

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf24j11t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.1.4 EXTENDED INSTRUCTION SET

The PIC18F46J11 family implements the optional extension to the PIC18 instruction set, adding eight new instructions and an Indexed Addressing mode. Enabled as a device configuration option, the extension has been specifically designed to optimize re-entrant application code originally developed in high-level languages, such as C.

1.1.5 EASY MIGRATION

Regardless of the memory size, all devices share the same rich set of peripherals, allowing for a smooth migration path as applications grow and evolve.

The consistent pinout scheme used throughout the entire family also aids in migrating to the next larger device.

The PIC18F46J11 family is also pin compatible with other PIC18 families, such as the PIC18F4620, PIC18F4520 and PIC18F45J10. This allows a new dimension to the evolution of applications, allowing developers to select different price points within Microchip's PIC18 portfolio, while maintaining the same feature set.

1.2 Other Special Features

- Communications: The PIC18F46J11 family incorporates a range of serial and parallel communication peripherals. This device also includes two independent Enhanced USARTs and two Master Synchronous Serial Port (MSSP) modules, capable of both Serial Peripheral Interface (SPI) and I²C™ (Master and Slave) modes of operation. The device also has a parallel port and can be configured to serve as either a Parallel Master Port (PMP) or as a Parallel Slave Port (PSP).
- ECCP Modules: All devices in the family incorporate three Enhanced Capture/Compare/PWM (ECCP) modules to maximize flexibility in control applications. Up to four different time bases may be used to perform several different operations at once. Each of the ECCPs offers up to four PWM outputs, allowing for a total of eight PWMs. The ECCPs also offer many beneficial features, including polarity selection, programmable dead time, auto-shutdown and restart and Half-Bridge and Full-Bridge Output modes.

- **10-Bit A/D Converter:** This module incorporates programmable acquisition time, allowing for a channel to be selected and a conversion to be initiated without waiting for a sampling period, and thus, reducing code overhead.
- Extended Watchdog Timer (WDT): This enhanced version incorporates a 16-bit prescaler, allowing an extended time-out range that is stable across operating voltage and temperature. See Section 29.0 "Electrical Characteristics" for time-out periods.

1.3 Details on Individual Family Devices

Devices in the PIC18F46J11 family are available in 28-pin and 44-pin packages. Block diagrams for the two groups are shown in Figure 1-1 and Figure 1-2. The devices are differentiated from each other in two ways:

- Flash program memory (three sizes: 16 Kbytes for the PIC18FX4J11, 32 Kbytes for PIC18FX5J11 devices and 64 Kbytes for PIC18FX6J11)
- I/O ports (three bidirectional ports on 28-pin devices, five bidirectional ports on 44-pin devices)

All other features for devices in this family are identical. These are summarized in Table 1-1 and Table 1-2.

The pinouts for the PIC18F2XJ11 devices are listed in Table 1-3 and the pinouts for the PIC18F4XJ11 devices are listed in Table 1-4.

The PIC18F46J11 family of devices provides an on-chip voltage regulator to supply the correct voltage levels to the core. Parts designated with an "F" part number (such as PIC18F46J11) have the voltage regulator enabled.

These parts can run from 2.15V-3.6V on VDD, but should have the VDDCORE pin connected to VSs through a low-ESR capacitor. Parts designated with an "LF" part number (such as PIC18**LF**46J11) do not enable the voltage regulator. For "LF" parts, an external supply of 2.0V-2.7V has to be supplied to the VDDCORE pin with 2.0V-3.6V supplied to VDD (VDDCORE should never exceed VDD).

For more details about the internal voltage regulator, see **Section 26.3 "On-Chip Voltage Regulator"**.

6.0 MEMORY ORGANIZATION

There are two types of memory in PIC18 Flash microcontrollers:

- Program Memory
- Data RAM

As Harvard architecture devices, the data and program memories use separate busses; this allows for concurrent access of the two memory spaces.

Section 7.0 "Flash Program Memory" provides additional information on the operation of the Flash program memory.

6.1 Program Memory Organization

PIC18 microcontrollers implement a 21-bit program counter, which is capable of addressing a 2-Mbyte program memory space. Accessing a location between the upper boundary of the physically implemented memory and the 2-Mbyte address returns all '0's (a NOP instruction).

The PIC18F46J11 family offers a range of on-chip Flash program memory sizes, from 16 Kbytes (up to 8,192 single-word instructions) to 64 Kbytes (32,768 single-word instructions).

Figure 6-1 provides the program memory maps for individual family devices.

TABLE 6-4: REGISTER FILE SUMMARY (PIC18F46J11 FAMILY)

