



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Details                    |                                                                              |
|----------------------------|------------------------------------------------------------------------------|
| Product Status             | Active                                                                       |
| Core Processor             | PIC                                                                          |
| Core Size                  | 8-Bit                                                                        |
| Speed                      | 48MHz                                                                        |
| Connectivity               | I <sup>2</sup> C, SPI, UART/USART                                            |
| Peripherals                | Brown-out Detect/Reset, POR, PWM, WDT                                        |
| Number of I/O              | 16                                                                           |
| Program Memory Size        | 16KB (8K x 16)                                                               |
| Program Memory Type        | FLASH                                                                        |
| EEPROM Size                | -                                                                            |
| RAM Size                   | 3.8K x 8                                                                     |
| Voltage - Supply (Vcc/Vdd) | 2V ~ 3.6V                                                                    |
| Data Converters            | A/D 10x10b                                                                   |
| Oscillator Type            | Internal                                                                     |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                            |
| Mounting Type              | Surface Mount                                                                |
| Package / Case             | 28-SSOP (0.209", 5.30mm Width)                                               |
| Supplier Device Package    | 28-SSOP                                                                      |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic18lf24j11t-i-ss |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

#### REGISTER 4-3: DSGPR0: DEEP SLEEP PERSISTENT GENERAL PURPOSE REGISTER 0 (BANKED F4Eh)

| R/W-xxxx <sup>(1)</sup>                    |                  |                        |                    |       |  |  |
|--------------------------------------------|------------------|------------------------|--------------------|-------|--|--|
| Deep Sleep Persistent General Purpose bits |                  |                        |                    |       |  |  |
| bit 7                                      |                  |                        |                    | bit 0 |  |  |
|                                            |                  |                        |                    |       |  |  |
| Legend:                                    |                  |                        |                    |       |  |  |
| R = Readable bit                           | W = Writable bit | U = Unimplemented bit, | read as '0'        |       |  |  |
| -n = Value at POR                          | '1' = Bit is set | '0' = Bit is cleared   | x = Bit is unknown |       |  |  |

bit 7-0 Deep Sleep Persistent General Purpose bits Contents are retained even in Deep Sleep mode.

### REGISTER 4-4: DSGPR1: DEEP SLEEP PERSISTENT GENERAL PURPOSE REGISTER 1 (BANKED F4Fh)

|                 |                | R/W-xxxx <sup>(1)</sup>      |       |
|-----------------|----------------|------------------------------|-------|
|                 | Deep Sleep Per | sistent General Purpose bits |       |
| bit 7           |                |                              | bit 0 |
|                 |                |                              |       |
| Legend:         |                |                              |       |
| D D L L L L L L |                |                              |       |

| R = Readable bit  | W = Writable bit | U = Unimplemented bit, rea | d as '0'           |
|-------------------|------------------|----------------------------|--------------------|
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared       | x = Bit is unknown |

bit 7-0 Deep Sleep Persistent General Purpose bits Contents are retained even in Deep Sleep mode.

**Note 1:** All register bits are maintained unless: VDDCORE drops below the normal BOR threshold outside of Deep Sleep, or, the device is in Deep Sleep and the dedicated DSBOR is enabled and VDD drops below the DSBOR threshold, or DSBOR is enabled or disabled, but VDD is hard cycled to near VSS.

**Note 1:** All register bits are maintained unless: VDDCORE drops below the normal BOR threshold outside of Deep Sleep, or the device is in Deep Sleep and the dedicated DSBOR is enabled and VDD drops below the DSBOR threshold, or DSBOR is enabled or disabled, but VDD is hard cycled to near VSS.

#### EXAMPLE 4-1: ULTRA LOW-POWER WAKE-UP INITIALIZATION

```
//Configure a remappable output pin with interrupt capability
//for ULPWU function (RP21 => RD4/INT1 in this example)
RPOR21 = 13;// ULPWU function mapped to RP21/RD4
RPINR1 = 21;// INT1 mapped to RP21 (RD4)
//*********
//Charge the capacitor on RAO
TRISAbits.TRISA0 = 0;
LATAbits.LATA0 = 1;
for(i = 0; i < 10000; i++) Nop();</pre>
//Stop Charging the capacitor on RAO
TRISAbits.TRISA0 = 1;
//Enable the Ultra Low Power Wakeup module
//and allow capacitor discharge
WDTCONbits.ULPEN = 1;
WDTCONbits.ULPSINK = 1;
//For Sleep, Enable Interrupt for ULPW.
INTCON3bits.INT1IF = 0;
INTCON3bits.INT1IE = 1;
//***************
//Configure Sleep Mode
//********************
//For Sleep
OSCCONbits.IDLEN = 0;
//For Deep Sleep
OSCCONDits.IDLEN = 0i// enable deep sleep
DSCONHbits.DSEN = 1;// Note: must be set just before executing Sleep();
/ / * * * * * * * * * * * * * * * *
//Enter Sleep Mode
/ / * * * * * * * * * * * * * * * *
Sleep();
  // for sleep, execution will resume here
  // for deep sleep, execution will restart at reset vector (use WDTCONbits.DS to detect)
```

