

/S
C

L2
R

C
3

/S
C

K
1

/S
C

L1
/R

P
14

R
C

2
/A

N
11

/C
T

P
LS

/R
P

13
R

C
1

/T
1

O
S

I/R
P

1
2

N
C

NC
RC0/T1OSO/T1CKI/RP11
OSC2/CLKO/RA6
OSC1/CLKI/RA7
VSS
VDD
RE2/AN7/PMCS
RE1/AN6/PMWR
RE0/AN5/PMRD
RA5/AN4/SS1/HLVDIN/RP2
VDDCORE/VCAP(2)

RC7/PMA4/RX1/DT1/RP18
RD4/PMD4/RP21
RD5/PMD5/RP22
RD6/PMD6/RP23

VSS
VDD

RB0/AN12/INT0/RP3
RB1/AN10/PMBE/RTCC/RP4

RB2/AN8/CTED1/PMA3/REFO/RP5
RB3/AN9/CTED2/PMA2/RP6

44-Pin TQFP(1)

RD7/PMD7/RP24 5

4

Legend: RPn represents remappable pins.
Note 1: Some input and output functions are routed through the Peripheral Pin Select (PPS) module and can be

dynamically assigned to any of the RPn pins. For a list of the input and output functions, see Table 10-13
and Table 10-14, respectively. For details on configuring the PPS module, see Section 10.7 “Peripheral
Pin Select (PPS)”.

2: See Section 26.3 “On-Chip Voltage Regulator” for details on how to connect the VDDCORE/VCAP pin.

= Pins are up to 5.5V tolerant
 2011 Microchip Technology Inc. DS39932D-page 7

PIC18F46J11 FAMILY

3.3 Clock Sources and Oscillator
Switching

Like previous PIC18 enhanced devices, the
PIC18F46J11 family includes a feature that allows the
device clock source to be switched from the main
oscillator to an alternate, low-frequency clock source.
PIC18F46J11 family devices offer two alternate clock
sources. When an alternate clock source is enabled,
the various power-managed operating modes are
available.

Essentially, there are three clock sources for these
devices:

• Primary Oscillators

• Secondary Oscillators

• Internal Oscillator Block

The Primary Oscillators include the External Crystal
and Resonator modes, the External Clock modes and
the internal oscillator block. The particular mode is
defined by the FOSC<2:0> Configuration bits. The
details of these modes are covered earlier in this
chapter.

The Secondary Oscillators are external sources that
are not connected to the OSC1 or OSC2 pins. These
sources may continue to operate even after the
controller is placed in a power-managed mode.

PIC18F46J11 family devices offer the Timer1 oscillator
as a secondary oscillator. This oscillator, in all
power-managed modes, is often the time base for
functions such as a Real-Time Clock (RTC). Most often,
a 32.768 kHz watch crystal is connected between the
RC0/T1OSO/T1CKI/RP11 and RC1/T1OSI/RP12 pins.
Like the HS Oscillator mode circuits, loading capacitors
are also connected from each pin to ground. The Timer1
oscillator is discussed in more detail in Section 13.5
“Timer1 Oscillator”.

In addition to being a primary clock source, the
postscaled internal clock is available as a
power-managed mode clock source. The INTRC
source is also used as the clock source for several
special features, such as the WDT and Fail-Safe Clock
Monitor (FSCM).

REGISTER 3-1: OSCTUNE: OSCILLATOR TUNING REGISTER (ACCESS F9Bh)

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

INTSRC PLLEN TUN5 TUN4 TUN3 TUN2 TUN1 TUN0

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7 INTSRC: Internal Oscillator Low-Frequency Source Select bit

1 = 31.25 kHz device clock derived from 8 MHz INTOSC source (divide-by-256 enabled)
0 = 31 kHz device clock derived directly from INTRC internal oscillator

bit 6 PLLEN: Frequency Multiplier Enable bit

1 = PLL enabled
0 = PLL disabled

bit 5-0 TUN<5:0>: Frequency Tuning bits

011111 = Maximum frequency
011110
•
•
•
000001
000000 = Center frequency; oscillator module is running at the calibrated frequency
111111
•
•
•
100000 = Minimum frequency
DS39932D-page 42  2011 Microchip Technology Inc.

PIC18F46J11 FAMILY
6.1.4.4 Stack Full and Underflow Resets

Device Resets on stack overflow and stack underflow
conditions are enabled by setting the STVREN bit in
Configuration register 1L. When STVREN is set, a full
or underflow condition sets the appropriate STKFUL or
STKUNF bit and then causes a device Reset. When
STVREN is cleared, a full or underflow condition sets
the appropriate STKFUL or STKUNF bit, but does not
cause a device Reset. The STKFUL or STKUNF bits
are cleared by the user software or a POR.

6.1.5 FAST REGISTER STACK (FRS)

A Fast Register Stack (FRS) is provided for the
STATUS, WREG and BSR registers to provide a “fast
return” option for interrupts. This stack is only one level
deep and is neither readable nor writable. It is loaded
with the current value of the corresponding register
when the processor vectors for an interrupt. All inter-
rupt sources push values into the Stack registers. The
values in the registers are then loaded back into the
working registers if the RETFIE, FAST instruction is
used to return from the interrupt.

If both low-priority and high-priority interrupts are
enabled, the Stack registers cannot be used reliably to
return from low-priority interrupts. If a high-priority
interrupt occurs while servicing a low-priority interrupt,
the Stack register values stored by the low-priority
interrupt will be overwritten. In these cases, users must
save the key registers in software during a low-priority
interrupt.

If interrupt priority is not used, all interrupts may use the
FRS for returns from interrupt. If no interrupts are used,
the FRS can be used to restore the STATUS, WREG
and BSR registers at the end of a subroutine call. To
use the Fast Register Stack for a subroutine call, a
CALL label, FAST instruction must be executed to
save the STATUS, WREG and BSR registers to the
Fast Register Stack. A RETURN, FAST instruction is
then executed to restore these registers from the FRS.