RCREG1EUSARTI T=VERTERUSENT I0000000071TXRFG1CSRCTXBTXENSYNCSENDBBRGHTRMTTXBO00000137.38RCSTA1SPENRXBSRENGRENADDENFERRORERRXB0000000071.38RCSTA1SPENZEUSART2 =RXBSRENGRENADDENFERRORERRXB0000000071.38RCSTA2EUSART2 =RXBRXBSSPENZFERRNCRTXBN000000071.38TXRFA2CSRCTXBTXBNSSPENZSENDBBRGHTRMTTX900000071.38FECON2ProgramVCrorrVCrorrVCrorrVCrorrSSPENZFOCD111.11171.78FRRSSP2IFBCL2IFRC2IFTX2IFTMRAIFCTMUIFTMRAIFRTCCIF000000071.28IPR3SSP2IFBCL2IFRC2IFTX2IFTMRAIFCTMUIFTMRAIFCTMUIFTMRAIFCCP2IF00000071.28IPR4OSCIFIFCM2IFCM2IFRC2IFTMRAIFCTMUIFTMRAIFCCP2IF00000071.28IPR4OSCIFIFCM2IFCM2IFTMRAIFCTMUIFTMRAIFCCP2IF00000071.28IPR4OSCIFIFCM2IFCM2IFTMRAIFCTMUIFTMRAIFCCP2IF00000071.28IPR4OSCIFIFCM2IF <td< th=""><th>File Name</th><th>Bit 7</th><th>Bit 6</th><th>Bit 5</th><th>Bit 4</th><th>Bit 3</th><th>Bit 2</th><th>Bit 1</th><th>Bit 0</th><th>Value on POR, BOR</th><th>Details on Page:</th></td<>	File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on Page:
TXREG1 EUSARTI T=smm Register STAT STAT CSR0 TAN TYA TYA TYA SPL0	RCREG1	EUSART1 Re	0000 0000	71							
TXSTAICSRCTX9TX9TX9TX9TX9TX900000010071.320RCSTAISPENRUSARTZ Buarde Rate Generator Register Low EyesFERROERRRX900000011RCREQEUSARTZ Buarde Rate Generator Register Low Eyes0000000071.320TREEQ2EUSARTZ Buarde Rate Generator Register Low Eyes0000000071.320TREEQ2EUSARTZ TamadoRX10SYNCSENDBBRGHTRMTTX900000010TREEQ2EUSARTZ TamadoCTX0TX80SENDBBRGHTRMTTX90000001071.320TREEQ3CSRCTX3TX80RX10SENDBBRGHTRMTTX90000000071.320EECOM1-MCNTVERKWRERNWRENWR71.05IPR3SSP2IFBCL2IFRC2IFTX2IFTMR4IFCTMUIFTMR3IFRTCCIF000000071.12IPR3SSP2IFBCL2IFRC2IFTX2IFTMR4IFCTMUIFTMR3IFCCP2IF11111171.72IPR3SSP2IFBCL2IFCMIF-BCL1FLVDIFTMR3IFCCP2IF11111171.72IPR3OSCFIFCMIFRC1IFTX1FSSP1IFCCP1IFTMR3IFCCP2IF11111171.20IPR3OSCFIFCMIFRC1IFTX1FSSP1IFCCP1IFTMR3IF<	TXREG1	EUSART1 Tr	ansmit Regist	er	-	-			-	0000 0000	71
RCSTAISPENRX9SRSRCRENADDENFERROERRRX9D0000071SPBRG2EUSART2 #-scrive Rejuster/ rejuster/ rejuster/ werkerVV0000071TRREG2EUSART2 #-scrive Rejuster/ rejuster/ werkerVSENDEBRGHTRMTTX9D0000071TXREQ2EUSART2 #-scrive RejusterVSENDEBRGHTRMTTX9D00000710000071TXSTA2CSRCFX9TXENSENDEBRGHTRMTTX9D000007107100000710710000071	TXSTA1	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	0000 0010	71, 328
SPBR2EUSAR12 surfare Quester Low Byte	RCSTA1	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 0000	71, 329
RCREG2EUSAR12 Review Register000 000071TXRG2EUSAR12 ramma RegisterTXSIA2CSRCTXSTXENSYNCSENDBBRGHTRMTTXSD000 000071.32TXSTA2CSRCTXSTXENSYNCSENDBBRGHTRMTTXSD000 000071.32EECON1——WPCGFREEWRERRWRNNWR—0 0 00071.32EECON1SSP2IFBCL2IFRC2IFTX2IFTMR4FCTMUIFTMR3GIFRTCCIF000 000071.12PIR3SSP2IFBCL2IERC2IFTX2IFTMR4FCTMUIFTMR3GIFRTCCIF000 000071.12PIR3SSP2IFBCL2IERC2IFTX2IFTMR4FCTMUIFTMR3GIFRTCCIF000 000071.12PIR3OSCFIFCM2IFCM2IFCTXIFTMR4FCTMUIFTMR3GIFRTCCIF000 000071.12PIR4OSCFIFCM2IFCM1F—BCL1IFLVDIFTMR3IFCCP2IF000 000071.12PIR4OSCFIFCM2IFCM1FTX1IFSSP1IFCCP1IFTMR3IFCCP2IF000 000071.12PIR5PMIPI®ADIFRC1IFTX1IFSSP1IFCCP1IFTMR3IFNMR1F11.1171.12PIR5PMIPI®ADIFRC1IFTX1IFSSP1IFCCP1IFTMR3IFNMR1F11.1171.22PIR5PMIPI®ADIFRC1IFTX1IFSSP1IF <td< td=""><td>SPBRG2</td><td>EUSART2 Ba</td><td>aud Rate Gene</td><td>erator Register</td><td>r Low Byte</td><td></td><td></td><td></td><td></td><td>0000 0000</td><td>71</td></td<>	SPBRG2	EUSART2 Ba	aud Rate Gene	erator Register	r Low Byte					0000 0000	71
TXREQ2EUSARTZ TUTUTUTUEUSANTZ TUTUTUODD 000071TXSTA2CSRCTX0TX0SEND8BRCHTRMTX00000001071.328EECON2Program Merrory Control Register 2 (TOT 2 FTV) SUTUTUFTREBRCHTVRMR—-000000071.128EECON1——MPROGFREEWRERRWRENWR—-000000071.125IPR3SSP2IFBCL2IFRC2IFTX2IFTMR4IFCTMUIFTMR3GIFRTCCIF0000000071.125PIR3SSP2IFBCL2IFRC2IFTX2IFTMR4IFCTMUIFTMR3GIFRTCCIF0000000071.125PIR3SSP2IFBCL2IFRC2IFTX2IFTMR4IFCTMUIFTMR3IFCCP2IF0111111.1<11	RCREG2	EUSART2 Re	eceive Registe	er						0000 0000	71
TXSTA2CSRCTXBNSYNCSENDBBRGHTRMFTX9D0.000.0171.328ECOM1—ProgramVIT	TXREG2	EUSART2 Tr	ansmit Regist	er						0000 0000	71
EECON1 Program W=vector Vector Ve	TXSTA2	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	0000 0010	71, 328
EECON1VPROGFREEWRERWRENWRVR0020.0071.105IPR3SSP2IBCL2IRC2IPTXIPTMR4IPCTMUIPTMR3GPRTCCIP0.0000071.12PIR3SSP2IEBCL2IFRC2IFTXIETMR4IFCTMUIPTMR3GPRTCCIP0.0000071.12PIR3OSCFIPCM2IPCM2IPM1PBCL1PLVDIPTMR3IPCCP2IP111111.11171.127PIR2OSCFIPCM2IPCM1IPBCL1PLVDIPTMR3IPCCP2IP0.0000071.124PIR1OSCFIPCM2IPRC1IPTX1IPSSP1IPCCP1IPTMR3IPCM1R1P111.11171.126PIR1PMPIP0ADIPRC1IPTX1IPSSP1IPCCP1IPTMR2IPTMR1P111.11171.126PIR1PMPIP1ADIPRC1IPTX1IPSSP1IPCCP1IPTMR2IPTMR1P111.11171.126PIR1PMPIP1ADIPRC1IPTX1IPSSP1IPCCP1IPTMR2IPTMR1P1111.11171.126PIR1PMPIP1ADIPRC1IPTX1IPSSP1IPCCP1IPTMR2IPTMR1P111.111171.237RC574SPENRC1PTUNA<	EECON2	Program Mer	nory Control F	Register 2 (not	a physical reg	jister)					71
PR3 SSP2IP BCL2IP RC2IP TX2IP TMR4IP CTMUP TMR3GP RTCCIP 1111 111 71, 128 PIR3 SSP2IF BCL2IF RC2IF TX2IF TMR4IF CTMUIF TMR3GF RTCCIF 000 0000 71, 122 PIE3 SSP2IF BCL2IF RC2IF TX2IF TMR4IF CTMUIF TMR3GF RTCCIF 000 0000 71, 122 PIE3 OSCFIF CM2IF CM1F Image BCL1IF LVDIF TMR3IF CC2IP 011 1111 17, 124 PIR2 OSCFIF CM2IF CM1IF Image BC11F LVDIF TMR3IF CC2P1P 1111 111 71, 124 PIR1 PMPIF0 ADIF RC1IP TX1IF SSP1F CCP1IF TMR3IF TMR1IF 000 0000 71, 22 PIR1 PMPIF0 ADIF RC1IP TX1IF SSP1F CCP1IF TMR2IF TMR1IF 000 0000 72, 42 RC51A2 SSP0 RC0 RC1IP TV1M5 TVM4 TVM3 TVM2 TVM1F TVM1F TVM1F </td <td>EECON1</td> <td>—</td> <td>_</td> <td>WPROG</td> <td>FREE</td> <td>WRERR</td> <td>WREN</td> <td>WR</td> <td>_</td> <td>00 x00-</td> <td>71, 105</td>	EECON1	—	_	WPROG	FREE	WRERR	WREN	WR	_	00 x00-	71, 105
PIR3 SSP2IF BCL2IF RC2IF TX2IF TMR4IF CTMUIF TMR3GIF RTCCIF 0000 0000 71, 122 PIE3 SSP2IE BCL2IF RC2IE TX2IE TMR4IE CTMUIE TMR3GIF RTCCIF 0000 0000 71, 122 IPR2 OSCFIP CM2IP CM1IP — BCL1IF LVDIF TMR3IF CCP2IP 111-111 71, 127 PIR2 OSCFIF CM2IF CM1IF — BCL1IF LVDIF TMR3IF CCP2IP 100-00000 71, 121 PIR1 PMPIF6 ¹⁰ ADIF RC1IF TX1IF SSP1IF CCP1IF TMR2IF TMR1IF 1111 111 71, 122 PIE1 PMPIF6 ¹⁰ ADIE RC1IE TX1IF SSP1IF CCP1IF TMR2IF TMR1IF 0000 0000 72, 42 QSCTUNE INTSRC PLSP TUN5 TUN4 TUN3 TUN2 TUN1 TUN0 0000 0000 72, 42 T1GCON TMR10F PIESP	IPR3	SSP2IP	BCL2IP	RC2IP	TX2IP	TMR4IP	CTMUIP	TMR3GIP	RTCCIP	1111 1111	71, 128
PIE3 SSP2IE BCL2IE RC2IE TX2IE TMR4IE CTMUIE TMR3GIE RTCIE 0000 0000 71, 125 IPR2 OSCFIP CM2IP CM1IF — BCL1IF LVDIP TMR3IF CCP2IP 111 - 1111 71, 127 PIR2 OSCFIF CM2IF CM1IF — BCL1IF LVDIP TMR3IF CCP2IF 000-0000 71, 121 PIR1 PMPIP(*) ADIP RC1IP TX1IP SSP1IF CCP1IF TMR2IF TMR1IF 0000 0000 71, 123 PIE1 PMPIP(*) ADIF RC1IF TX1IF SSP1IF CCP1IF TMR2IF TMR1IF 0000 0000 72, 323 OSCTUNE INTSRC PLEN TUN5 TUN4 TUN3 TUN2 TUN1 TUN0 0000 0000 72, 323 OSCTUNE INTSRC PLEN TUST TUS TUS TIGSOD TIGSOD TIGSOD TIGSOD 72, 323 RTCVALH RTCC Value FILEN	PIR3	SSP2IF	BCL2IF	RC2IF	TX2IF	TMR4IF	CTMUIF	TMR3GIF	RTCCIF	0000 0000	71, 122
IPR2 OSCFIP CM2IP CM1IP Image BCL1IP LVDIP TMR3IP CCP2IP 111 111 11, 127 PIR2 OSCFIF CM2IF CM1IF Image BCL1IF LVDIF TMR3IF CCP2IF 000-0000 71, 121 PIE2 OSCFIF CM2IF CM1IF Image BCL1IF TMR3IF CCP2IF 100-0000 71, 121 PIE1 PMPIF ⁴⁹ ADIF RC1IF TX1IF SSP1IF CCP1IF TMR2IF TMR1IF 0000 000 71, 123 PIE1 PMPIF ⁴⁹ ADIF RC1IF TX1IF SSP1IF CCP1IF TMR2IF TMR1IF 0000 0000 72, 329 OSCTUR INTSRC PLLEN TUNS TUNA TUN3 TUN2 TUN4 TUN3 0000 0000 72, 420 TIGCON INTSRC PLLEN T1GSPM T1GON T1GSAI T1GSS0 0000 000 72, 420 TISCOALL RTCCValue	PIE3	SSP2IE	BCL2IE	RC2IE	TX2IE	TMR4IE	CTMUIE	TMR3GIE	RTCCIE	0000 0000	71, 125