# PIC18F46J11 FAMILY

| TABLE 5-2:              | INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED) |                                |           |                                                                            |                                 |  |  |
|-------------------------|---------------------------------------------------------|--------------------------------|-----------|----------------------------------------------------------------------------|---------------------------------|--|--|
| Register                | Applicabl                                               | Applicable Devices<br>Wa<br>De |           | MCLR Resets<br>WDT Reset<br>RESET Instruction<br>Stack Resets<br>CM Resets | Wake-up via WDT<br>or Interrupt |  |  |
| BAUDCON1                | PIC18F2XJ11                                             | PIC18F4XJ11                    | 0100 0-00 | 0100 0-00                                                                  | uuuu u-uu                       |  |  |
| SPBRGH2                 | PIC18F2XJ11                                             | PIC18F4XJ11                    | 0000 0000 | 0000 0000                                                                  | սսսս սսսս                       |  |  |
| BAUDCON2                | PIC18F2XJ11                                             | PIC18F4XJ11                    | 0100 0-00 | 0100 0-00                                                                  | uuuu u-uu                       |  |  |
| TMR3H                   | PIC18F2XJ11                                             | PIC18F4XJ11                    | xxxx xxxx | uuuu uuuu                                                                  | uuuu uuuu                       |  |  |
| TMR3L                   | PIC18F2XJ11                                             | PIC18F4XJ11                    | xxxx xxxx | uuuu uuuu                                                                  | uuuu uuuu                       |  |  |
| T3CON                   | PIC18F2XJ11                                             | PIC18F4XJ11                    | 0000 -000 | uuuu -uuu                                                                  | uuuu –uuu                       |  |  |
| TMR4                    | PIC18F2XJ11                                             | PIC18F4XJ11                    | 0000 0000 | uuuu uuuu                                                                  | uuuu uuuu                       |  |  |
| PR4                     | PIC18F2XJ11                                             | PIC18F4XJ11                    | 1111 1111 | 1111 1111                                                                  | uuuu uuuu                       |  |  |
| T4CON                   | PIC18F2XJ11                                             | PIC18F4XJ11                    | -000 0000 | -000 0000                                                                  | -uuu uuuu                       |  |  |
| SSP2BUF                 | PIC18F2XJ11                                             | PIC18F4XJ11                    | xxxx xxxx | uuuu uuuu                                                                  | uuuu uuuu                       |  |  |
| SSP2ADD                 | PIC18F2XJ11                                             | PIC18F4XJ11                    | 0000 0000 | 0000 0000                                                                  | uuuu uuuu                       |  |  |
| SSP2MSK                 | PIC18F2XJ11                                             | PIC18F4XJ11                    | 0000 0000 | 0000 0000                                                                  | uuuu uuuu                       |  |  |
| SSP2STAT                | PIC18F2XJ11                                             | PIC18F4XJ11                    | 1111 1111 | 1111 1111                                                                  | uuuu uuuu                       |  |  |
| SSP2CON1                | PIC18F2XJ11                                             | PIC18F4XJ11                    | 0000 0000 | 0000 0000                                                                  | uuuu uuuu                       |  |  |
| SSP2CON2                | PIC18F2XJ11                                             | PIC18F4XJ11                    | 0000 0000 | 0000 0000                                                                  | uuuu uuuu                       |  |  |
| CMSTAT                  | PIC18F2XJ11                                             | PIC18F4XJ11                    | 11        | 11                                                                         | uu                              |  |  |
| PMADDRH <sup>(5)</sup>  | _                                                       | PIC18F4XJ11                    | -000 0000 | -000 0000                                                                  | -uuu uuuu                       |  |  |
| PMDOUT1H <sup>(5)</sup> | _                                                       | PIC18F4XJ11                    | 0000 0000 | 0000 0000                                                                  | uuuu uuuu                       |  |  |
| PMADDRL <sup>(5)</sup>  | _                                                       | PIC18F4XJ11                    | 0000 0000 | 0000 0000                                                                  | uuuu uuuu                       |  |  |
| PMDOUT1L <sup>(5)</sup> | _                                                       | PIC18F4XJ11                    | 0000 0000 | 0000 0000                                                                  | uuuu uuuu                       |  |  |
| PMDIN1H <sup>(5)</sup>  | _                                                       | PIC18F4XJ11                    | 0000 0000 | 0000 0000                                                                  | uuuu uuuu                       |  |  |
| PMDIN1L <sup>(5)</sup>  | _                                                       | PIC18F4XJ11                    | 0000 0000 | 0000 0000                                                                  | uuuu uuuu                       |  |  |
| TXADDRL                 | PIC18F2XJ11                                             | PIC18F4XJ11                    | 0000 0000 | 0000 0000                                                                  | uuuu uuuu                       |  |  |
| TXADDRH                 | PIC18F2XJ11                                             | PIC18F4XJ11                    | 0000      | 0000                                                                       | uuuu                            |  |  |
| RXADDRL                 | PIC18F2XJ11                                             | PIC18F4XJ11                    | 0000 0000 | 0000 0000                                                                  | uuuu uuuu                       |  |  |
| RXADDRH                 | PIC18F2XJ11                                             | PIC18F4XJ11                    | 0000      | 0000                                                                       | uuuu                            |  |  |
| DMABCL                  | PIC18F2XJ11                                             | PIC18F4XJ11                    | 0000 0000 | 0000 0000                                                                  | uuuu uuuu                       |  |  |
| DMABCH                  | PIC18F2XJ11                                             | PIC18F4XJ11                    | 00        | 00                                                                         | uu                              |  |  |
| PMCONH <sup>(5)</sup>   |                                                         | PIC18F4XJ11                    | 00 0000   | 00 0000                                                                    | uu uuuu                         |  |  |
| PMCONL <sup>(5)</sup>   |                                                         | PIC18F4XJ11                    | 000- 0000 | 000- 0000                                                                  | uuu- uuuu                       |  |  |
| PMMODEH <sup>(5)</sup>  | _                                                       | PIC18F4XJ11                    | 0000 0000 | 0000 0000                                                                  | uuuu uuuu                       |  |  |
| PMMODEL <sup>(5)</sup>  | _                                                       | PIC18F4XJ11                    | 0000 0000 | 0000 0000                                                                  | uuuu uuuu                       |  |  |

## TABLE 5-2: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)

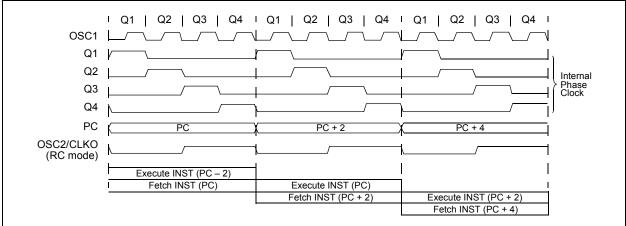
**Legend:** u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition.