Example 6-1 provides a source code example that
uses the FRS during a subroutine call and return.

EXAMPLE 6-1: FAST REGISTER STACK
CODE EXAMPLE

6.1.6 LOOK-UP TABLES IN PROGRAM
MEMORY

There may be programming situations that require the
creation of data structures or look-up tables in program
memory. For PIC18 devices, look-up tables can be
implemented in two ways:

• Computed GOTO

• Table Reads

6.1.6.1 Computed GOTO

A computed GOTO is accomplished by adding an offset
to the PC. An example is shown in Example 6-2.

A look-up table can be formed with an ADDWF PCL
instruction and a group of RETLW nn instructions. The
W register is loaded with an offset into the table before
executing a call to that table. The first instruction of the
called routine is the ADDWF PCL instruction. The next
executed instruction will be one of the RETLW nn
instructions that returns the value ‘nn’ to the calling
function.

The offset value (in WREG) specifies the number of
bytes that the PC should advance and should be
multiples of 2 (LSb = 0).

In this method, only one byte may be stored in each
instruction location; room on the return address stack is
required.

EXAMPLE 6-2: COMPUTED GOTO USING
AN OFFSET VALUE

6.1.6.2 Table Reads

A better method of storing data in program memory
allows two bytes to be stored in each instruction
location.

Look-up table data may be stored two bytes per
program word while programming. The Table Pointer
(TBLPTR) specifies the byte address and the Table
Latch (TABLAT) contains the data that is read from the
program memory. Data is transferred from program
memory one byte at a time.

Table read operation is discussed further in
Section 7.1 “Table Reads and Table Writes”.

CALL SUB1, FAST ;STATUS, WREG, BSR
;SAVED IN FAST REGISTER
;STACK




SUB1 


RETURN FAST ;RESTORE VALUES SAVED
;IN FAST REGISTER STACK

MOVF OFFSET, W
CALL TABLE

ORG nn00h
TABLE ADDWF PCL

RETLW nnh
RETLW nnh
RETLW nnh
.
.
.

 2011 Microchip Technology Inc. DS39932D-page 81

PIC18F46J11 FAMILY
6.2 PIC18 Instruction Cycle

6.2.1 CLOCKING SCHEME

The microcontroller clock input, whether from an
internal or external source, is internally divided by ‘4’ to
generate four non-overlapping quadrature clocks (Q1,
Q2, Q3 and Q4). Internally, the PC is incremented on
every Q1; the instruction is fetched from the program
memory and latched into the Instruction Register (IR)
during Q4. The instruction is decoded and executed
during the following Q1 through Q4. Figure 6-4
illustrates the clocks and instruction execution flow.

6.2.2 INSTRUCTION FLOW/PIPELINING

An “Instruction Cycle” consists of four Q cycles, Q1
through Q4. The instruction fetch and execute are pipe-
lined in such a manner that a fetch takes one instruction
cycle, while the decode and execute take another
instruction cycle. However, due to the pipelining, each
instruction effectively executes in one cycle. If an
instruction causes the PC to change (e.g., GOTO), then
two cycles are required to complete the instruction
(Example 6-3).

A fetch cycle begins with the PC incrementing in Q1.

In the execution cycle, the fetched instruction is latched
into the IR in cycle Q1. This instruction is then decoded
and executed during the Q2, Q3 and Q4 cycles. Data
memory is read during Q2 (operand read) and written
during Q4 (destination write).

FIGURE 6-4: CLOCK/INSTRUCTION CYCLE

EXAMPLE 6-3: INSTRUCTION PIPELINE FLOW

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

OSC1

Q1

Q2

Q3

Q4

PC

OSC2/CLKO
(RC mode)

PC PC + 2 PC + 4

Fetch INST (PC)
Execute INST (PC – 2)

Fetch INST (PC + 2)
Execute INST (PC)

Fetch INST (PC + 4)
Execute INST (PC + 2)

Internal
Phase
Clock

Note: All instructions are single-cycle, except for any program branches. These take two cycles since the
fetch instruction is “flushed” from the pipeline while the new instruction is being fetched and then exe-
cuted.

TCY0 TCY1 TCY2 TCY3 TCY4 TCY5

1. MOVLW 55h Fetch 1 Execute 1

2. MOVWF LATB Fetch 2 Execute 2

3. BRA SUB_1 Fetch 3 Execute 3

4. BSF LATA, 3 (Forced NOP) Fetch 4 Flush (NOP)

5. Instruction @ address SUB_1 Fetch SUB_1 Execute SUB_1
DS39932D-page 82  2011 Microchip Technology Inc.

PIC18F46J11 FAMILY
FIGURE 6-7: USE OF THE BANK SELECT REGISTER (DIRECT ADDRESSING)

6.3.2 ACCESS BANK

While the use of the BSR with an embedded 8-bit
address allows users to address the entire range of
data memory, it also means that the user must always
ensure that the correct bank is selected. Otherwise,
data may be read from or written to the wrong location.
This can be disastrous if a GPR is the intended target
of an operation, but an SFR is written to instead.
Verifying and/or changing the BSR for each read or
write to data memory can become very inefficient.

To streamline access for the most commonly used data
memory locations, the data memory is configured with
an Access Bank, which allows users to access a
mapped block of memory without specifying a BSR.
The Access Bank consists of the first 96 bytes of
memory (00h-5Fh) in Bank 0 and the last 160 bytes of
memory (60h-FFh) in Bank 15. The lower half is known
as the Access RAM and is composed of GPRs. The
upper half is where the device’s SFRs are mapped.
These two areas are mapped contiguously in the
Access Bank and can be addressed in a linear fashion
by an 8-bit address (Figure 6-6).