PIR2 OSCFIF CM2IF CM1IF Image: Comparison of the comparison of th	IPR2	OSCFIP	CM2IP	CM1IP	—	BCL1IP	LVDIP	TMR3IP	CCP2IP	111- 1111	71, 127
PIE2 OSCFIE CM2IE CM1IE — BCL1IE LVDIE TMR3IE CCP2IE 000 000 71,124 IPR1 PMPIP ⁶) ADIP RC1IP TX1IP SSP1IP CCP1IP TMR2IP TMR1IP 1111 1111 71,126 PIR1 PMPIF ⁶) ADIF RC1IF TX1IF SSP1IF CCP1IF TMR2IF TMR1IP 000 000 71,120 PIE1 PMPIF ⁶) ADIF RC1IF TX1IF SSP1IF CCP1IF TMR2IF TMR1IF 000 000 72,329 OSCTUNE INTSRC PLLEN TUN5 TUN4 TUN3 TUN2 TUN1 TUN0 000 000 72,329 OSCTUNE INTSRC PLLEN TUN5 TUN4 TUN3 TUN2 TUN1 TUN0 000 000 72,220 RTCVALH RTCC Value register Wint- Low Byte. Based on E/PTR </td TUS1 TIGS0 T1GS0 000 000 72,220 RTCVALL RTCC Value register Wint- Low Byte. Based on E/PTR </td TUN51 TUS2 TMS15 TGS5 000 000 72,216 TGSCON TMR3GE TGS0A T3GSM T3GSM TGGS0 TRIS0 TRIS0 1111 1111 72 TRISC TRIS6	PIR2	OSCFIF	CM2IF	CM1IF	_	BCL1IF	LVDIF	TMR3IF	CCP2IF	000- 0000	71, 121
IPR1 PMPIP ⁽⁵⁾ ADIP RC1IP TX1IP SSP1IP CCP1IP TMR2IP TMR1IP 1111 1111 111 111 111 111 111 1111 <th1< td=""><td>PIE2</td><td>OSCFIE</td><td>CM2IE</td><td>CM1IE</td><td>_</td><td>BCL1IE</td><td>LVDIE</td><td>TMR3IE</td><td>CCP2IE</td><td>000- 0000</td><td>71, 124</td></th1<>	PIE2	OSCFIE	CM2IE	CM1IE	_	BCL1IE	LVDIE	TMR3IE	CCP2IE	000- 0000	71, 124
PIR1 PMPIF ⁽⁵⁾ ADIF RC1IF TX1IF SSP1IF CCP1IF TMR2IF TMR1IF 0000 000 71, 20 PIE1 PMPIE ⁽⁵⁾ ADIE RC1IE TX1IE SSP1IE CCP1IE TMR2IE TMR1IE 0000 0000 71, 23 RCTA2 SPEN RX9 SREN CREN ADDEN FERR OER RX90 0000 0000 72, 329 OSCTUNE INTSRC PLEN TUS5 TUN4 TUN3 TUN2 TUN1 TUN0 0000 0000 72, 229 RTCVALH RTCC Valce Rejster Winder Mighte. Based on RUCTR1100N T1GGON T1GSS1 T1GSS0 0000 0000 72, 220 RTCVALH RTCC Valce Rejster Winder Winder Mighte. Based on RUCTR1100N T1GSON T1GSS0 0000 0000 72, 221 RTCAL RTGC Valce Rejster Winder Winder Mighte. Based on RUCTR1100N T1GSON T1GSON T1GSON T0SS0 0000 0000 72, 221 RTGCAL RTGSD TRISD1 TSGSO TSGSON T3GSON	IPR1	PMPIP ⁽⁵⁾	ADIP	RC1IP	TX1IP	SSP1IP	CCP1IP	TMR2IP	TMR1IP	1111 1111	71, 126
PIE1 PMPIE ^[6] ADIE RC1IE TX1IE SSP1IE CCP1IE TMR2IE TMR1IE 0000 0000 71, 123 RCSTA2 SPEN RX9 SREN CREN ADDEN FERR OERR RX9D 0000 0000 72, 329 OSCTUNE INTSRC PLEN TUN5 TUN4 TUN3 TUN2 TUN1 TUN0 0000 0000 72, 42 TIGCON TMR1GE T1GPOL T1GTM T1GSPM T1GGO/ T1GONE T1GVAL T1GSS0 0000 0000 72, 42 RTCVALL RTCC Value Register Wintow High Byte, Based on RTCFTR<10> 0xxx xxxx 72 72 TMR3GE T3GPOL T3GTM T3GSPM T3GGO/ T3DONE T3GSQS1 T3GSS0 0000 0x00 72, 216 TRISC TMR3GE T3GFD TRISD5 TSGS4 T3GSQDI T3GSQS0 0000 0x00 72, 216 TRISC TRISD7 TRISD6 TRISD5 TRISD4 TRISD3 TRISD2	PIR1	PMPIF ⁽⁵⁾	ADIF	RC1IF	TX1IF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	0000 0000	71, 120
RCSTA2 SPEN RX9 SREN CREN ADDEN FERR OERR RX9D 0.000 0.00 72, 329 OSCTUNE INTSRC PLLEN TUN5 TUN4 TUN3 TUN2 TUN1 TUN0 0.000 0.000 72, 329 OSCTUNE INTSRC PLLEN TUGD TIGTM TIGSPM TIGGO/, TIGVAL TUSS1 TIGSS1 TIGSS0 0.000 0.000 72, 329 RTCVALH RTCC Value Register Wind// High Byte, Based on RTC// TTRISD4 TIGSON TIGSS0 0.000 0.000 72, 216 TISC RTC VALL RTCC Value Register Wind// Low Byte, Based on RTC// TTRISD5 TISSO TIGSS0 0.000 0.000 72, 216 TISC TMR3GE T3GPOL T3GTM T3GSPM T3GSONE T3GSVAL T3GSS1 T3GSS0 0.000 0.00 72, 216 TRISC TRISC7 TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0 1111 111 72 TR	PIE1	PMPIE ⁽⁵⁾	ADIE	RC1IE	TX1IE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	0000 0000	71, 123
OSCTUNE INTSRC PLLEN TUN5 TUN4 TUN3 TUN2 TUN1 TUN0 0.000 0.000 72, 42 T1GCON TMR1GE T1GPOL T1GTM T1GSPM T1GGO/ T1DONE T1GSS1 T1GSS1 T1GSS0 0.000 0.000 72, 202 RTCVALH RTCC Value Register Windw Low Byte, Based on RTCPTR<1:0> 0.000 0.000 72, 27 T3GCON TMR3GE T3GFOL T3GTM T3GSPM T3GGO/ T3DONE T3GVAL T3GSS1 T3GSS0 0.000 0.000 72, 216 TRISD TMR3GE T3GFOL T3GTM T3GSGO/ T3GONE T3GVAL T3GSS1 T3GSS0 0.000 0.000 72, 216 TRISD TRISD7 TRISD6 TRISD5 TRISD4 TRISD3 TRISD1 TRISD0 1111 111 72 TRISD TRISD7 TRISD6 TRISD5 TRISD4 TRISD3 TRISD1 TRISD0 1111 111 72 TRISD TRISD6 TRISD5 TRISD4	RCSTA2	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 0000	72, 329
T1GCON TMR1GE T1GPOL T1GTM T1GSPM T1GPO/ T1DONE T1GVAL T1GSS1 T1GSS0 0000 0x00 72.202 RTCVALH RTCC Value Register Windw High Byte, Based on RUCTRR1:0> 0xxx xxxx 72 RTCVALL RTCC Value Register Windw Byte, Based on RUCTRR1:0> 0xxx xxxx 72 T3GCON TMR3GE T3GPOL T3GTM T3GSPM T3GGO/ T3DONE T3GVAL T3GSS1 T3GSS0 0000 xxx 72 TRISD TMR3GE T3GPOL T3GTM T3GSPM T3GGO/ T3DONE T3GVAL T3GSS1 T3GSS0 0000 xxx 72 TRISD TRISD7 TRISD6 TRISD5 TRISD4 TRISD3 TRISD2 TRISD0 1111 111 72 TRISD TRISD7 TRISD6 TRISD5 TRISD4 TRISD3 TRISD3 TRISD3 TRISD3 1111 111 72 TRISD TRISD6 TRISD5 TRISD4 TRISD3 TRISD3 TRISD3 1111	OSCTUNE	INTSRC	PLLEN	TUN5	TUN4	TUN3	TUN2	TUN1	TUN0	0000 0000	72, 42
RTCVALH RTCC Value Register Window High Byte, Based on RTCPTR<1:0> 0xxx xxxx 72 RTCVALL RTCC Value Register Window Example Assed on RTCPTR<1:0> 0xxx xxxx 72 T3GCON TMR3GE T3GPOL T3GTM T3GSPM T3GGO// T3DONE T3GVAL T3GSS1 T3GSS0 0000 0x00 72,216 TRISE — — — — — TRISE TRISE0 TRISD5 TRISD4 TRISD3 TRISD2 TRISD1 TRISD0 1111 111 72 TRISD TRISD7 TRISD6 TRISD5 TRISD4 TRISD3 TRISD2 TRISD1 TRISD0 1111 111 72 TRISD TRISD6 TRISD5 TRISD4 TRISD3 TRISD2 TRISD1 TRISD0 1111 111 72 TRISD TRISD6 TRISD5 TRISD3 TRISD3 TRISD3 TRISD3 1111 111 72 TRISA TRISA6 TRISA5 — TRISA3 TRISA2 TRISA1 TRISA0 1111 1111 72 ALRMC	T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T1GGO/ T1DONE	T1GVAL	T1GSS1	T1GSS0	0000 0x00	72, 202
RTCVALLRTCC Value Functional and the sector of	RTCVALH	RTCC Value	Register Wind	ow High Byte,	Based on RT	CPTR<1:0>			•	0xxx xxxx	72
T3GCON TMR3GE T3GPOL T3GTM T3GSPM T3GGO/ T3DONE T3GVAL T3GSS1 T3GSS0 0000 0x00 72, 216 TRISE — — — — TRISD TRISD7 TRISD6 TRISD5 TRISD4 TRISD3 TRISD2 TRISD1 TRISD0 1111 1111 72 TRISD TRISD7 TRISD6 TRISD5 TRISD4 TRISD3 TRISD2 TRISD1 TRISD0 1111 1111 72 TRISC TRISC7 TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISD1 TRISD0 1111 1111 72 TRISB TRISC7 TRIS66 TRISS5 TRISB4 TRISB3 TRISC2 TRISD1 TRISD0 1111 1111 72 TRISB TRISA7 TRIS66 TRISS5 TRISB4 TRISB3 TRISB2 TRISB1 TRISD0 1111 1111 72 TRISA TRISA7 TRIS66 TRISA5 — TRISA3 TRISA2 TRISA1 TRISA0 1111 1111	RTCVALL	RTCC Value	Register Wind	ow Low Byte,	Based on RT	CPTR<1:0>				0xxx xxxx	72
TRISE — — — TRISD2 TRISD1 TRISD0 111 72 TRISD TRISD7 TRISD6 TRISD5 TRISD4 TRISD3 TRISD2 TRISD1 TRISD0 1111 1111 72 TRISC TRISC7 TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISD1 TRISC0 1111 1111 72 TRISB TRISC7 TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISD1 TRISC0 1111 1111 72 TRISB TRISB7 TRIS66 TRISB5 TRISC4 TRISB3 TRISB2 TRISB1 TRISD0 1111 1111 72 TRISA TRISA6 TRISA5 — TRISB3 TRISA2 TRISA1 TRISA0 1111 1111 72 ALRMCFG ALRMEN CHIME AMASK3 AMASK2 AMASK1 AMASK0 ALRMPTR1 ALRMPTR0 0000 0000 72, 232 ALRMVALL Alarm Valu	T3GCON	TMR3GE	T3GPOL	T3GTM	T3GSPM	T3GGO/ T3DONE	T3GVAL	T3GSS1	T3GSS0	0000 0x00	72, 216
TRISD TRISD6 TRISD5 TRISD4 TRISD3 TRISD2 TRISD1 TRISD0 1111 111 72 TRISC TRISC7 TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0 1111 111 72 TRISB TRISB7 TRISC6 TRISC5 TRISB4 TRISB3 TRISC2 TRISD1 TRISD0 1111 111 72 TRISB TRISB7 TRISB6 TRISB5 TRISB4 TRISB3 TRISB2 TRISB1 TRISB0 1111 111 72 TRISA TRISA7 TRISB6 TRISB5 TRISB4 TRISB3 TRISB2 TRISB1 TRISB0 1111 111 72 ALRMCFG ALRMEN CHIME AMASK3 AMASK2 AMASK0 ALRMFT1 ALRMPT0 0000 0000 72,231 ALRMCFG ARPT7 ARPT6 ARPT6 ARPT4 ARPT3 ARPT2 ARPT1 ARPT0 0000 0000 72,232 ALRMVALL Alarm Value Rejster Wintwelwelwelwelwelwelwelwelwelwelwelwelwelw	TRISE	_	_	_	_	—	TRISE2	TRISE1	TRISE0	111	72