- **2:** When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).
- 3: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).
- **4:** See Table 5-1 for Reset value for specific condition.
- 5: Not implemented for PIC18F2XJ11 devices.
- 6: Not implemented on "LF" devices.

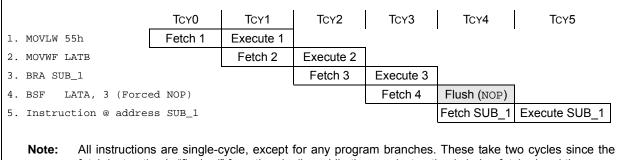
**Note 1:** When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

## 6.2 PIC18 Instruction Cycle

#### 6.2.1 CLOCKING SCHEME


The microcontroller clock input, whether from an internal or external source, is internally divided by '4' to generate four non-overlapping quadrature clocks (Q1, Q2, Q3 and Q4). Internally, the PC is incremented on every Q1; the instruction is fetched from the program memory and latched into the Instruction Register (IR) during Q4. The instruction is decoded and executed during the following Q1 through Q4. Figure 6-4 illustrates the clocks and instruction execution flow.

## 6.2.2 INSTRUCTION FLOW/PIPELINING


An "Instruction Cycle" consists of four Q cycles, Q1 through Q4. The instruction fetch and execute are pipelined in such a manner that a fetch takes one instruction cycle, while the decode and execute take another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the PC to change (e.g., GOTO), then two cycles are required to complete the instruction (Example 6-3).

A fetch cycle begins with the PC incrementing in Q1.

In the execution cycle, the fetched instruction is latched into the IR in cycle Q1. This instruction is then decoded and executed during the Q2, Q3 and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).



### EXAMPLE 6-3: INSTRUCTION PIPELINE FLOW



**Note:** All instructions are single-cycle, except for any program branches. These take two cycles since the fetch instruction is "flushed" from the pipeline while the new instruction is being fetched and then executed.