The Access Bank is used by core PIC18 instructions
that include the Access RAM bit (the ‘a’ parameter in
the instruction). When ‘a’ is equal to ‘1’, the instruction
uses the BSR and the 8-bit address included in the
opcode for the data memory address. When ‘a’ is ‘0’,
however, the instruction is forced to use the Access
Bank address map; the current value of the BSR is
ignored entirely.

Using this “forced” addressing allows the instruction to
operate on a data address in a single cycle without
updating the BSR first. For 8-bit addresses of 60h and
above, this means that users can evaluate and operate
on SFRs more efficiently. The Access RAM below 60h
is a good place for data values that the user might need
to access rapidly, such as immediate computational
results or common program variables. Access RAM
also allows for faster and more code efficient context
saving and switching of variables.

The mapping of the Access Bank is slightly different
when the extended instruction set is enabled (XINST
Configuration bit = 1). This is discussed in more detail
in Section 6.6.3 “Mapping the Access Bank in
Indexed Literal Offset Mode”.

6.3.3 GENERAL PURPOSE
REGISTER FILE

PIC18 devices may have banked memory in the GPR
area. This is data RAM, which is available for use by all
instructions. GPRs start at the bottom of Bank 0
(address 000h) and grow upward toward the bottom of
the SFR area. GPRs are not initialized by a POR and
are unchanged on all other Resets.

Note 1: The Access RAM bit of the instruction can be used to force an override of the selected bank (BSR<3:0>) to
the registers of the Access Bank.

2: The MOVFF instruction embeds the entire 12-bit address in the instruction.

Data Memory

Bank Select(2)

7 0
From Opcode(2)

0 0 0 0

000h

100h

200h

300h

F00h

E00h

FFFh

Bank 0

Bank 1

Bank 2

Bank 14

Bank 15

00h

FFh
00h

FFh
00h

FFh

00h

FFh
00h

FFh

00h

FFh

Bank 3
through
Bank 13

0 0 1 0 1 1 1 1 1 1 1 1

7 0BSR(1)

1 1 1 1 1 1 1 1
DS39932D-page 86  2011 Microchip Technology Inc.

PIC18F46J11 FAMILY
6.4.3.1 FSR Registers and the INDF
Operand (INDF)

At the core of Indirect Addressing are three sets of
registers: FSR0, FSR1 and FSR2. Each represents a
pair of 8-bit registers, FSRnH and FSRnL. The four
upper bits of the FSRnH register are not used, so each
FSR pair holds a 12-bit value. This represents a value
that can address the entire range of the data memory
in a linear fashion. The FSR register pairs, then, serve
as pointers to data memory locations.

Indirect Addressing is accomplished with a set of INDF
operands, INDF0 through INDF2. These can be pre-
sumed to be “virtual” registers: they are mapped in the

SFR space but are not physically implemented. Read-
ing or writing to a particular INDF register actually
accesses its corresponding FSR register pair. A read
from INDF1, for example, reads the data at the address
indicated by FSR1H:FSR1L. Instructions that use the
INDF registers as operands actually use the contents
of their corresponding FSR as a pointer to the instruc-
tion’s target. The INDF operand is just a convenient
way of using the pointer.

Because Indirect Addressing uses a full 12-bit address,
data RAM banking is not necessary. Thus, the current
contents of the BSR and the Access RAM bit have no
effect on determining the target address.

FIGURE 6-8: INDIRECT ADDRESSING

FSR1H:FSR1L

07

Data Memory

000h

100h

200h

300h

F00h

E00h

FFFh

Bank 0

Bank 1

Bank 2

Bank 14

Bank 15

Bank 3
through
Bank 13

ADDWF, INDF1, 1

07

Using an instruction with one of the
Indirect Addressing registers as the
operand....

...uses the 12-bit address stored in
the FSR pair associated with that
register....

...to determine the data memory
location to be used in that operation.

In this case, the FSR1 pair contains
FCCh. This means the contents of
location FCCh will be added to that
of the W register and stored back in
FCCh.

x x x x 1 1 1 1 1 1 0 0 1 1 0 0
DS39932D-page 98  2011 Microchip Technology Inc.

PIC18F46J11 FAMILY
10.2 PORTA, TRISA and LATA Registers

PORTA is a 7-bit wide, bidirectional port. It may
function as a 5-bit port, depending on the oscillator
mode selected. Setting a TRISA bit (= 1) will make the
corresponding PORTA pin an input (i.e., put the
corresponding output driver in a high-impedance
mode). Clearing a TRISA bit (= 0) will make the
corresponding PORTA pin an output (i.e., put the
contents of the output latch on the selected pin).

Reading the PORTA register reads the status of the
pins, whereas writing to it, will write to the port latch.

The Data Latch (LATA) register is also memory mapped.
Read-modify-write operations on the LATA register read
and write the latched output value for PORTA.

The other PORTA pins are multiplexed with analog
inputs, the analog VREF+ and VREF- inputs and the com-
parator voltage reference output. The operation of pins,
RA<3:0> and RA5, as A/D converter inputs is selected
by clearing or setting the control bits in the ANCON0
register (A/D Port Configuration Register 0).

Pins, RA0 and RA3, may also be used as comparator
inputs by setting the appropriate bits in the CMCON reg-
ister. To use RA<3:0> as digital inputs, it is also
necessary to turn off the comparators.

All PORTA pins have TTL input levels and full CMOS
output drivers.

The TRISA register controls the direction of the PORTA
pins, even when they are being used as analog inputs.
The user must ensure the bits in the TRISA register are
maintained set when using them as analog inputs.

EXAMPLE 10-2: INITIALIZING PORTA

Note: On a Power-on Reset (POR), RA5 and
RA<3:0> are configured as analog inputs
and read as ‘0’.