TRISC TRISC7 TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0 1111 1111 72 TRISB TRISB7 TRISB6 TRISB5 TRISB5 TRISB4 TRISB3 TRISB2 TRISB1 TRISB0 1111 1111 72 TRISA TRISA7 TRISA6 TRISA5 — TRISA3 TRISA2 TRISA1 TRISA0 1111 111 72 ALRMCFG ALRMEN CHIME AMASK3 AMASK2 AMASK1 AMASK0 ALRMPT1 ALRMPT0 0000 000 72,231 ALRMRPT ARPT7 ARPT6 ARPT5 ARP14 ARP13 ARP12 ARP11 ARP10 0000 000 72,232 ALRMVALH Alarm Value Register Window High Byte, Based on ALRMPTR<1:0> xxxx xxxx 72 Xxxx xxxx 72 Xxxx xxxx 72 ALRMVALL Alarm Value Register Window Low Byte, Based on ALRMPTR<1:0> Xxxx xxxx 72 Xxxx xxxx 72 Xxxx xxxx 72 LATE	TRISD	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	1111 1111	72
TRISB TRISB6 TRISB5 TRISB4 TRISB3 TRISB2 TRISB1 TRISB0 1111 111 72 TRISA TRISA7 TRISA6 TRISA5 — TRISA3 TRISA2 TRISA1 TRISA0 1111 1111 72 ALRMCFG ALRMEN CHIME AMASK3 AMASK2 AMASK0 ALRMPT1 ALRMPT0 0000 0000 72, 231 ALRMRPT ARPT7 ARPT6 ARPT5 ARPT4 ARPT3 ARPT2 ARPT1 ARPT0 0000 0000 72, 232 ALRMVALH Alarm Value Register Windwer High Byte, Based on ALRMPTR<1:0> xxxx xxxx 72 ALRMVALL Alarm Value Register Windwer Byte, Based on ALRMPTR<1:0> xxxx xxxx 72 ALRMVALL Alarm Value Register Windwer Byte, Based on ALRMPTR<1:0> xxxx xxxx 72 LATE — — — — LATE2 LATE1 LATE0 xxx 72 LATE	TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	72
TRISA TRISA6 TRISA5 — TRISA3 TRISA2 TRISA1 TRISA0 111-1111 72 ALRMCFG ALRMEN CHIME AMASK3 AMASK2 AMASK1 AMASK0 ALRMPT1 ALRMPT0 0000 0000 72, 231 ALRMRPT ARPT7 ARPT6 ARPT5 ARPT4 ARPT3 ARPT2 ARPT1 ALRMPT0 0000 0000 72, 232 ALRMVALH Alarm Value Register Windwer High Byte, Based on ALRMPTR<1:0> XXXX XXXX 72 ALRMVALL Alarm Value Register Windwer Byte, Based on ALRMPTR<1:0> XXXX XXXX 72 LATE — — —	TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	1111 1111	72
ALRMCFG ALRMEN CHIME AMASK3 AMASK2 AMASK1 AMASK0 ALRMPTR1 ALRMPTR0 0000 0000 72, 231 ALRMRPT ARPT7 ARPT6 ARPT6 ARPT5 ARPT4 ARPT3 ARPT2 ARPT1 ARPT0 0000 0000 72, 232 ALRMVALH Alarm Value Register Wint/ Byte, Based on ALRMPTR<1:> XXXX XXXX 72 ALRMVALL Alarm Value Register Wint/ Unw Byte, Based on ALRMPTR<1:> XXXX XXXX 72 ALRMVALL Alarm Value Register Wint/ Unw Byte, Based on ALRMPTR<1:> XXXX XXXX 72 LATE — — — LATE2 LATE1 LATE0 xXX 72 LATD LATD7 LATD6 LATD5 LATD4 LATD3 LATD2 LATD1 LATC0 XXXX XXXX 72 LATD LATC7 LATC6 LATC5 LATC4 LATC2 LATC1 LATC0 XXXX XXXX 72 LATB LATB7 LATA6 LATA5 — LA	TRISA	TRISA7	TRISA6	TRISA5	_	TRISA3	TRISA2	TRISA1	TRISA0	111- 1111	72
ALRMRPTARPT7ARPT6ARPT5ARPT4ARPT3ARPT2ARPT1ARPT00000 000072, 232ALRMVALHAlarm Value Register Wintwithigh Byte, Based on ALRMPTR<1:0>xxxx xxxx72ALRMVALLAlarm Value Register Wintwithigh Byte, Based on ALRMPTR<1:0>xxxx xxxx72ALRMVALLAlarm Value Register Wintwithigh Byte, Based on ALRMPTR<1:0>xxxx xxxx72LATE————LATE2LATE1LATE0xxxx72LATE7272LATDLATD7LATD6LATD5LATD4LATD3LATD2LATD1LATD0xxxx xxxx72LATCLATC7LATC6LATC5LATC4LATC3LATC2LATC1LATC0xxxx xxxx72LATBLATB7LAT66LAT5_LATB3LATB2LATB1LAT60xxxx xxxx72LATALATA7LATA6LATA5_LATA3LATA2LATA1LATA0xxx- xxxx72DMACON1SSCON1SSCON0TXINCRXINCDUPLEX1DUPLEX0DLYINTENDMAEN0000 000072, 284DMATXBUFSPI DMA Tramemit Bufferxxxx xxxx72Xxxx xxxxx72	ALRMCFG	ALRMEN	CHIME	AMASK3	AMASK2	AMASK1	AMASK0	ALRMPTR1	ALRMPTR0	0000 0000	72, 231
ALRMVALH Alarm Value Register Window High Byte, Based on ALRMPTR<1:0> xxxx xxxx 72 ALRMVALL Alarm Value Register Window Low Byte, Based on ALRMPTR<1:0> xxxx xxxx 72 LATE — — — LATE2 LATE1 LATE0 xxx 72 LATD LATD7 LATD6 LATD5 LATD4 LATD3 LATD2 LATD1 LATD0 xxxx xxxx 72 LATC LATC7 LATC6 LATC5 LATC4 LATC3 LATC2 LATC1 LATC0 xxxx xxxx 72 LATB LATB7 LATB6 LATD5 LATB4 LATB3 LATC2 LATC1 LATC0 xxxx xxxx 72 LATB LATB7 LATA6 LATA5 — LATA3 LATA2 LATA1 LATA0 xxx- xxxx 72 DMACON1 SSCON1 SSCON0 TXINC RXINC DUPLEX0 DLYINTEN DMAEN 0000 0000 72, 284 DMATXBUF SPI DMA Transmit Buffer XXXX XXXX 72 XXXX XXXX 72	ALRMRPT	ARPT7	ARPT6	ARPT5	ARPT4	ARPT3	ARPT2	ARPT1	ARPT0	0000 0000	72, 232
ALRMVALL Alarm Value Register Window Byte, Based on ALRMPTR<1:0> xxxx xxxx 72 LATE — — — — LATE2 LATE1 LATE0 xxx 72 LATD LATD7 LATD6 LATD5 LATD4 LATD3 LATD2 LATD1 LATD0 xxxx xxxx 72 LATC LATO7 LATD6 LATD5 LATD4 LATD3 LATD2 LATD1 LATD0 xxxx xxxx 72 LATC LATO7 LATC6 LATC5 LATC4 LATC3 LATC2 LATC1 LATC0 xxxx xxxx 72 LATB LATB7 LATB6 LATB5 LATB4 LATB3 LATB2 LATB1 LATB0 xxxx xxxx 72 LATA LATA7 LATA6 LATA5 — LATA3 LATA2 LATA1 LATA0 xxx- xxxx 72 DMACON1 SSCON1 SSCON0 TXINC RXINC DUPLEX1 DUPLEX0 DLYINTEN DMAEN 0000 0000 72, 284 DMATXBUF SPI DMA Transmit Buffer XXXX XXXX 72 XXXX XXXX </td <td>ALRMVALH</td> <td>Alarm Value</td> <td>Register Wind</td> <td>ow High Byte,</td> <td>Based on ALF</td> <td>RMPTR<1:0></td> <td></td> <td></td> <td></td> <td>xxxx xxxx</td> <td>72</td>	ALRMVALH	Alarm Value	Register Wind	ow High Byte,	Based on ALF	RMPTR<1:0>				xxxx xxxx	72
LATE————LATE2LATE1LATE0xxx72LATDLATD7LATD6LATD5LATD4LATD3LATD2LATD1LATD0xxxx xxxx72LATCLATC7LATC6LATC5LATC4LATC3LATC2LATC1LATC0xxxx xxxx72LATBLATB7LATB6LATB5LATB4LATB3LATB2LATB1LATB0xxxx xxxx72LATALATA7LATA6LATA5—LATA3LATA2LATA1LATA0xxx- xxxx72DMACON1SSCON1SSCON0TXINCRXINCDUPLEX1DUPLEX0DLYINTENDMAEN0000 000072, 284DMATXBUFSPI DMA Transmit Bufferxxxx xxxx72XXXX xxxxx72XXXX xxxxx72	ALRMVALL	Alarm Value	Register Wind	ow Low Byte,	Based on ALF	RMPTR<1:0>				xxxx xxxx	72
LATDLATD6LATD5LATD4LATD3LATD2LATD1LATD0XXXX XXX72LATCLATC7LATC6LATC5LATC4LATC3LATC2LATC1LATC0XXXX XXX72LATBLATB7LATB6LATB5LATB4LATB3LATB2LATB1LATB0XXXX XXXX72LATALATA7LATA6LATA5—LATA3LATA2LATA1LATA0XXX- XXXX72DMACON1SSCON1SSCON0TXINCRXINCDUPLEX1DUPLEX0DLYINTENDMAEN0000 000072, 284DMATXBUFSPI DMA Transmit BufferXXXX XXXXYZYXXX XXXXYZYXXX XXXXYZ	LATE	_	_	_	_	_	LATE2	LATE1	LATE0	xxx	72
LATC LATC6 LATC5 LATC4 LATC3 LATC2 LATC1 LATC0 XXXX XXXX 72 LATB LATB7 LATB6 LATB5 LATB4 LATB3 LATB2 LATB1 LATB0 XXXX XXXX 72 LATA LATA7 LATA6 LATA5 — LATA3 LATA2 LATA1 LATA0 XXX- XXXX 72 DMACON1 SSCON1 SSCON0 TXINC RXINC DUPLEX1 DUPLEX0 DLYINTEN DMAEN 0000 0000 72, 284 DMATXBUF SPI DMA Transmit Buffer VXXX XXXX 72 XXXX XXXX 72	LATD	LATD7	LATD6	LATD5	LATD4	LATD3	LATD2	LATD1	LATD0	xxxx xxxx	72
LATB LATB6 LATB5 LATB4 LATB3 LATB2 LATB1 LATB0 XXX XXXX 72 LATA LATA7 LATA6 LATA5 — LATA3 LATA2 LATA1 LATA0 XXX XXXX 72 DMACON1 SSCON1 SSCON0 TXINC RXINC DUPLEX1 DUPLEX0 DLYINTEN DMAEN 0000 0000 72, 284 DMATXBUF SPI DMA Transmit Buffer V V V VXXX XXXX 72	LATC	LATC7	LATC6	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	xxxx xxxx	72
LATA LATA6 LATA5 — LATA3 LATA2 LATA1 LATA0 xxx- xxxx 72 DMACON1 SSCON1 SSCON0 TXINC RXINC DUPLEX1 DUPLEX0 DLYINTEN DMAEN 0000 0000 72, 284 DMATXBUF SPI DMA Transmit Buffer VXXX XXXX 72 XXXX XXXX 72	LATB	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	xxxx xxxx	72
DMACON1 SSCON1 SSCON0 TXINC RXINC DUPLEX1 DUPLEX0 DLYINTEN DMAEN 0000 0000 72, 284 DMATXBUF SPI DMA Transmit Buffer VIIII VIIII VIIII VIIIII VIIIIII	LATA	LATA7	LATA6	LATA5	_	LATA3	LATA2	LATA1	LATA0	xxx- xxxx	72
DMATXBUF SPI DMA Transmit Buffer 222	DMACON1	SSCON1	SSCON0	TXINC	RXINC	DUPLEX1	DUPLEX0	DLYINTEN	DMAEN	0000 0000	72, 284
	DMATXBUF	SPI DMA Tra	nsmit Buffer		1	1				xxxx xxxx	72