### FIGURE 6-4: CLOCK/INSTRUCTION CYCLE

| File Name         Bit 7         Bit 6         Bit 5         Bit 4         Bit 3         Bit 2         Bit 1         Bit 0         Value on<br>POR, BOR           DMACON2         DLYCYC3         DLYCYC2         DLYCYC1         DLYCYC0         INTLVL3         INTLVL2         INTLVL1         INTLVL0         0000         0000           HUVDCON         VDIRMAG         BGVST         IRVST         HLVDLN         HLVDL3         HLVDL2         HLVDL1         HLVDL0         0000         0000           PORTE         RDPU         REPU         —         —         —         RE2         RE1         RE0         00xxxx           PORTD         RD7         RD6         RD5         RD4         RD3         RD2         RD1         RD0         xxxx xxxx           PORTB         RB7         RB6         RB5         RE4         RB3         RB2         RB1         RB0         xxxx xxxx           PORTA         RA7         RA6         RA5         —         RA3         RA2         RA1         RA0         xxxx xxxx           SPBRGH1         EUSART1 Baud Rate Generator Register High Byte          0000         0000         0000           BAUDCON2         ABDOVF         RCIDL<                                                                                                                   | Details<br>on<br>Page:<br>72, 285<br>72<br>72<br>72<br>72<br>72<br>72<br>72<br>72<br>72, 330<br>72<br>72, 330<br>73 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| HLVDCON         VDIRMAG         BGVST         IRVST         HLVDL3         HLVDL3         HLVDL1         HLVDL0         0000         0000           PORTE         RDPU         REPU         —         —         RE2         RE1         RE0         00xxx           PORTD         RD7         RD6         RD5         RD4         RD3         RD2         RD1         RD0         xxxx xxxx           PORTC         RC7         RC6         RC5         RC4         RC4         RC2         RC1         RC0         xxxx xxxx           PORTA         RA7         RA6         RA5         —         RA3         RA2         RA1         RA0         xxx- xxxx           PORTA         RA7         RA6         RA5         —         RA3         RA2         RA1         RA0         xxx- xxxx           SPBRGH1         EUSART1 Bauf Rate Generator Register High Byte         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000                                                                                                                           | 72<br>72<br>72<br>72<br>72<br>72<br>72<br>72<br>72, 330<br>72<br>72, 330                                            |
| PORTE         RDPU         REPU         —         —         RE2         RE1         RE0         00xxx           PORTD         RD7         RD6         RD5         RD4         RD3         RD2         RD1         RD0         xxxx         xxxx           PORTC         RC7         RC6         RC5         RC4         RC4         RC2         RC1         RC0         xxxx         xxxx           PORTB         RB7         RB6         RB5         RB4         RB3         RB2         RB1         RB0         xxxx         xxxx           PORTA         RA7         RA6         RA5         —         RA3         RA2         RA1         RA0         xxx-         xxxx           SPBRGH1         EUSART1 Baud Rate Generator Register High Byte         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         00                                                                                                                          | 72<br>72<br>72<br>72<br>72<br>72<br>72, 330<br>72<br>72, 330                                                        |
| PORTD         RD7         RD6         RD5         RD4         RD3         RD2         RD1         RD0         xxxx xxxx           PORTC         RC7         RC6         RC5         RC4         RC4         RC2         RC1         RC0         xxxx xxxx           PORTB         RB7         RB6         RB5         RB4         RB3         RB2         RB1         RB0         xxxx xxxx           PORTA         RA7         RA6         RA5         —         RA3         RA2         RA1         RA0         xxx- xxxx           SPBRGH1         EUSART1 Baud Rate Generator Register High Byte         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         <                                                                                                  | 72<br>72<br>72<br>72<br>72<br>72, 330<br>72<br>72, 330                                                              |
| PORTC         RC7         RC6         RC5         RC4         RC4         RC2         RC1         RC0         xxxx xxxx           PORTB         RB7         RB6         RB5         RB4         RB3         RB2         RB1         RB0         xxxx xxxx           PORTA         RA7         RA6         RA5         —         RA3         RA2         RA1         RA0         xxxx xxxx           SPBRGH1         EUSART1 Baud Rate Generator Register High Byte         0000         0000         0000         0000         0000           BAUDCON1         ABDOVF         RCIDL         RXDTP         TXCKP         BRG16         —         WUE         ABDEN         0100         0-00           SPBRGH2         EUSART2 Baud Rate Generator Register High Byte          0000         0000         0000           BAUDCON2         ABDOVF         RCIDL         RXDTP         TXCKP         BRG16         —         WUE         ABDEN         0100         0-00           TMR3H         Timer3 Register High Byte         xxxx xxxx         xxxx xxxx         xxxx xxxx         Xxxx xxxx           TMR3L         Timer4 Register         V         WUE         ABDEN         0100         0000         0000                                                                                                        | 72<br>72<br>72<br>72, 330<br>72<br>72, 330                                                                          |
| PORTB         RB7         RB6         RB5         RB4         RB3         RB2         RB1         RB0         xxxx xxxx           PORTA         RA7         RA6         RA5         —         RA3         RA2         RA1         RA0         xxx- xxxx           SPBRGH1         EUSART1 Baud Rate Generator Register High Byte         0000         0000         0000         0000           BAUDCON1         ABDOVF         RCIDL         RXDTP         TXCKP         BRG16         —         WUE         ABDEN         0100         0-00           SPBRGH2         EUSART2 Baud Rate Generator Register High Byte         0000         0000         0000         0000           BAUDCON2         ABDOVF         RCIDL         RXDTP         TXCKP         BRG16         —         WUE         ABDEN         0100         0-00           TMR3H         Timer3 Register High Byte         xxxx xxxx         xxxx         xxxx         xxxx         xxxx         xxxx         xxxx           TMR3L         Timer3 Register Low Byte         xxxx xxxx         xxxx         xxxx         xxxx         xxxx         xxxx         xxxx         xxxx         xxxx         xxxx         xxxx         xxxxx         xxxx         xxxx <td< td=""><td>72<br/>72<br/>72, 330<br/>72<br/>72, 330</td></td<>                      | 72<br>72<br>72, 330<br>72<br>72, 330                                                                                |
| PORTA         RA7         RA6         RA5         —         RA3         RA2         RA1         RA0         xxx-xxxx           SPBRGH1         EUSART1 Baud Rate Generator Register High Byte         0000 0000         0000         0000         0000           BAUDCON1         ABDOVF         RCIDL         RXDTP         TXCKP         BRG16         —         WUE         ABDEN         0100 0-00           SPBRGH2         EUSART2 Baud Rate Generator Register High Byte         0000 0000         0000         0000         0000         0000           BAUDCON2         ABDOVF         RCIDL         RXDTP         TXCKP         BRG16         —         WUE         ABDEN         0100 0-00           TMR3H         Timer3 Register High Byte         xxxx xxxx         xxxx xxxx         xxxx xxxx         Xxxx xxxx           T3CON         TMR3CS1         TMR3CS0         T3CKPS1         T3CKPS0         —         T3SYNC         RD16         TMR3ON         0000 -000           TMR4         Timer4 Register         0100 0-00         TMR4         Timer4 Register         1111 1111         1111 1111           T4CON         —         T40UTPS3         T40UTPS2         T40UTPS0         TMR4ON         T4CKPS0         -0000 0000 <t< td=""><td>72<br/>72<br/>72, 330<br/>72<br/>72, 330</td></t<> | 72<br>72<br>72, 330<br>72<br>72, 330                                                                                |
| SPBRGH1         EUSART1 Baud Rate Generator Register High Byte         0000         0000           BAUDCON1         ABDOVF         RCIDL         RXDTP         TXCKP         BRG16         —         WUE         ABDEN         0100         0-00           SPBRGH2         EUSART2 Baud Rate Generator Register High Byte          0000         0000         0000           BAUDCON2         ABDOVF         RCIDL         RXDTP         TXCKP         BRG16         —         WUE         ABDEN         0100         0-00           TMR3H         Timer3 Register High Byte         xxxx xxxx         XXXX         XXXX         XXXX         XXXX           TMR3L         Timer3 Register Low Byte         xxxx XXXX         XXXX         XXXX         XXXX           TMR4         Timer4 Register         0000         0000         0000         0000           PR4         Timer4 Period Register         T40UTPS2         T40UTPS1         T40UTPS0         TMR4ON         T4CKPS1         74CKPS0         -000         0000           SSP2BUF         MSSP2 Address Register (I <sup>2</sup> C™ Slave mode), MSSP2 Baud Rate Reload Register (I <sup>2</sup> C Master mode)         0000         0000         0000           SSP2MSK <sup>(4)</sup> MSK7         MSK6         MSK5         MSK4                      | 72<br>72, 330<br>72<br>72, 330                                                                                      |
| BAUDCON1         ABDOVF         RCIDL         RXDTP         TXCKP         BRG16         —         WUE         ABDEN         0100         0-00           SPBRGH2         EUSART2 Baud Rate Generator Register High Byte         0000         0000         0000         0000           BAUDCON2         ABDOVF         RCIDL         RXDTP         TXCKP         BRG16         —         WUE         ABDEN         0100         0-00           TMR3H         Timer3 Register High Byte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 72, 330<br>72<br>72, 330                                                                                            |
| SPBRGH2         EUSART2 Baud Rate Generator Register High Byte         0000 0000           BAUDCON2         ABDOVF         RCIDL         RXDTP         TXCKP         BRG16         —         WUE         ABDEN         0100 0-00           TMR3H         Timer3 Register High Byte         xxxx xxxx         xxxx         xxxx         xxxx         xxxx         xxxx         xxxx         xxxx         xxxx         xxxx         xxxx         xxxx         xxxx         xxxx         xxxx         xxxx         xxxx         xxxx         xxxx         xxxx         xxxx         xxxx         xxxx         xxxx         xxxx         xxxx         xxxx         xxxx         xxxx         xxxx         xxxx         xxxx         xxxx         xxxx         xxxx         xxxx         xxxx         xxxx         xxxx         xxxx         xxxx         xxxx         xxxx         xxxx         xxxx         xxxx         xxxx         xxxx         xxxx         xxxx         xxxx         xxxx         xxxx         xxxx         xxxx         xxxx         xxxx         xxxx         xxxx         xxxx         xxxx         xxxx         xxxx         xxxx         xxxx         xxxx         xxxx         xxxx         xxxx         xxxx         xxxx         xxxx                                                          | 72<br>72, 330                                                                                                       |