CLRF LATA ; Initialize LATA
; to clear output
; data latches

MOVLB 0x0F ; ANCONx register not in
; Access Bank

MOVLW 0x0F ; Configure A/D
MOVWF ANCON0 ; for digital inputs
MOVLW 0xCF ; Value used to

; initialize data
; direction

MOVWF TRISA ; Set RA<3:0> as inputs
; RA<5:4> as outputs
 2011 Microchip Technology Inc. DS39932D-page 135

PIC18F46J11 FAMILY
TABLE 11-2: REGISTERS ASSOCIATED WITH PMP MODULE

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Reset
Values

on Page:

INTCON GIE/GIEH PEIE/GIEL TMR0IE INT0IE RBIE TMR0IF INT0IF RBIF 69

PIR1 PMPIF(2) ADIF RC1IF TX1IF SSP1IF CCP1IF TMR2IF TMR1IF 72

PIE1 PMPIE(2) ADIE RC1IE TX1IE SSP1IE CCP1IE TMR2IE TMR1IE 72

IPR1 PMPIP(2) ADIP RC1IP TX1IP SSP1IP CCP1IP TMR2IP TMR1IP 72

PMCONH(2) PMPEN — — ADRMUX1 ADRMUX0 PTBEEN PTWREN PTRDEN 73

PMCONL(2) CSF1 CSF0 ALP — CS1P BEP WRSP RDSP 73

PMADDRH(1,2)/ — CS1 Parallel Master Port Address High Byte 73

PMDOUT1H(1,2) Parallel Port Out Data High Byte (Buffer 1) 73

PMADDRL(1,2)/ Parallel Master Port Address Low Byte 73

PMDOUT1L(1,2) Parallel Port Out Data Low Byte (Buffer 0) 73

PMDOUT2H(2) Parallel Port Out Data High Byte (Buffer 3) 73

PMDOUT2L(2) Parallel Port Out Data Low Byte (Buffer 2) 73

PMDIN1H(2) Parallel Port In Data High Byte (Buffer 1) 73

PMDIN1L(2) Parallel Port In Data Low Byte (Buffer 0) 73

PMDIN2H(2) Parallel Port In Data High Byte (Buffer 3) 73

PMDIN2L(2) Parallel Port In Data Low Byte (Buffer 2) 73

PMMODEH(2) BUSY IRQM1 IRQM0 INCM1 INCM0 MODE16 MODE1 MODE0 73

PMMODEL(2) WAITB1 WAITB0 WAITM3 WAITM2 WAITM1 WAITM0 WAITE1 WAITE0 73

PMEH(2) — PTEN14 — — — — — — 74

PMEL(2) PTEN7 PTEN6 PTEN5 PTEN4 PTEN3 PTEN2 PTEN1 PTEN0 74

PMSTATH(2) IBF IBOV — — IB3F IB2F IB1F IB0F 74

PMSTATL(2) OBE OBUF — — OB3E OB2E OB1E OB0E 74

PADCFG1 — — — — — RTSECSEL1 RTSECSEL0 PMPTTL 74

Legend: — = unimplemented, read as ‘0’. Shaded cells are not used during PMP operation.
Note 1: The PMADDRH/PMDOUT1H and PMADDRL/PMDOUT1L register pairs share the physical registers and

addresses, but have different functions determined by the module’s operating mode.
2: These bits and/or registers are only available in 44-pin devices.
 2011 Microchip Technology Inc. DS39932D-page 195

PIC18F46J11 FAMILY
13.2 Timer1 Operation

The Timer1 module is an 8-bit or 16-bit incrementing
counter, which is accessed through the
TMR1H:TMR1L register pair.

When used with an internal clock source, the module is
a timer and increments on every instruction cycle.
When used with an external clock source, the module
can be used as either a timer or counter and
increments on every selected edge of the external
source.

Timer1 is enabled by configuring the TMR1ON and
TMR1GE bits in the T1CON and T1GCON registers,
respectively.

When Timer1 is enabled, the RC1/T1OSI/RP12 and
RC0/T1OSO/T1CKI/RP11 pins become inputs. This
means the values of TRISC<1:0> are ignored and the
pins are read as ‘0’.

13.3 Clock Source Selection

The TMR1CS<1:0> and T1OSCEN bits of the T1CON
register are used to select the clock source for Timer1.
Register 13-1 displays the clock source selections.

When switching clock sources and using the clock
prescaler, write to TMR1L afterwards to reset the
internal prescaler count to 0.

13.3.1 INTERNAL CLOCK SOURCE

When the internal clock source is selected, the
TMR1H:TMR1L register pair will increment on multiples
of FOSC as determined by the Timer1 prescaler.

13.3.2 EXTERNAL CLOCK SOURCE

When the external clock source is selected, the Timer1
module may work as a timer or a counter.

When enabled to count, Timer1 is incremented on the
rising edge of the external clock input, T1CKI, or the
capacitive sensing oscillator signal. Either of these
external clock sources can be synchronized to the
microcontroller system clock or they can run
asynchronously.

When used as a timer with a clock oscillator, an
external 32.768 kHz crystal can be used in conjunction
with the dedicated internal oscillator circuit.

TABLE 13-1: TIMER1 CLOCK SOURCE SELECTION

Note: In Counter mode, a falling edge must be
registered by the counter prior to the first
incrementing rising edge after any one or
more of the following conditions:

• Timer1 enabled after POR Reset
• Write to TMR1H or TMR1L
• Timer1 is disabled
• Timer1 is disabled (TMR1ON = 0)

when T1CKI is high, then Timer1 is
enabled (TMR1ON = 1) when T1CKI is
low.

TMR1CS1 TMR1CS0 T1OSCEN Clock Source

0 1 x Clock Source (FOSC)

0 0 x Instruction Clock (FOSC/4)

1 0 0 External Clock on T1CKI Pin

1 0 1 Oscillator Circuit on T1OSI/T1OSO Pin
DS39932D-page 204  2011 Microchip Technology Inc.