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition, r = reserved. Bold indicates shared access SFRs.

Note 1: Bit 21 of the PC is only available in Serial Programming (SP) modes.

2: Reset value is '0' when Two-Speed Start-up is enabled and '1' if disabled.

3: The SSPxMSK registers are only accessible when SSPxCON2<3:0> = 1001.

4: Alternate names and definitions for these bits when the MSSP module is operating in I²C[™] Slave mode. See Section 19.5.3.2 "Address Masking Modes" for details.

5: These bits and/or registers are only available in 44-pin devices; otherwise, they are unimplemented and read as '0'. Reset values are shown for 44-pin devices.

6: The PMADDRH/PMDOUT1H and PMADDRL/PMDOUT1L register pairs share the same physical registers and addresses, but have different functions determined by the module's operating mode. See Section 11.1.2 "Data Registers" for more information.

REGISTER 10-9: RPINR4: PERIPHERAL PIN SELECT INPUT REGISTER 4 (BANKED EEAh)

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—	T0CKR4	T0CKR3	T0CKR2	T0CKR1	T0CKR0
bit 7							bit 0

Legend:	R/W = Readable, Writable if IOLOCK = 0				
R = Readable bit	W = Writable bit	Writable bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 7-5 Unimplemented: Read as '0'

bit 4-0 TOCKR<4:0>: Timer0 External Clock Input (TOCKI) to the Corresponding RPn Pin bits

REGISTER 10-10: RPINR6: PERIPHERAL PIN SELECT INPUT REGISTER 6 (BANKED EECh)

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—	T3CKR4	T3CKR3	T3CKR2	T3CKR1	T3CKR0
bit 7							bit 0

Legend:	R/\overline{W} = Readable, Writable if IOLOCK = 0				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 7-5 Unimplemented: Read as '0'

bit 4-0 T3CKR<4:0>: Timer 3 External Clock Input (T3CKI) to the Corresponding RPn Pin bits

REGISTER 10-11: RPINR7: PERIPHERAL PIN SELECT INPUT REGISTER 7 (BANKED EEDh)

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—	IC1R4	IC1R3	IC1R2	IC1R1	IC1R0
bit 7							bit 0

Legend:	R/\overline{W} = Readable, Writable if IOLOCK = 0					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 7-5 Unimplemented: Read as '0'

bit 4-0 IC1R<4:0>: Assign Input Capture 1 (ECCP1) to the Corresponding RPn Pin bits

REGISTER 10-15: RPINR16: PERIPHERAL PIN SELECT INPUT REGISTER 16 (BANKED EF6h)

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
			RX2DT2R4	RX2DT2R3	RX2DT2R2	RX2DT2R1	RX2DT2R0
bit 7							bit 0

Legend:	R/\overline{W} = Readable, Writable if IOLOCK = 0				
R = Readable bit	W = Writable bit U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	set '0' = Bit is cleared x = Bit is unknown			

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RX2DT2R<4:0>:** EUSART2 Synchronous/Asynchronous Receive (RX2/DT2) to the Corresponding RPn Pin bits

REGISTER 10-16: RPINR17: PERIPHERAL PIN SELECT INPUT REGISTER 17 (BANKED EF7h)

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—	CK2R4	CK2R3	CK2R2	CK2R1	CK2R0
bit 7							bit 0

Legend:	R/\overline{W} = Readable, Writable if IOLOCK = 0					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown				

bit 7-5 Unimplemented: Read as '0'

bit 4-0 CK2R<4:0>: EUSART2 Clock Input (CK2) to the Corresponding RPn Pin bits

REGISTER 10-17: RPINR21: PERIPHERAL PIN SELECT INPUT REGISTER 21 (BANKED EFBh)

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—			SDI2R4	SDI2R3	SDI2R2	SDI2R1	SDI2R0
bit 7							bit 0

Legend:	R/\overline{W} = Readable, Writable if IOLOCK = 0								
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'							
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown						

bit 7-5 Unimplemented: Read as '0'

bit 4-0 SDI2R<4:0>: Assign SPI2 Data Input (SDI2) to the Corresponding RPn Pin bits

11.1 Module Registers

The PMP module has a total of 14 Special Function Registers (SFRs) for its operation, plus one additional register to set configuration options. Of these, eight registers are used for control and six are used for PMP data transfer.

11.1.1 CONTROL REGISTERS

The eight PMP Control registers are:

- PMCONH and PMCONL
- PMMODEH and PMMODEL
- PMSTATL and PMSTATH
- PMEH and PMEL

The PMCON registers (Register 11-1 and Register 11-2) control basic module operations, including turning the module on or off. They also configure address multiplexing and control strobe configuration.

The PMMODE registers (Register 11-3 and Register 11-4) configure the various Master and Slave modes, the data width and interrupt generation.

The PMEH and PMEL registers (Register 11-5 and Register 11-6) configure the module's operation at the hardware (I/O pin) level.

The PMSTAT registers (Register 11-5 and Register 11-6) provide status flags for the module's input and output buffers, depending on the operating mode.

REGISTER 11-1: PMCONH: PARALLEL PORT CONTROL REGISTER HIGH BYTE (BANKED F5Fh)⁽¹⁾

R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PMPEN	—	—	ADRMUX1	ADRMUX0	PTBEEN	PTWREN	PTRDEN
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	PMPEN: Parallel Master Port Enable bit
	1 = PMP enabled
	0 = PMP disabled, no off-chip access performed
bit 6-5	Unimplemented: Read as '0'
bit 4-3	ADRMUX<1:0>: Address/Data Multiplexing Selection bits
	11 = Reserved
	10 = All 16 bits of address are multiplexed on PMD<7:0> pins
	01 = Lower 8 bits of address are multiplexed on PMD<7:0> pins (only eight bits of address are available in this mode)
	00 = Address and data appear on separate pins (only eight bits of address are available in this mode)
bit 2	PTBEEN: Byte Enable Port Enable bit (16-Bit Master mode)
	1 = PMBE port enabled
	0 = PMBE port disabled
bit 1	PTWREN: Write Enable Strobe Port Enable bit
	1 = PMWR/PMENB port enabled
	0 = PMWR/PMENB port disabled
bit 0	PTRDEN: Read/Write Strobe Port Enable bit
	1 = PMRD/PMWR port enabled
	1 = PMRD/PMWR port enabled 0 = PMRD/PMWR port disabled

Note 1: This register is only available in 44-pin devices.

12.1 Timer0 Operation

Timer0 can operate as either a timer or a counter. The mode is selected with the TOCS bit (TOCON<5>). In Timer mode (TOCS = 0), the module increments on every clock by default unless a different prescaler value is selected (see **Section 12.3 "Prescaler"**). If the TMR0 register is written to, the increment is inhibited for the following two instruction cycles. The user can work around this by writing an adjusted value to the TMR0 register.

The Counter mode is selected by setting the T0CS bit (= 1). In this mode, Timer0 increments either on every rising edge or falling edge of pin, T0CKI. The incrementing edge is determined by the Timer0 Source Edge Select bit, T0SE (T0CON<4>); clearing this bit selects the rising edge. Restrictions on the external clock input are discussed below.

An external clock source can be used to drive Timer0; however, it must meet certain requirements to ensure that the external clock can be synchronized with the internal phase clock (Tosc). There is a delay between synchronization and the onset of incrementing the timer/counter.

12.2 Timer0 Reads and Writes in 16-Bit Mode

TMR0H is not the actual high byte of Timer0 in 16-bit mode. It is actually a buffered version of the real high byte of Timer0, which is not directly readable nor writable (refer to Figure 12-2). TMR0H is updated with the contents of the high byte of Timer0 during a read of TMR0L. This provides the ability to read all 16 bits of Timer0 without having to verify that the read of the high and low byte were valid, due to a rollover between successive reads of the high and low byte.

Similarly, a write to the high byte of Timer0 must also take place through the TMR0H Buffer register. The high byte is updated with the contents of TMR0H when a write occurs to TMR0L. This allows all 16 bits of Timer0 to be updated at once.