| BAUDCON2         ABDOVF         RCIDL         RXDTP         TXCKP         BRG16         —         WUE         ABDEN         0100         0-00           TMR3H         Timer3 Register High Byte         xxxx                                                                                 | 72, 330                                                                                                             |
| TMR3H       Timer3 Register High Byte       xxxx xxxx         TMR3L       Timer3 Register Low Byte       xxxx xxxx         T3CON       TMR3CS1       TMR3CS0       T3CKPS1       T3CKPS0       —       T3SYNC       RD16       TMR3ON       0000       -000         TMR4       Timer4 Register       0000       0000       -       0000       0000       -       0000       0000       -       0000       0000       -       0000       0000       -       0000       0000       -       0000       0000       -       0000       0000       -       0000       0000       -       0000       0000       -       0000       0000       -       0000       0000       -       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000                                                                                                                                                                                |                                                                                                                     |
| TMR3L         Timer3 Register Low Byte         xxxx xxxx           T3CON         TMR3CS1         TMR3CS0         T3CKPS1         T3CKPS0         —         T3SYNC         RD16         TMR3ON         0000         -000           TMR4         Timer4 Register         0000         0000         0000         0000         0000         0000           PR4         Timer4 Register         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111                                                                                    | 73                                                                                                                  |
| T3CON         TMR3CS1         TMR3CS0         T3CKPS1         T3CKPS0         —         T3SYNC         RD16         TMR3ON         0000         -000           TMR4         Timer4 Register         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000 <t< td=""><td></td></t<>                                                            |                                                                                                                     |
| TMR4         Timer4 Register         0000         0000           PR4         Timer4 Period Register         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111                                                                                  | 73                                                                                                                  |
| PR4         Timer4 Period Register         1111 1111           T4CON         —         T40UTPS3         T40UTPS2         T40UTPS1         T40UTPS0         TMR4ON         T4CKPS1         T4CKPS0         -000         0000           SSP2BUF         MSSP2 Receive Buffer/Transmit Register         xxxx xxxx         xxxx xxxx         xxxx xxxx           SSP2ADD/<br>SSP2MSK <sup>(4)</sup> MSK7         MSK6         MSK5         MSK4         MSK3         MSK2         MSK1         MSK0         1111         1111           SSP2STAT         SMP         CKE         D/Ā         P         S         R/W         UA         BF         0000         0000           SSP2CON1         WCOL         SSPOV         SSPEN         CKP         SSPM3         SSPM2         SSPM1         SSPM0         0000         0000           SSP2CON2         GCEN         ACKSTAT         ACKDT         ACKEN         RCEN         PEN         RSEN         SEN         0000         0000           CMSTAT         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         …         …         …                                                                                                                        | 73, 215                                                                                                             |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 73                                                                                                                  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 73                                                                                                                  |
| SSP2ADD/<br>SSP2MSK <sup>(4)</sup> MSSP2 Address Register (l <sup>2</sup> C ™ Slave mode), MSSP2 Baud Rate Reload Register (l <sup>2</sup> C Master mode)         0000         0000           SSP2MSK <sup>(4)</sup> MSK7         MSK6         MSK5         MSK4         MSK3         MSK2         MSK1         MSK0         1111         1111           SSP2MSK <sup>(4)</sup> SMP         CKE         D/Ā         P         S         R/₩         UA         BF         0000         0000           SSP2CON1         WCOL         SSPOV         SSPEN         CKP         SSPM3         SSPM2         SSPM1         SSPM0         0000         0000           SSP2CON2         GCEN         ACKSTAT         ACKDT         ACKEN         RCEN         PEN         RSEN         SEN           CMSTAT         —         —         —         —         —         COUT2         COUT1                                                                                                                                                                                                                                                                                                                                                                                                                                       | 73, 225                                                                                                             |
| SSP2MSK <sup>(4)</sup> MSK7         MSK6         MSK5         MSK4         MSK3         MSK2         MSK1         MSK0         1111         1111           SSP2STAT         SMP         CKE         D/Ā         P         S         R/W         UA         BF         0000         0000           SSP2CON1         WCOL         SSPOV         SSPEN         CKP         SSPM3         SSPM2         SSPM1         SSPM0         0000         0000           SSP2CON2         GCEN         ACKSTAT         ACKDT         ACKEN         RCEN         PEN         RSEN         SEN         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000                                                                                                       | 73                                                                                                                  |
| Imisko         Imisko<      | 73, 295                                                                                                             |
| SSP2CON1         WCOL         SSPOV         SSPEN         CKP         SSPM3         SSPM2         SSPM1         SSPM0         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000                                                                             | 73, 295                                                                                                             |
| SSP2CON2         GCEN         ACKSTAT         ACKDT         ACKEN         RCEN         PEN         RSEN         SEN         0000         0000           GCEN         ACKSTAT         ADMSK5 <sup>(4)</sup> ADMSK4 <sup>(4)</sup> ADMSK3 <sup>(4)</sup> ADMSK2 <sup>(4)</sup> ADMSK1 <sup>(4)</sup> SEN         0000         0000         0000           CMSTAT         -         -         -         -         -         COUT2         COUT1        11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 73, 273                                                                                                             |
| GCEN         ACKSTAT         ADMSK5 <sup>(4)</sup> ADMSK4 <sup>(4)</sup> ADMSK3 <sup>(4)</sup> ADMSK2 <sup>(4)</sup> ADMSK1 <sup>(4)</sup> SEN           CMSTAT         -         -         -         -         -         COUT2         COUT1        11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 73, 293                                                                                                             |
| CMSTAT         -         -         -         -         COUT2         COUT1        11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 73, 294                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                     |
| PMADDRH/ — CS1 Parallel Master Port Address High Byte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 73, 363                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 73, 179                                                                                                             |
| PMDOUT1H <sup>(5)</sup> Parallel Port Out Data High Byte (Buffer 1) 0000 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 73, 179                                                                                                             |
| PMADDRL/         Parallel Master Port Address Low Byte         0000 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 73, 179                                                                                                             |
| PMDOUT1L <sup>(5)</sup> Parallel Port Out Data Low Byte (Buffer 0) 0000 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 73, 179                                                                                                             |
| PMDIN1H <sup>(5)</sup> Parallel Port In Data High Byte (Buffer 1) 0000 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 73                                                                                                                  |
| PMDIN1L <sup>(5)</sup> Parallel Port In Data Low Byte (Buffer 0) 0000 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 73                                                                                                                  |
| TXADDRL         SPI DMA Transit Data Pointer Low Byte         0000 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 73                                                                                                                  |
| TXADDRH — — — SPI DMA Transit Data Pointer High Byte 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 73                                                                                                                  |
| RXADDRL         SPI DMA Receive Data Pointer Low Byte         0000 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                     |
| RXADDRH — — — SPI DMA Receive Data Pointer High Byte 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 73                                                                                                                  |
| DMABCL SPI DMA Byte Count Low Byte 0000 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                     |
| DMABCH     —     —     —     —     SPI DMA Receive Data    00       Pointer High Byte     Pointer High Byte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 73                                                                                                                  |
| PMCONH <sup>(5)</sup> PMPEN — — ADRMUX1 ADRMUX0 PTBEEN PTWREN PTRDEN 00 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 73<br>73                                                                                                            |
| PMCONL <sup>(5)</sup> CSF1 CSF0 ALP — CS1P BEP WRSP RDSP 000-0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 73<br>73<br>73                                                                                                      |
| PMMODEH <sup>(5)</sup> BUSY IRQM1 IRQM0 INCM1 INCM0 MODE16 MODE1 MODE0 0000 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 73<br>73<br>73<br>73<br>73                                                                                          |
| PMMODEL <sup>(5)</sup> WAITB1 WAITB0 WAITM3 WAITM2 WAITM1 WAITM0 WAITE1 WAITE0 0000 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 73<br>73<br>73<br>73<br>73<br>73, 172                                                                               |