PIC18F46J11 FAMILY
In addition to the expanded range of modes available
through the CCPxCON and ECCPxAS registers, the
ECCP modules have two additional registers associated
with Enhanced PWM operation and auto-shutdown
features. They are:

• ECCPxDEL (Enhanced PWM Control)

• PSTRxCON (Pulse Steering Control)

18.1 ECCP Outputs and Configuration

The Enhanced CCP module may have up to four PWM
outputs, depending on the selected operating mode.
These outputs, designated PxA through PxD, are
routed through the Peripheral Pin Select (PPS)
module. Therefore, individual functions may be
mapped to any of the remappable I/O pins, RPn. The
outputs that are active depend on the ECCP operating
mode selected. The pin assignments are summarized
in Table 18-4.

To configure the I/O pins as PWM outputs, the proper
PWM mode must be selected by setting the PxM<1:0>
and CCPxM<3:0> bits. The appropriate TRIS direction
bits for the port pins must also be set as outputs and the
output functions need to be assigned to I/O pins in the
PPS module. (For details on configuring the module,
see Section 10.7 “Peripheral Pin Select (PPS)”.)

18.1.1 ECCP MODULE AND TIMER
RESOURCES

The ECCP modules utilize Timers 1, 2, 3 or 4, depending
on the mode selected. Timer1 and Timer3 are available
to modules in Capture or Compare modes, while Timer2
and Timer4 are available for modules in PWM mode.

TABLE 18-1: ECCP MODE – TIMER
RESOURCE

The assignment of a particular timer to a module is
determined by the Timer-to-ECCP enable bits in the
TCLKCON register (Register 13-3). The interactions
between the two modules are depicted in Figure 18-1.
Capture operations are designed to be used when the
timer is configured for Synchronous Counter mode.
Capture operations may not work as expected if the
associated timer is configured for Asynchronous Counter
mode.

18.2 Capture Mode

In Capture mode, the CCPRxH:CCPRxL register pair
captures the 16-bit value of the TMR1 or TMR3
registers when an event occurs on the corresponding
ECCPx pin. An event is defined as one of the following:

• Every falling edge

• Every rising edge

• Every 4th rising edge

• Every 16th rising edge

The event is selected by the mode select bits,
CCPxM<3:0>, of the CCPxCON register. When a
capture is made, the interrupt request flag bit, CCPxIF,
is set; it must be cleared by software. If another capture
occurs before the value in register CCPRx is read, the
old captured value is overwritten by the new captured
value.

18.2.1 ECCP PIN CONFIGURATION

In Capture mode, the appropriate ECCPx pin should be
configured as an input by setting the corresponding
TRIS direction bit.

Additionally, the ECCPx input function needs to be
assigned to an I/O pin through the Peripheral Pin
Select module. For details on setting up the
remappable pins, see Section 10.7 “Peripheral Pin
Select (PPS)”.

18.2.2 TIMER1/TIMER3 MODE SELECTION

The timers that are to be used with the capture feature
(Timer1 and/or Timer3) must be running in Timer mode
or Synchronized Counter mode. In Asynchronous
Counter mode, the capture operation may not work.
The timer to be used with each ECCP module is
selected in the TCLKCON register (Register 13-3).

18.2.3 SOFTWARE INTERRUPT

When the Capture mode is changed, a false capture
interrupt may be generated. The user should keep the
CCPxIE interrupt enable bit clear to avoid false interrupts.
The interrupt flag bit, CCPxIF, should also be cleared
following any such change in operating mode.

ECCP Mode Timer Resource

Capture Timer1 or Timer3

Compare Timer1 or Timer3

PWM Timer2 or Timer4

Note: If the ECCPx pin is configured as an out-
put, a write to the port can cause a capture
condition.
 2011 Microchip Technology Inc. DS39932D-page 249

PIC18F46J11 FAMILY
REGISTER 20-1: TXSTAx: TRANSMIT STATUS AND CONTROL REGISTER (ACCESS FADh/FA8h)

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R-1 R/W-0

CSRC TX9 TXEN(1) SYNC SENDB BRGH TRMT TX9D

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7 CSRC: Clock Source Select bit

Asynchronous mode:
Don’t care.

Synchronous mode:
1 = Master mode (clock generated internally from BRG)
0 = Slave mode (clock from external source)

bit 6 TX9: 9-Bit Transmit Enable bit

1 = Selects 9-bit transmission
0 = Selects 8-bit transmission

bit 5 TXEN: Transmit Enable bit(1)

1 = Transmit is enabled and the TXX/CKX pin is configured as an output
0 = Transmit is disabled

bit 4 SYNC: EUSART Mode Select bit

1 = Synchronous mode
0 = Asynchronous mode

bit 3 SENDB: Send Break Character bit

Asynchronous mode:
1 = Send Sync Break on next transmission (cleared by hardware upon completion)
0 = Sync Break transmission completed

Synchronous mode:
Don’t care.

bit 2 BRGH: High Baud Rate Select bit

Asynchronous mode:
1 = High speed
0 = Low speed

Synchronous mode:
Unused in this mode.

bit 1 TRMT: Transmit Shift Register Status bit

1 = TSR empty
0 = TSR full

bit 0 TX9D: 9th bit of Transmit Data

Can be address/data bit or a parity bit.

Note 1: SREN/CREN overrides TXEN in Sync mode.
DS39932D-page 328  2011 Microchip Technology Inc.