FIGURE 12-1: TIMER0 BLOCK DIAGRAM (8-BIT MODE)

FIGURE 12-2: TIMER0 BLOCK DIAGRAM (16-BIT MODE)

I²C[™] SLAVE MODE TIMING WITH SEN = 0 AND ADMSK<5:1> = 01011

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	69
PIR1	PMPIF ⁽³⁾	ADIF	RC1IF	TX1IF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	72
PIE1	PMPIE ⁽³⁾	ADIE	RC1IE	TX1IE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	72
IPR1	PMPIP ⁽³⁾	ADIP	RC1IP	TX1IP	SSP1IP	CCP1IP	TMR2IP	TMR1IP	72
PIR2	OSCFIF	CM2IF	CM1IF	—	BCL1IF	LVDIF	TMR3IF	CCP2IF	72
PIE2	OSCFIE	CM2IE	CM1IE	_	BCL1IE	LVDIE	TMR3IE	CCP2IE	72
IPR2	OSCFIP	CM2IP	CM1IP	_	BCL1IP	LVDIP	TMR3IP	CCP2IP	72
PIR3	SSP2IF	BCL2IF	RC2IF	TX2IF	TMR4IF	CTMUIF	TMR3GIF	RTCIF	72
PIE3	SSP2IE	BCL2IE	RC2IE	TX2IE	TMR4IE	CTMUIE	TMR3GIE	RTCIE	72
IPR3	SSP2IP	BCL2IP	RC2IP	TX2IP	TMR4IP	CTMUIP	TMR3GIP	RTCIP	72
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	72
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	72
SSP1BUF	MSSP1 Red	ceive Buffer/T	ransmit Reg	ister					70
SSPxADD	MSSP1 Add	lress Register	[.] (I ² C™ Slave	e mode), MSS	SP1 Baud Ra	te Reload Re	egister (I ² C M	laster mode)	70, 73
SSPxMSK ⁽¹⁾	MSK7	MSK6	MSK5	MSK4	MSK3	MSK2	MSK1	MSK0	70, 73
SSPxCON1	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	70, 73
SSPxCON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	70, 73
	GCEN	ACKSTAT	ADMSK5(2)	ADMSK4(2)	ADMSK3(2)	ADMSK2(2)	ADMSK1(2)	SEN	
SSPxSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	70, 73
SSP2BUF	MSSP2 Red	ceive Buffer/T	ransmit Reg	ister				-	73
SSP2ADD	MSSP2 Add	Iress Registe	r (I ² C Slave	mode), MSS	P2 Baud Rat	e Reload Re	gister (I ² C M	aster mode)	73

TABLE 19-4: F	REGISTERS ASSOCIATED WITH I ² C [™] OPERATION
---------------	---

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the MSSPx module in I^2C^{TM} mode.

Note 1: SSPxMSK shares the same address in SFR space as SSPxADD, but is only accessible in certain I²C Slave mode operations in 7-Bit Masking mode. See **Section 19.5.3.4 "7-Bit Address Masking Mode"** for more details.

2: Alternate bit definitions for use in I^2C Slave mode operations only.

3: These bits are only available on 44-pin devices.

		SYNC = 0, BRGH = 0, BRG16 = 1											
BAUD	Fosc = 40.000 MHz			Fosc = 20.000 MHz			Fosc = 10.000 MHz			Fosc = 8.000 MHz			
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	
0.3	0.300	0.00	8332	0.300	0.02	4165	0.300	0.02	2082	0.300	-0.04	1665	
1.2	1.200	0.02	2082	1.200	-0.03	1041	1.200	-0.03	520	1.201	-0.16	415	
2.4	2.402	0.06	1040	2.399	-0.03	520	2.404	0.16	259	2.403	-0.16	207	
9.6	9.615	0.16	259	9.615	0.16	129	9.615	0.16	64	9.615	-0.16	51	
19.2	19.231	0.16	129	19.231	0.16	64	19.531	1.73	31	19.230	-0.16	25	
57.6	58.140	0.94	42	56.818	-1.36	21	56.818	-1.36	10	55.555	3.55	8	
115.2	113.636	-1.36	21	113.636	-1.36	10	125.000	8.51	4	—	_	_	

TABLE 20-3: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)

		SYNC = 0, BRGH = 0, BRG16 = 1												
BAUD	Foso	c = 4.000	MHz	Fos	c = 2.000	MHz	Fosc = 1.000 MHz							
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)					
0.3	0.300	0.04	832	0.300	-0.16	415	0.300	-0.16	207					
1.2	1.202	0.16	207	1.201	-0.16	103	1.201	-0.16	51					
2.4	2.404	0.16	103	2.403	-0.16	51	2.403	-0.16	25					
9.6	9.615	0.16	25	9.615	-0.16	12	_	_	_					
19.2	19.231	0.16	12	_	_	_	_	_	_					
57.6	62.500	8.51	3	_	_	_	_	_	_					
115.2	125.000	8.51	1	—	_	—	—	_	_					

				SYNC = 0,	BRGH =	= 1, BRG16	b = 1 or SYNC = 1, BRG16 = 1						
BAUD	Fosc = 40.000 MHz			Fosc = 20.000 MHz			Fosc = 10.000 MHz			Fost	Fosc = 8.000 MHz		
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	
0.3	0.300	0.00	33332	0.300	0.00	16665	0.300	0.00	8332	0.300	-0.01	6665	
1.2	1.200	0.00	8332	1.200	0.02	4165	1.200	0.02	2082	1.200	-0.04	1665	
2.4	2.400	0.02	4165	2.400	0.02	2082	2.402	0.06	1040	2.400	-0.04	832	
9.6	9.606	0.06	1040	9.596	-0.03	520	9.615	0.16	259	9.615	-0.16	207	
19.2	19.193	-0.03	520	19.231	0.16	259	19.231	0.16	129	19.230	-0.16	103	
57.6	57.803	0.35	172	57.471	-0.22	86	58.140	0.94	42	57.142	0.79	34	
115.2	114.943	-0.22	86	116.279	0.94	42	113.636	-1.36	21	117.647	-2.12	16	

		SYN	NC = 0, BR	GH = 1, BI	RG16 = 1	or SYNC =	= 1, BRG1	6 = 1		
BAUD	Fos	c = 4.000	MHz	Fos	c = 2.000	MHz	Fosc = 1.000 MHz			
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual % Rate Error (K)		SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	
0.3	0.300	0.01	3332	0.300	-0.04	1665	0.300	-0.04	832	
1.2	1.200	0.04	832	1.201	-0.16	415	1.201	-0.16	207	
2.4	2.404	0.16	415	2.403	-0.16	207	2.403	-0.16	103	
9.6	9.615	0.16	103	9.615	-0.16	51	9.615	-0.16	25	
19.2	19.231	0.16	51	19.230	-0.16	25	19.230	-0.16	12	
57.6	58.824	2.12	16	55.555	3.55	8	—	_	_	
115.2	111.111	-3.55	8	_	—		_	_	_	

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	69
PIR1	PMPIF ⁽¹⁾	ADIF	RC1IF	TX1IF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	72
PIE1	PMPIE ⁽¹⁾	ADIE	RC1IE	TX1IE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	72
IPR1	PMPIP ⁽¹⁾	ADIP	RC1IP	TX1IP	SSP1IP	CCP1IP	TMR2IP	TMR1IP	72
PIR3	SSP2IF	BCL2IF	RC2IF	TX2IF	TMR4IF	CTMUIF	TMR3GIF	RTCCIF	72
PIE3	SSP2IE	BCL2IE	RC2IE	TX2IE	TMR4IE	CTMUIE	TMR3GIE	RTCCIE	72
IPR3	SSP2IP	BCL2IP	RC2IP	TX2IP	TMR4IP	CTMUIP	TMR3GIP	RTCCIP	72
RCSTAx	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	72
RCREGx	EUSARTx	Receive Reg	ister						72
TXSTAx	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	72
BAUDCONx	ABDOVF	RCIDL	RXDTP	TXCKP	BRG16	—	WUE	ABDEN	73
SPBRGHx	EUSARTx	Baud Rate G	enerator R	egister High	n Byte				72
SPBRGx	EUSARTx	Baud Rate G	enerator R	egister Low	Byte				72

TABLE 20-6: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Legend: — = unimplemented locations read as '0'. Shaded cells are not used for asynchronous reception.

Note 1: These bits are only available on 44-pin devices.

20.2.4 AUTO-WAKE-UP ON SYNC BREAK CHARACTER

During Sleep mode, all clocks to the EUSART are suspended. Because of this, the BRG is inactive and a proper byte reception cannot be performed. The auto-wake-up feature allows the controller to wake-up due to activity on the RXx/DTx line while the EUSART is operating in Asynchronous mode.

The auto-wake-up feature is enabled by setting the WUE bit (BAUDCONx<1>). Once set, the typical receive sequence on RXx/DTx is disabled and the EUSART remains in an Idle state, monitoring for a wake-up event independent of the CPU mode. A wake-up event consists of a high-to-low transition on the RXx/DTx line. (This coincides with the start of a Sync Break or a Wake-up Signal character for the LIN/J2602 protocol.)

Following a wake-up event, the module generates an RCxIF interrupt. The interrupt is generated synchronously to the Q clocks in normal operating modes (Figure 20-8) and asynchronously if the device is in Sleep mode (Figure 20-9). The interrupt condition is cleared by reading the RCREGx register.

24.2 HLVD Setup

To set up the HLVD module:

- 1. Disable the module by clearing the HLVDEN bit (HLVDCON<4>).
- 2. Write the value to the HLVDL<3:0> bits that selects the desired HLVD trip point.
- 3. Set the VDIRMAG bit to detect one of the following:
 - High voltage (VDIRMAG = 1)
 - Low voltage (VDIRMAG = 0)
- 4. Enable the HLVD module by setting the HLVDEN bit.
- Clear the HLVD Interrupt Flag, LVDIF (PIR2<2>), which may have been set from a previous interrupt.
- If interrupts are desired, enable the HLVD interrupt by setting the HLVDIE and GIE/GIEH bits (PIE2<2> and INTCON<7>).

An interrupt will not be generated until the IRVST bit is set.

24.3 Current Consumption

When the module is enabled, the HLVD comparator and voltage divider are enabled and will consume static current. The total current consumption, when enabled, is specified in electrical specification parameter D022B (Δ IHLVD) (Section 29.2 "DC Characteristics: Power-Down and Supply Current PIC18F46J11 Family (Industrial)").

Depending on the application, the HLVD module does not need to operate constantly. To decrease the current requirements, the HLVD circuitry may only need to be enabled for short periods where the voltage is checked. After doing the check, the HLVD module may be disabled.

24.4 HLVD Start-up Time

The internal reference voltage of the HLVD module, specified in electrical specification parameter D420 (see Table 29-8 in **Section 29.0 "Electrical Characteristics"**), may be used by other internal circuitry, such as the Programmable Brown-out Reset (BOR).

If the HLVD or other circuits using the voltage reference are disabled to lower the device's current consumption, the reference voltage circuit will require time to become stable before a low or high-voltage condition can be reliably detected. This start-up time, TIRVST, is an interval that is independent of device clock speed. It is specified in electrical specification parameter 36 (Table 29-15).