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition, r = reserved. Bold indicates shared access SFRs.

**Note** 1: Bit 21 of the PC is only available in Serial Programming (SP) modes.

2: Reset value is '0' when Two-Speed Start-up is enabled and '1' if disabled.

**3:** The SSPxMSK registers are only accessible when SSPxCON2<3:0> = 1001.

4: Alternate names and definitions for these bits when the MSSP module is operating in I<sup>2</sup>C™ Slave mode. See Section 19.5.3.2 "Address Masking Modes" for details.

5: These bits and/or registers are only available in 44-pin devices; otherwise, they are unimplemented and read as '0'. Reset values are shown for 44-pin devices.

6: The PMADDRH/PMDOUT1H and PMADDRL/PMDOUT1L register pairs share the same physical registers and addresses, but have different functions determined by the module's operating mode. See Section 11.1.2 "Data Registers" for more information.

| U-0   | U-0 | U-0 | R/W-1 | R/W-1 | R/W-1 | R/W-1 | R/W-1 |
|-------|-----|-----|-------|-------|-------|-------|-------|
|       | _   | _   | IC2R4 | IC2R3 | IC2R2 | IC2R1 | IC2R0 |
| bit 7 |     |     |       |       |       |       | bit 0 |
|       |     |     |       |       |       |       |       |

| Legend:           | $R/\overline{W}$ = Readable, Writable if IOLOCK = 0 |                             |                    |  |  |  |
|-------------------|-----------------------------------------------------|-----------------------------|--------------------|--|--|--|
| R = Readable bit  | W = Writable bit                                    | U = Unimplemented bit, read | l as '0'           |  |  |  |
| -n = Value at POR | '1' = Bit is set                                    | '0' = Bit is cleared        | x = Bit is unknown |  |  |  |

bit 7-5 Unimplemented: Read as '0'

bit 4-0 IC2R<4:0>: Assign Input Capture 2 (ECCP2) to the Corresponding RPn Pin bits