PIC18F46J11 FAMILY
TABLE 20-3: BAUD RATES FOR ASYNCHRONOUS MODES

BAUD
RATE

(K)

SYNC = 0, BRGH = 0, BRG16 = 0

FOSC = 40.000 MHz FOSC = 20.000 MHz FOSC = 10.000 MHz FOSC = 8.000 MHz

Actual
Rate
(K)

%
Error

SPBRG
value

(decimal)

Actual
Rate
(K)

%
Error

SPBRG
value

(decimal)

Actual
Rate
(K)

%
Error

SPBRG
value

(decimal)

Actual
Rate
(K)

%
Error

SPBRG
value

(decimal)

0.3 — — — — — — — — — — — —

1.2 — — — 1.221 1.73 255 1.202 0.16 129 1.201 -0.16 103

2.4 2.441 1.73 255 2.404 0.16 129 2.404 0.16 64 2.403 -0.16 51

9.6 9.615 0.16 64 9.766 1.73 31 9.766 1.73 15 9.615 -0.16 12

19.2 19.531 1.73 31 19.531 1.73 15 19.531 1.73 7 — — —

57.6 56.818 -1.36 10 62.500 8.51 4 52.083 -9.58 2 — — —

115.2 125.000 8.51 4 104.167 -9.58 2 78.125 -32.18 1 — — —

BAUD
RATE

(K)

SYNC = 0, BRGH = 0, BRG16 = 0

FOSC = 4.000 MHz FOSC = 2.000 MHz FOSC = 1.000 MHz

Actual
Rate
(K)

%
Error

SPBRG
value

(decimal)

Actual
Rate
(K)

%
Error

SPBRG
value

(decimal)

Actual
Rate
(K)

%
Error

SPBRG
value

(decimal)

0.3 0.300 0.16 207 0.300 -0.16 103 0.300 -0.16 51

1.2 1.202 0.16 51 1.201 -0.16 25 1.201 -0.16 12

2.4 2.404 0.16 25 2.403 -0.16 12 — — —

9.6 8.929 -6.99 6 — — — — — —

19.2 20.833 8.51 2 — — — — — —

57.6 62.500 8.51 0 — — — — — —

115.2 62.500 -45.75 0 — — — — — —

BAUD
RATE

(K)

SYNC = 0, BRGH = 1, BRG16 = 0

FOSC = 40.000 MHz FOSC = 20.000 MHz FOSC = 10.000 MHz FOSC = 8.000 MHz

Actual
Rate
(K)

%
Error

SPBRG
value

(decimal)

Actual
Rate
(K)

%
Error

SPBRG
value

(decimal)

Actual
Rate
(K)

%
Error

SPBRG
value

(decimal)

Actual
Rate
(K)

%
Error

SPBRG
value

(decimal)

0.3 — — — — — — — — — — — —

1.2 — — — — — — — — — — — —

2.4 — — — — — — 2.441 1.73 255 2.403 -0.16 207

9.6 9.766 1.73 255 9.615 0.16 129 9.615 0.16 64 9615. -0.16 51

19.2 19.231 0.16 129 19.231 0.16 64 19.531 1.73 31 19.230 -0.16 25

57.6 58.140 0.94 42 56.818 -1.36 21 56.818 -1.36 10 55.555 3.55 8

115.2 113.636 -1.36 21 113.636 -1.36 10 125.000 8.51 4 — — —

BAUD
RATE

(K)

SYNC = 0, BRGH = 1, BRG16 = 0

FOSC = 4.000 MHz FOSC = 2.000 MHz FOSC = 1.000 MHz

Actual
Rate
(K)

%
Error

SPBRG
value

(decimal)

Actual
Rate
(K)

%
Error

SPBRG
value

(decimal)

Actual
Rate
(K)

%
Error

SPBRG
value

(decimal)

0.3 — — — — — — 0.300 -0.16 207

1.2 1.202 0.16 207 1.201 -0.16 103 1.201 -0.16 51

2.4 2.404 0.16 103 2.403 -0.16 51 2.403 -0.16 25

9.6 9.615 0.16 25 9.615 -0.16 12 — — —

19.2 19.231 0.16 12 — — — — — —

57.6 62.500 8.51 3 — — — — — —

115.2 125.000 8.51 1 — — — — — —
 2011 Microchip Technology Inc. DS39932D-page 333

PIC18F46J11 FAMILY
10. If any error occurred, clear the CREN bit.

11. If the device has been addressed, clear the
ADDEN bit to allow all received data into the
receive buffer and interrupt the CPU.

FIGURE 20-6: EUSARTx RECEIVE BLOCK DIAGRAM

FIGURE 20-7: ASYNCHRONOUS RECEPTION

x64 Baud Rate CLK

Baud Rate Generator

RXx

Pin Buffer
and Control

SPEN

Data
Recovery

CREN OERR FERR

RSR RegisterMSb LSb

RX9D RCREGx Register
2-Entry FIFO

Interrupt RCxIF

RCxIE
Data Bus

8

 64

 16
or

Stop Start(8) 7 1 0

RX9



SPBRGxSPBRGHxBRG16

or
 4

{
RXDTP Unread Data

in FIFO

Start
bit bit 7/8bit 1bit 0 bit 7/8 bit 0Stop

bit

Start
bit

Start
bitbit 7/8 Stop

bit

RXx (pin)

Rcv Buffer Reg
Rcv Shift Reg

Read Rcv
Buffer Reg
RCREGx

RCxIF
(Interrupt Flag)

OERR bit

CREN

Word 1
RCREGx

Word 2
RCREGx

Stop
bit

Note: This timing diagram shows three words appearing on the RXx input. The RCREGx (Receive Buffer) is read after
the third word causing the OERR (Overrun) bit to be set.
DS39932D-page 340  2011 Microchip Technology Inc.

PIC18F46J11 FAMILY
22.0 COMPARATOR MODULE

The analog comparator module contains two compara-
tors that can be independently configured in a variety of
ways. The inputs can be selected from the analog inputs
and two internal voltage references. The digital outputs
are available at the pin level and can also be read
through the control register. Multiple output and interrupt
event generation is also available. Figure 22-1 provides
a generic single comparator from the module.