The HLVD interrupt flag is not enabled until TIRVST has expired and a stable reference voltage is reached. For this reason, brief excursions beyond the set point may not be detected during this interval. Refer to Figure 24-2 or Figure 24-3.

25.6 Creating a Delay with the CTMU Module

A unique feature on board the CTMU module is its ability to generate system clock independent output pulses based on an external capacitor value. This is accomplished using the internal comparator voltage reference module, Comparator 2 input pin and an external capacitor. The pulse is output onto the CTPLS pin. To enable this mode, set the TGEN bit.

See Figure 25-4 for an example circuit. *C*PULSE is chosen by the user to determine the output pulse width on CTPLS. The pulse width is calculated by T = (CPULSE/I)*V, where *I* is known from the current source measurement step (Section 25.3.1 "Current Source Calibration") and *V* is the internal reference voltage (CVREF).

An example use of this feature is for interfacing with variable capacitive-based sensors, such as a humidity sensor. As the humidity varies, the pulse width output on CTPLS will vary. The CTPLS output pin can be connected to an input capture pin and the varying pulse width is measured to determine the humidity in the application.

Follow these steps to use this feature:

- 1. Initialize Comparator 2.
- 2. Set CPOL = 1.
- 3. Initialize the comparator voltage reference.
- 4. Initialize the CTMU and enable time delay generation by setting the TGEN bit.
- 5. Set EDG1STAT.
- 6. When CPULSE charges to the value of the voltage reference trip point, an output pulse is generated on CTPLS.

FIGURE 25-4: TYPICAL CONNECTIONS AND INTERNAL CONFIGURATION FOR PULSE DELAY GENERATION

25.7 Operation During Sleep/Idle Modes

25.7.1 SLEEP MODE AND DEEP SLEEP MODES

When the device enters any Sleep mode, the CTMU module current source is always disabled. If the CTMU is performing an operation that depends on the current source when Sleep mode is invoked, the operation may not terminate correctly. Capacitance and time measurements may return erroneous values.

25.7.2 IDLE MODE

The behavior of the CTMU in Idle mode is determined by the CTMUSIDL bit (CTMUCONH<5>). If CTMUSIDL is cleared, the module will continue to operate in Idle mode. If CTMUSIDL is set, the module's current source is disabled when the device enters Idle mode. If the module is performing an operation when Idle mode is invoked, in this case, the results will be similar to those with Sleep mode.

25.8 Effects of a Reset on CTMU

Upon Reset, all registers of the CTMU are cleared. This leaves the CTMU module disabled, its current source is turned off and all configuration options return to their default settings. The module needs to be re-initialized following any Reset.

If the CTMU is in the process of taking a measurement at the time of Reset, the measurement will be lost. A partial charge may exist on the circuit that was being measured, and should be properly discharged before the CTMU makes subsequent attempts to make a measurement. The circuit is discharged by setting and then clearing the IDISSEN bit (CTMUCONH<1>) while the A/D Converter is connected to the appropriate channel.

26.4 Two-Speed Start-up

The Two-Speed Start-up feature helps to minimize the latency period, from oscillator start-up to code execution, by allowing the microcontroller to use the INTRC oscillator as a clock source until the primary clock source is available. It is enabled by setting the IESO Configuration bit.

Two-Speed Start-up should be enabled only if the primary oscillator mode is HS or HSPLL (Crystal-Based) modes. Since the EC and ECPLL modes do not require an Oscillator Start-up Timer (OST) delay, Two-Speed Start-up should be disabled.

When enabled, Resets and wake-ups from Sleep mode cause the device to configure itself to run from the internal oscillator block as the clock source, following the time-out of the Power-up Timer after a Power-on Reset is enabled. This allows almost immediate code execution while the primary oscillator starts and the OST is running. Once the OST times out, the device automatically switches to PRI_RUN mode.

In all other power-managed modes, Two-Speed Start-up is not used. The device will be clocked by the currently selected clock source until the primary clock source becomes available. The setting of the IESO bit is ignored.

26.4.1 SPECIAL CONSIDERATIONS FOR USING TWO-SPEED START-UP

While using the INTRC oscillator in Two-Speed Start-up, the device still obeys the normal command sequences for entering power-managed modes, including serial SLEEP instructions (refer to **Section 4.1.4 "Multiple Sleep Commands"**). In practice, this means that user code can change the SCS<1:0> bit settings or issue SLEEP instructions before the OST times out. This would allow an application to briefly wake-up, perform routine "housekeeping" tasks and return to Sleep before the device starts to operate from the primary oscillator.

User code can also check if the primary clock source is currently providing the device clocking by checking the status of the OSTS bit (OSCCON<3>). If the bit is set, the primary oscillator is providing the clock. Otherwise, the internal oscillator block is providing the clock during wake-up from Reset or Sleep mode.

26.5 Fail-Safe Clock Monitor

The Fail-Safe Clock Monitor (FSCM) allows the microcontroller to continue operation in the event of an external oscillator failure by automatically switching the device clock to the internal oscillator block. The FSCM function is enabled by setting the FCMEN Configuration bit.

When FSCM is enabled, the INTRC oscillator runs at all times to monitor clocks to peripherals and provide a backup clock in the event of a clock failure. Clock monitoring (shown in Figure 26-4) is accomplished by creating a sample clock signal, which is the INTRC output divided by 64. This allows ample time between FSCM sample clocks for a peripheral clock edge to occur. The peripheral device clock and the sample clock are presented as inputs to the clock monitor latch. The clock monitor is set on the falling edge of the device clock source but cleared on the rising edge of the sample clock.

COMF	Compleme	ent f		CPF	SEQ	Compare f	with W, Ski	p if f =	= W
Syntax:	COMF f	{,d {,a}}		Synt	ax:	CPFSEQ	f {,a}		
Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \end{array}$			Oper	ands:	0 ≤ f ≤ 255 a ∈ [0,1]			
	a ∈ [0,1]			Oper	ation:	(f) - (W),			
Operation:	$f \rightarrow dest$					skip if (f) = (unsigned ((W) comparison)		
Status Affected:	N, Z			Statu	s Affected:	None	ompaneon)		
Encoding:	0001	11da ffi	ff ffff	Enco	odina:	0110	001a fi	ff	ffff
Description:	The conten complemer stored in W stored back	nts of register 'f nted. If 'd' is '0 /. If 'd' is '1', th < in register 'f'	f' are ', the result is le result is (default).	Desc	cription:	Compares ory locatior performing	the contents i 'f' to the cor an unsigned	of data ntents subtra	a mem- of W by action.
	If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default).				If 'f' = W, th discarded a instead, ma instruction.	en the fetche and a NOP is aking this a tw	ed inst execu vo-cyc	ruction is ted cle	
	If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing					If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default).			selected. select the
	Section 27 Bit-Oriente Literal Offe	2.2.3 "Byte-Or ad Instruction set Mode" for	iented and is in Indexed details.			If 'a' is '0' a set is enab in Indexed mode wher	nd the exten ed, this instru Literal Offset	ded in uction Addre 5Fh)	struction operates essing See
Words:	1					Section 27	.2.3 "Byte-C	riente	ed and
Cycles:	1					Bit-Oriente	d Instructio	ns in	Indexed
Q Cycle Activity:					4		set Mode" to	or deta	lis.
Q1	Q2	Q3	Q4	vvoro	IS:	1			
Decode	Read register 'f'	Process Data	Write to destination	Cyci	es:	Note: 3 cy by a	cles if skip a 2-word instr	nd follo uction	owed
Example:	COME			QC	ycle Activity:				
	COMP	REG, 0, 0			Q1	Q2	Q3		Q4
REG	= 13h				Decode	Read	Process		No
After Instruction	on			lfek	in [.]	register T	Data	ор	eration
REG	= 13h			11 51	ρ. Q1	Q2	Q3		Q4
vv	- 2011				No	No	No		No
					operation	operation	operation	ор	eration
				lf sk	ip and followe	d by 2-word in	struction:		.
					Q1	Q2	Q3		Q4
					operation	operation	operation	on	eration
					No	No	No	00	No
					operation	operation	operation	ор	eration
				<u>Exar</u>	nple:	HERE NEQUAL	CPFSEQ RE	EG, 0	
					Before Instruc	EQUAL	:		

= = =	HERE ? ?	
=	W;	
=	Address	(EQUAL)
≠	W;	
=	Address	(NEQUAL)
	= = = ≠	= HERE = ? = ? = W; = Address ≠ W; = Address

NEGF	Negate f			
Syntax:	NEGF f	{,a}		
Operands:	$0 \le f \le 255$ a $\in [0,1]$	i		
Operation:	$(\overline{f}) + 1 \rightarrow f$			
Status Affected:	N, OV, C,	DC, Z		
Encoding:	0110	110a	ffff	ffff
Description:	Location 'f compleme data meme	' is negate nt. The re ory locatio	ed using tv sult is plac on 'f'.	vo's ced in the
	lf 'a' is '0', lf 'a' is '1', GPR bank	the Acces the BSR i (default).	ss Bank is s used to s	selected. select the
	If 'a' is '0' a set is enab in Indexed mode whe Section 2' Bit-Orient Literal Off	and the e: bled, this i Literal O never f ≤ 7.2.3 "By ed Instru set Mode	xtended in nstruction ffset Addre 95 (5Fh). te-Oriente ctions in e" for deta	struction operates essing See ed and Indexed ils.
Words:	1			
Cycles:	1			
Q Cycle Activity:				

Q1	Q2	Q3	Q4
Decode	Read	Process	Write
	register 'f'	Data	register 'f'

Example:	NEGF	REG,	1
----------	------	------	---

Before Instru	ction			
REG	=	0011	1010	[3Ah]
After Instructi	on			
REG	=	1100	0110	[C6h]

NOP		No Operation					
Synta	ax:	NOP					
Oper	ands:	None					
Oper	ation:	No operati	on				
Statu	s Affected:	None					
Encoding:		0000 1111	0000 xxxx	000 xxx) () xx	0000 xxxx	
Description:		No operation.					
Word	ls:	1	1				
Cycles:		1					
Q Cycle Activity:							
	Q1	Q2	Q	3		Q4	
	Decode	No operation	No operat	tion	ор	No eration	

Example:

None.