#### REGISTER 10-13: RPINR12: PERIPHERAL PIN SELECT INPUT REGISTER 12 (BANKED EF2h)

| U-0         | U-0 | U-0 | R/W-1 | R/W-1 | R/W-1 | R/W-1 | R/W-1 |
|-------------|-----|-----|-------|-------|-------|-------|-------|
| —           | —   | —   | T1GR4 | T1GR3 | T1GR2 | T1GR1 | T1GR0 |
| bit 7 bit 0 |     |     |       |       |       |       |       |

| Legend:           | $R/\overline{W}$ = Readable, Writable if IOLOCK = 0 |                                    |                    |  |  |
|-------------------|-----------------------------------------------------|------------------------------------|--------------------|--|--|
| R = Readable bit  | W = Writable bit                                    | U = Unimplemented bit, read as '0' |                    |  |  |
| -n = Value at POR | '1' = Bit is set                                    | '0' = Bit is cleared               | x = Bit is unknown |  |  |

bit 7-5 Unimplemented: Read as '0'

bit 4-0 T1GR<4:0>: Timer1 Gate Input (T1G) to the Corresponding RPn Pin bits

### REGISTER 10-14: RPINR13: PERIPHERAL PIN SELECT INPUT REGISTER 13 (BANKED EF3h)

| U-0   | U-0 | U-0 | R/W-1 | R/W-1 | R/W-1 | R/W-1 | R/W-1 |
|-------|-----|-----|-------|-------|-------|-------|-------|
| —     | —   | —   | T3GR4 | T3GR3 | T3GR2 | T3GR1 | T3GR0 |
| bit 7 |     |     |       |       |       |       | bit 0 |

| Legend:           | $R/\overline{W}$ = Readable, Writable if IOLOCK = 0 |                                    |                    |  |  |
|-------------------|-----------------------------------------------------|------------------------------------|--------------------|--|--|
| R = Readable bit  | W = Writable bit                                    | U = Unimplemented bit, read as '0' |                    |  |  |
| -n = Value at POR | '1' = Bit is set                                    | '0' = Bit is cleared               | x = Bit is unknown |  |  |

bit 7-5 Unimplemented: Read as '0'

bit 4-0 T3GR<4:0>: Timer3 Gate Input (T3G) to the Corresponding RPn Pin bits

## REGISTER 10-21: RPOR0: PERIPHERAL PIN SELECT OUTPUT REGISTER 0 (BANKED EC6h)<sup>(1)</sup>

| U-0   | U-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 |
|-------|-----|-----|-------|-------|-------|-------|-------|
| —     | _   |     | RP0R4 | RP0R3 | RP0R2 | RP0R1 | RP0R0 |
| bit 7 |     |     |       |       |       |       | bit 0 |

| Legend:           | $R/\overline{W}$ = Readable, Writable if IOLOCK = 0 |                                    |                    |  |  |  |
|-------------------|-----------------------------------------------------|------------------------------------|--------------------|--|--|--|
| R = Readable bit  | W = Writable bit                                    | U = Unimplemented bit, read as '0' |                    |  |  |  |
| -n = Value at POR | '1' = Bit is set                                    | '0' = Bit is cleared               | x = Bit is unknown |  |  |  |

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP0R<4:0>:** Peripheral Output Function is Assigned to RP0 Output Pin bits (see Table 10-14 for peripheral function numbers)

**Note 1:** Register values can be changed only if PPSCON<IOLOCK> = 0.

#### REGISTER 10-22: RPOR1: PERIPHERAL PIN SELECT OUTPUT REGISTER 1 (BANKED EC7h)

| U-0   | U-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 |
|-------|-----|-----|-------|-------|-------|-------|-------|
| —     | —   | —   | RP1R4 | RP1R3 | RP1R2 | RP1R1 | RP1R0 |
| bit 7 |     |     |       |       |       |       | bit 0 |

| Legend:           | $R/\overline{W}$ = Readable, Writable if IOLOCK = 0 |                                    |                    |  |  |
|-------------------|-----------------------------------------------------|------------------------------------|--------------------|--|--|
| R = Readable bit  | W = Writable bit                                    | U = Unimplemented bit, read as '0' |                    |  |  |
| -n = Value at POR | '1' = Bit is set                                    | '0' = Bit is cleared               | x = Bit is unknown |  |  |

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP1R<4:0>:** Peripheral Output Function is Assigned to RP1 Output Pin bits (see Table 10-14 for peripheral function numbers)

#### REGISTER 10-23: RPOR2: PERIPHERAL PIN SELECT OUTPUT REGISTER 2 (BANKED EC8h)

| U-0   | U-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 |
|-------|-----|-----|-------|-------|-------|-------|-------|
| —     | _   |     | RP2R4 | RP2R3 | RP2R2 | RP2R1 | RP2R0 |
| bit 7 |     |     |       |       |       |       | bit 0 |

| Legend:           | $R/\overline{W}$ = Readable, Writable if IOLOCK = 0 |                                    |                    |  |  |
|-------------------|-----------------------------------------------------|------------------------------------|--------------------|--|--|
| R = Readable bit  | W = Writable bit                                    | U = Unimplemented bit, read as '0' |                    |  |  |
| -n = Value at POR | '1' = Bit is set                                    | '0' = Bit is cleared               | x = Bit is unknown |  |  |

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP2R<4:0>:** Peripheral Output Function is Assigned to RP2 Output Pin bits (see Table 10-14 for peripheral function numbers)

## 15.3 Timer3 16-Bit Read/Write Mode

Timer3 can be configured for 16-bit reads and writes (see Section 15.3 "Timer3 16-Bit Read/Write Mode"). When the RD16 control bit (T3CON<1>) is set, the address for TMR3H is mapped to a buffer register for the high byte of Timer3. A read from TMR3L will load the contents of the high byte of Timer3 into the Timer3 High Byte Buffer register. This provides the user with the ability to accurately read all 16 bits of Timer3 without having to determine whether a read of the high byte, followed by a read of the low byte, has become invalid due to a rollover between reads.

A write to the high byte of Timer3 must also take place through the TMR3H Buffer register. The Timer3 high byte is updated with the contents of TMR3H when a write occurs to TMR3L. This allows a user to write all 16 bits to both the high and low bytes of Timer3 at once.

The high byte of Timer3 is not directly readable or writable in this mode. All reads and writes must take place through the Timer3 High Byte Buffer register.

Writes to TMR3H do not clear the Timer3 prescaler. The prescaler is only cleared on writes to TMR3L.