Key features of the module are:

• Independent comparator control

• Programmable input configuration

• Output to both pin and register levels

• Programmable output polarity

• Independent interrupt generation for each
comparator with configurable interrupt-on-change

22.1 Registers

The CMxCON registers (Register 22-1) select the input
and output configuration for each comparator, as well
as the settings for interrupt generation.

The CMSTAT register (Register 22-2) provides the out-
put results of the comparators. The bits in this register
are read-only.

FIGURE 22-1: COMPARATOR SIMPLIFIED BLOCK DIAGRAM

Cx

VIN-

VIN+

COE
CxOUT

0

3

0

1

CCH<1:0>

CxINB

VIRV

CxINA

CVREF

CON

Interrupt
Logic

EVPOL<4:3>

COUTx
(CMSTAT<1:0>)

CMxIF

CPOL

Polarity
Logic

CREF
 2011 Microchip Technology Inc. DS39932D-page 361

PIC18F46J11 FAMILY
24.1 Operation

When the HLVD module is enabled, a comparator uses
an internally generated reference voltage as the set
point. The set point is compared with the trip point,
where each node in the resistor divider represents a
trip point voltage. The “trip point” voltage is the voltage
level at which the device detects a high or low-voltage
event, depending on the configuration of the module.

When the supply voltage is equal to the trip point, the
voltage tapped off of the resistor array is equal to the
internal reference voltage generated by the voltage
reference module. The comparator then generates an
interrupt signal by setting the LVDIF bit.

The trip point voltage is software programmable to any
one of 8 values. The trip point is selected by
programming the HLVDL<3:0> bits (HLVDCON<3:0>).

Additionally, the HLVD module allows the user to
supply the trip voltage to the module from an external
source. This mode is enabled when bits, HLVDL<3:0>,
are set to ‘1111’. In this state, the comparator input is
multiplexed from the external input pin, HLVDIN. This
gives users flexibility because it allows them to
configure the HLVD interrupt to occur at any voltage in
the valid operating range.

FIGURE 24-1: HLVD MODULE BLOCK DIAGRAM (WITH EXTERNAL INPUT)

Set

VDD
1

6
-t

o
-1

 M
U

X

HLVDEN

HLVDCONHLVDL<3:0>
Register

HLVDIN

VDD

Externally Generated
Trip Point

LVDIF

HLVDEN

Internal Voltage
Reference

VDIRMAG

1.2V Typical
DS39932D-page 374  2011 Microchip Technology Inc.

PIC18F46J11 FAMILY
FIGURE 24-3: HIGH-VOLTAGE DETECT OPERATION (VDIRMAG = 1)

24.5 Applications

In many applications, it is desirable to have the ability to
detect a drop below, or rise above, a particular threshold.
For general battery applications, Figure 24-4 provides a
possible voltage curve.

Over time, the device voltage decreases. When the
device voltage reaches voltage, VA, the HLVD logic
generates an interrupt at time, TA. The interrupt could
cause the execution of an ISR, which would allow the
application to perform “housekeeping tasks” and
perform a controlled shutdown before the device
voltage exits the valid operating range at TB.

The HLVD, thus, would give the application a time
window, represented by the difference between TA and
TB, to safely exit.

FIGURE 24-4: TYPICAL HIGH/
LOW-VOLTAGE DETECT
APPLICATION

VHLVD

VDD

LVDIF

VHLVD

VDD

Enable HLVD

TIRVST

LVDIF may not be set

Enable HLVD

LVDIF

LVDIF cleared in software

LVDIF cleared in software

LVDIF cleared in software,

CASE 1:

CASE 2:

LVDIF remains set since HLVD condition still exists

TIRVST

IRVST

Internal Reference is stable

Internal Reference is stable

IRVST

Time

V
o

lt
a

g
e

VA

VB

TA TB

VA = HLVD trip point
VB = Minimum valid device
 operating voltage

Legend:
 2011 Microchip Technology Inc. DS39932D-page 377

PIC18F46J11 FAMILY
EXAMPLE 25-4: ROUTINE FOR CAPACITIVE TOUCH SWITCH

#include <p18cxxx.h>

#define COUNT 500 //@ 8MHz = 125uS.
#define DELAY for(i=0;i<COUNT;i++)
#define OPENSW 1000 //Un-pressed switch value
#define TRIP 300 //Difference between pressed
 //and un-pressed switch
#define HYST 65 //amount to change
 //from pressed to un-pressed
#define PRESSED 1
#define UNPRESSED 0

int main(void)
{
 unsigned int Vread; //storage for reading
 unsigned int switchState;
 int i;

 //assume CTMU and A/D have been setup correctly
 //see Example 25-1 for CTMU & A/D setup
 setup();

 CTMUCONHbits.CTMUEN = 1; // Enable the CTMU
 CTMUCONLbits.EDG1STAT = 0; // Set Edge status bits to zero
 CTMUCONLbits.EDG2STAT = 0;
 CTMUCONHbits.IDISSEN = 1; //drain charge on the circuit
 DELAY; //wait 125us
 CTMUCONHbits.IDISSEN = 0; //end drain of circuit

 CTMUCONLbits.EDG1STAT = 1; //Begin charging the circuit
 //using CTMU current source
 DELAY; //wait for 125us
 CTMUCONLbits.EDG1STAT = 0; //Stop charging circuit

 PIR1bits.ADIF = 0; //make sure A/D Int not set
 ADCON0bits.GO=1; //and begin A/D conv.
 while(!PIR1bits.ADIF); //Wait for A/D convert complete

 Vread = ADRES; //Get the value from the A/D

 if(Vread < OPENSW - TRIP)
 {
 switchState = PRESSED;
 }
 else if(Vread > OPENSW - TRIP + HYST)
 {
 switchState = UNPRESSED;
 }
}

DS39932D-page 388  2011 Microchip Technology Inc.