FIE	Return fro	Return from Interrupt				
ax:	RETFIE {	RETFIE {s}				
ands:	$s \in [0,1]$					
ation:	$(TOS) \rightarrow P$ $1 \rightarrow GIE/G$ if s = 1, $(WS) \rightarrow W$, (STATUSS) $(BSRS) \rightarrow$ PCLATU, P	$(TOS) \rightarrow PC,$ $1 \rightarrow GIE/GIEH \text{ or PEIE/GIEL};$ if s = 1, $(WS) \rightarrow W,$ $(STATUSS) \rightarrow STATUS,$ $(BSRS) \rightarrow BSR,$ PCLATU, PCLATH are unchanged				
s Affected:	GIE/GIEH,	PEIE/GI	EL.			
ding:	0000	0000	000	1 000s		
ription:	Return fron and Top-of- the PC. Inte setting eithe Global Intel the content WS, STATU into their co STATUS ar of these res	Return from interrupt. Stack is popped and Top-of-Stack (TOS) is loaded into the PC. Interrupts are enabled by setting either the high or low-priority Global Interrupt Enable bit. If 's' = 1, the contents of the shadow registers WS, STATUSS and BSRS are loaded into their corresponding registers W, STATUS and BSR. If 's' = 0, no update of these registers occurs (default)				
ls:	1	1				
es:	2	2				
ycle Activity:						
Q1	Q2	Q3		Q4		
Decode	No operation	No operati	ion	POP PC from stack Set GIEH or GIEL		
No	No	No		No		
operation	operation	operat	ion	operation		
nple: After Interrupt PC W BSR STATUS	RETFIE	1 = T = V = B = S	OS VS SRS TATU	SS		
	FIE ax: ands: ation: ation: s Affected: ding: ription: ls: es: ycle Activity: Q1 Decode No operation nple: After Interrupt PC W BSR STATUS	FIEReturn fromax:RETFIE {sands: $s \in [0,1]$ ation:(TOS) \rightarrow P $1 \rightarrow$ GIE/Gif $s = 1$,(WS) \rightarrow W,(STATUSS)(BSRS) \rightarrow PCLATU, Ps Affected:GIE/GIEH,ding:0000ription:Return fromand Top-of-the PC. Intesetting eitheGlobal Intentthe contentWS, STATUSas:2ycle Activity:Q1Q2DecodeNooperationoperationoperationoperationnple:RETFIEAfter InterruptPCWBSRSTATUS	FIEReturn from Interruax:RETFIE {s}ands: $s \in [0,1]$ ation:(TOS) \rightarrow PC, $1 \rightarrow$ GIE/GIEH or PIif $s = 1$,(WS) \rightarrow W,(STATUSS) \rightarrow STAT(BSRS) \rightarrow BSR,PCLATU, PCLATH as Affected:GIE/GIEH, PEIE/GIEding:0000ription:Return from interrupand Top-of-Stack (Tothe PC. Interrupts arsetting either the higGlobal Interrupt Enathe contents of the sWS, STATUSS andinto their correspondSTATUS and BSR. Iof these registers ocls:1es:2ycle Activity:Q1Q2Q2Q3DecodeNoNoNooperationoperationoperationoperationoperationple:RETFIEPC=W=BSR=STATUS=STATUS=	FIEReturn from Interruptax:RETFIE {s}ands: $s \in [0,1]$ ation:(TOS) \rightarrow PC, $1 \rightarrow$ GIE/GIEH or PEIE/Gif $s = 1$,(WS) \rightarrow W,(STATUSS) \rightarrow STATUS,(BSRS) \rightarrow BSR,PCLATU, PCLATH are uns Affected:ding:000000000000ription:Return from interrupt. Stackand Top-of-Stack (TOS) isthe PC. Interrupts are enasetting either the high or loGlobal Interrupt Enable bitthe contents of the shadowWS, STATUSS and BSRSinto their corresponding reSTATUS and BSR. If 's' =of these registers occurs (ls:1es:2ycle Activity:Q1Q2Q3DecodeNoNooperationoperationoperationoperationoperationnoperationNoNoNoNoNoNoNoSR=STATUS=STATUSSTATUSstatusSTATUSstatus		

RET	LW	Return Lite	Return Literal to W			
Synta	ax:	RETLW k				
Oper	ands:	$0 \le k \le 255$				
Oper	ation:	$k \rightarrow W$, (TOS) $\rightarrow P$ PCLATU, P	$k \rightarrow W$, (TOS) \rightarrow PC, PCLATU, PCLATH are unchanged			
Statu	is Affected:	None				
Enco	oding:	0000	1100 kkk	k kkkk		
Description:		W is loaded The prograu the top of th address). T (PCLATH) r	W is loaded with the eight-bit literal 'k'. The program counter is loaded from the top of the stack (the return address). The high address latch (PCLATH) remains unchanged.			
Word	ds:	1				
Cycle	es:	2				
QC	ycle Activity:					
	Q1	Q2	Q3	Q4		
	Decode	Read literal 'k'	Process Data	POP PC from stack, write to W		
	No operation	No operation	No operation	No operation		
<u>Exar</u>	nple:					
CALL TABLE		; W contai ; offset v ; W now ha ; table va	; W contains table ; offset value ; W now has ; table value			
TABI						
:::::::::::::::::::::::::::::::::::::::	ADDWF PCL RETLW k0 RETLW k1	; W = offs ; Begin ta ;	set able			
:	: RETLW kn	; End of t	able			

Before Instruction

Delote matu		
W	=	07h
After Instructi	on	
W	=	value of kn

XOR	WF	Exclusive	Exclusive OR W with f			
Synt	ax:	XORWF	f {,d {,a}}			
Oper	rands:	$0 \le f \le 255$				
		d ∈ [0,1] a ∈ [0,1]				
Oper	ration:	(W) .XOR.	(f) \rightarrow dest			
Statu	is Affected:	N, Z				
Enco	oding:	0001	10da f	fff	ffff	
Desc	cription:	Exclusive (register 'f'. stored in W stored bac	OR the conte If 'd' is '0', th /. If 'd' is '1', k in the regis	ents of ne resu the res ster 'f' (W with ult is sult is (default).	
		If 'a' is '0', f If 'a' is '1', f GPR bank	the Access B the BSR is us (default).	ank is sed to	selected. select the	
		If 'a' is '0' and the extended instructio set is enabled, this instruction operate in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 27.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details				
Word	ds:	1				
Cycle	es:	1				
QC	ycle Activity:					
	Q1	Q2	Q3		Q4	
	Decode	Read register 'f'	Process Data	V de:	Vrite to stination	
Exar	nple:	XORWF	REG, 1, 0			
	Before Instruc	tion	-, , -			
	REG	= AFh				
	VV After Instructio	= 85h				
	REG	= 1Ah = B5h				

27.2.3 BYTE-ORIENTED AND BIT-ORIENTED INSTRUCTIONS IN INDEXED LITERAL OFFSET MODE

Note:	Enabling the PIC18 instruction set exten-
	sion may cause legacy applications to
	behave erratically or fail entirely

In addition to eight new commands in the extended set, enabling the extended instruction set also enables Indexed Literal Offset Addressing (Section 6.6.1 "Indexed Addressing with Literal Offset"). This has a significant impact on the way that many commands of the standard PIC18 instruction set are interpreted.

When the extended set is disabled, addresses embedded in opcodes are treated as literal memory locations: either as a location in the Access Bank (a = 0) or in a GPR bank designated by the BSR (a = 1). When the extended instruction set is enabled and a = 0, however, a file register argument of 5Fh or less is interpreted as an offset from the pointer value in FSR2 and not as a literal address. For practical purposes, this means that all instructions that use the Access RAM bit as an argument – that is, all byte-oriented and bit-oriented instructions, or almost half of the core PIC18 instructions – may behave differently when the extended instruction set is enabled.

When the content of FSR2 is 00h, the boundaries of the Access RAM are essentially remapped to their original values. This may be useful in creating backward-compatible code. If this technique is used, it may be necessary to save the value of FSR2 and restore it when moving back and forth between C and assembly routines in order to preserve the Stack Pointer. Users must also keep in mind the syntax requirements of the extended instruction set (see Section 27.2.3.1 "Extended Instruction Syntax with Standard PIC18 Commands").

Although the Indexed Literal Offset mode can be very useful for dynamic stack and pointer manipulation, it can also be very annoying if a simple arithmetic operation is carried out on the wrong register. Users who are accustomed to the PIC18 programming must keep in mind that, when the extended instruction set is enabled, register addresses of 5Fh or less are used for Indexed Literal Offset Addressing.

Representative examples of typical byte-oriented and bit-oriented instructions in the Indexed Literal Offset mode are provided on the following page to show how execution is affected. The operand conditions provided in the examples are applicable to all instructions of these types.

27.2.3.1 Extended Instruction Syntax with Standard PIC18 Commands

When the extended instruction set is enabled, the file register argument 'f' in the standard byte-oriented and bit-oriented commands is replaced with the literal offset value 'k'. As already noted, this occurs only when 'f' is less than or equal to 5Fh. When an offset value is used, it must be indicated by square brackets ("[]"). As with the extended instructions, the use of brackets indicates to the compiler that the value is to be interpreted as an index or an offset. Omitting the brackets, or using a value greater than 5Fh within the brackets, will generate an error in the MPASM Assembler.

If the index argument is properly bracketed for Indexed Literal Offset Addressing, the Access RAM argument is never specified; it will automatically be assumed to be '0'. This is in contrast to standard operation (extended instruction set disabled) when 'a' is set on the basis of the target address. Declaring the Access RAM bit in this mode will also generate an error in the MPASM Assembler.

The destination argument 'd' functions as before.

In the latest versions of the MPASM Assembler, language support for the extended instruction set must be explicitly invoked. This is done with either the command line option, $/_{Y}$, or the PE directive in the source listing.

27.2.4 CONSIDERATIONS WHEN ENABLING THE EXTENDED INSTRUCTION SET

It is important to note that the extensions to the instruction set may not be beneficial to all users. In particular, users who are not writing code that uses a software stack may not benefit from using the extensions to the instruction set.

Additionally, the Indexed Literal Offset Addressing mode may create issues with legacy applications written to the PIC18 assembler. This is because instructions in the legacy code may attempt to address registers in the Access Bank below 5Fh. Since these addresses are interpreted as literal offsets to FSR2 when the instruction set extension is enabled, the application may read or write to the wrong data addresses.

When porting an application to the PIC18F46J11 family, it is very important to consider the type of code. A large, re-entrant application that is written in C and would benefit from efficient compilation will do well when using the instruction set extensions. Legacy applications that heavily use the Access Bank will most likely not benefit from using the extended instruction set.