PIC18F46J11 FAMILY

TBLWT Table Write

Syntax: TBLWT (*; *+; *-; +*)

Operands: None

Operation: if TBLWT*,
(TABLAT)  Holding Register,
TBLPTR – No Change;
if TBLWT*+,
(TABLAT)  Holding Register,
(TBLPTR) + 1  TBLPTR;
if TBLWT*-,
(TABLAT)  Holding Register,
(TBLPTR) – 1  TBLPTR;
if TBLWT+*,
(TBLPTR) + 1  TBLPTR,
(TABLAT)  Holding Register

Status Affected: None

Encoding: 0000 0000 0000 11nn
nn=0 *
 =1 *+
 =2 *-
 =3 +*

Description: This instruction uses the 3 LSBs of
TBLPTR to determine which of the
8 holding registers the TABLAT is written
to. The holding registers are used to
program the contents of Program Memory
(P.M.). (Refer to Section 6.0 “Memory
Organization” for additional details on
programming Flash memory.)

The TBLPTR (a 21-bit pointer) points to
each byte in the program memory.
TBLPTR has a 2-Mbyte address range.
The LSb of the TBLPTR selects which
byte of the program memory location to
access.

TBLPTR<0> = 0: Least Significant Byte
of Program Memory
Word

TBLPTR<0> = 1: Most Significant Byte of
Program Memory Word

The TBLWT instruction can modify the
value of TBLPTR as follows:

• no change
• post-increment
• post-decrement
• pre-increment

Words: 1

Cycles: 2

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode No
operation

No
operation

No
operation

No
operation

No
operation

(Read
TABLAT)

No
operation

No
operation
(Write to
Holding

Register)

TBLWT Table Write (Continued)

Example 1: TBLWT *+

Before Instruction
TABLAT = 55h
TBLPTR = 00A356h
HOLDING REGISTER
(00A356h) = FFh

After Instructions (table write completion)
TABLAT = 55h
TBLPTR = 00A357h
HOLDING REGISTER
(00A356h) = 55h

Example 2: TBLWT +*

Before Instruction
TABLAT = 34h
TBLPTR = 01389Ah
HOLDING REGISTER
(01389Ah) = FFh
HOLDING REGISTER
(01389Bh) = FFh

After Instruction (table write completion)
TABLAT = 34h
TBLPTR = 01389Bh
HOLDING REGISTER
(01389Ah) = FFh
HOLDING REGISTER
(01389Bh) = 34h

DS39932D-page 452  2011 Microchip Technology Inc.

PIC18F46J11 FAMILY
27.2.2 EXTENDED INSTRUCTION SET

ADDFSR Add Literal to FSR

Syntax: ADDFSR f, k

Operands: 0  k  63
f  [0, 1, 2]

Operation: FSR(f) + k  FSR(f)

Status Affected: None

Encoding: 1110 1000 ffkk kkkk

Description: The 6-bit literal ‘k’ is added to the
contents of the FSR specified by ‘f’.

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
literal ‘k’

Process
Data

Write to
FSR

Example: ADDFSR 2, 0x23

Before Instruction
FSR2 = 03FFh

After Instruction
FSR2 = 0422h

ADDULNK Add Literal to FSR2 and Return

Syntax: ADDULNK k

Operands: 0  k  63

Operation: FSR2 + k  FSR2,

(TOS) PC

Status Affected: None

Encoding: 1110 1000 11kk kkkk

Description: The 6-bit literal ‘k’ is added to the
contents of FSR2. A RETURN is then
executed by loading the PC with the
TOS.

The instruction takes two cycles to
execute; a NOP is performed during
the second cycle.

This may be thought of as a special
case of the ADDFSR instruction,
where f = 3 (binary ‘11’); it operates
only on FSR2.

Words: 1

Cycles: 2

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
literal ‘k’

Process
Data

Write to
FSR

No
Operation

No
Operation

No
Operation

No
Operation

Example: ADDULNK 0x23

Before Instruction
FSR2 = 03FFh
PC = 0100h

After Instruction
FSR2 = 0422h
PC = (TOS)

Note: All PIC18 instructions may take an optional label argument preceding the instruction mnemonic for use in
symbolic addressing. If a label is used, the instruction format then becomes: {label} instruction argument(s).
DS39932D-page 456  2011 Microchip Technology Inc.

PIC18F46J11 FAMILY
TABLE 29-30: A/D CONVERTER CHARACTERISTICS: PIC18F46J11 FAMILY (INDUSTRIAL)

Param
No.

Symbol Characteristic Min Typ Max Units Conditions

A01 NR Resolution — — 10 bit VREF  3.0V

A03 EIL Integral Linearity Error — — <±1 LSb VREF  3.0V

A04 EDL Differential Linearity Error — — <±1 LSb VREF  3.0V

A06 EOFF Offset Error — — <±3 LSb VREF  3.0V

A07 EGN Gain Error — — <±3.5 LSb VREF  3.0V

A10 Monotonicity Guaranteed(1) — VSS  VAIN  VREF

A20 VREF Reference Voltage Range
(VREFH – VREFL)

2.0
3

—
—

—
—

V
V

VDD  3.0V
VDD  3.0V

A21 VREFH Reference Voltage High VREFL — VDD + 0.3V V

A22 VREFL Reference Voltage Low VSS – 0.3V — VREFH V

A25 VAIN Analog Input Voltage VREFL — VREFH V

A30 ZAIN Recommended Impedance of
Analog Voltage Source

— — 2.5 k

A50 IREF VREF Input Current(2) —
—

—
—

5
150

A
A

During VAIN acquisition.
During A/D conversion
cycle.

Note 1: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.

2: VREFH current is from RA3/AN3/VREF+/C1INB pin or VDD, whichever is selected as the VREFH source.
VREFL current is from RA2/AN2/VREF-/CVREF/C2INB pin or VSS, whichever is selected as the VREFL source.
 2011 Microchip Technology Inc. DS39932D-page 505