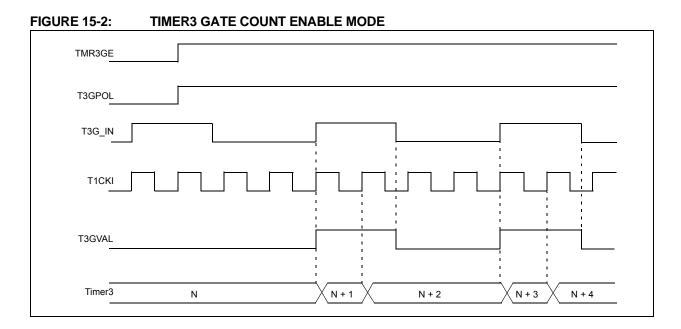
## 15.4 Using the Timer1 Oscillator as the Timer3 Clock Source

The Timer1 internal oscillator may be used as the clock source for Timer3. The Timer1 oscillator is enabled by setting the T1OSCEN (T1CON<3>) bit. To use it as the Timer3 clock source, the TMR3CS bit must also be set. As previously noted, this also configures Timer3 to increment on every rising edge of the oscillator source. The Timer1 oscillator is described in Section 13.0 "Timer1 Module".

## 15.5 Timer3 Gate

Timer3 can be configured to count freely, or the count can be enabled and disabled using Timer3 gate circuitry. This is also referred to as Timer3 gate count enable.

Timer3 gate can also be driven by multiple selectable sources.


### 15.5.1 TIMER3 GATE COUNT ENABLE

The Timer3 Gate Enable mode is enabled by setting the TMR3GE bit of the T3GCON register. The polarity of the Timer3 Gate Enable mode is configured using the T3GPOL bit of the T3GCON register.

When Timer3 Gate Enable mode is enabled, Timer3 will increment on the rising edge of the Timer3 clock source. When Timer3 Gate Enable mode is disabled, no incrementing will occur and Timer3 will hold the current count. See Figure 15-2 for timing details.

## TABLE 15-1: TIMER3 GATE ENABLE SELECTIONS

| T3CLK      | T3GPOL | T3G | Timer3 Operation |
|------------|--------|-----|------------------|
| $\uparrow$ | 0      | 0   | Counts           |
| $\uparrow$ | 0      | 1   | Holds Count      |
| $\uparrow$ | 1      | 0   | Holds Count      |
| $\uparrow$ | 1      | 1   | Counts           |



## REGISTER 17-4: ALRMCFG: ALARM CONFIGURATION REGISTER (ACCESS F91h)

| R/W-0         | R/W-0                                                                                                                                                                                     | R/W-0            | R/W-0         | R/W-0             | R/W-0             | R/W-0           | R/W-0       |  |  |  |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------|-------------------|-------------------|-----------------|-------------|--|--|--|
| ALRMEN        | CHIME                                                                                                                                                                                     | AMASK3           | AMASK2        | AMASK1            | AMASK0            | ALRMPTR1        | ALRMPTR0    |  |  |  |
| bit 7         | ·                                                                                                                                                                                         | ł                |               |                   |                   |                 | bit 0       |  |  |  |
|               |                                                                                                                                                                                           |                  |               |                   |                   |                 |             |  |  |  |
| Legend:       |                                                                                                                                                                                           |                  |               |                   |                   |                 |             |  |  |  |
| R = Readabl   | e bit                                                                                                                                                                                     | W = Writable     | bit           | U = Unimpler      | nented bit, read  | d as '0'        |             |  |  |  |
| -n = Value at | POR                                                                                                                                                                                       | '1' = Bit is set |               | '0' = Bit is cle  | ared              | x = Bit is unki | nown        |  |  |  |
| L:1 7         |                                                                                                                                                                                           | lawa Enable bit  |               |                   |                   |                 |             |  |  |  |
| bit 7         |                                                                                                                                                                                           | larm Enable bit  | doutomotical  | ly offer an eler  | n overtweere      | or ADDT 27:05   |             |  |  |  |
|               |                                                                                                                                                                                           | enabled (cleare  | a automatical | iy alter an alarr | n event whenev    | /el ARP1<7.0>   | - 0000 0000 |  |  |  |
|               | 0 = Alarm is                                                                                                                                                                              | ,                |               |                   |                   |                 |             |  |  |  |
| bit 6         | CHIME: Chir                                                                                                                                                                               | me Enable bit    |               |                   |                   |                 |             |  |  |  |
|               | 1 = Chime is                                                                                                                                                                              | s enabled; ALRI  | MRPT<7:0> b   | its are allowed   | to roll over from | m 00h to FFh    |             |  |  |  |
|               | 0 = Chime is                                                                                                                                                                              | s disabled; ALR  | MRPT<7:0> b   | its stop once tl  | ney reach 00h     |                 |             |  |  |  |
| bit 5-2       | AMASK<3:0>: Alarm Mask Configuration bits                                                                                                                                                 |                  |               |                   |                   |                 |             |  |  |  |
|               | 0000 = Every half second                                                                                                                                                                  |                  |               |                   |                   |                 |             |  |  |  |
|               | 0001 = Every second                                                                                                                                                                       |                  |               |                   |                   |                 |             |  |  |  |
|               | 0010 = Every 10 seconds<br>0011 = Every minute                                                                                                                                            |                  |               |                   |                   |                 |             |  |  |  |
|               | 0011 = Every minute<br>0100 = Every 10 minutes                                                                                                                                            |                  |               |                   |                   |                 |             |  |  |  |
|               | 0101 = Every hour                                                                                                                                                                         |                  |               |                   |                   |                 |             |  |  |  |
|               | 0110 = Once a day                                                                                                                                                                         |                  |               |                   |                   |                 |             |  |  |  |
|               | 0111 = Once a week                                                                                                                                                                        |                  |               |                   |                   |                 |             |  |  |  |
|               | 1000 = Once a month                                                                                                                                                                       |                  |               |                   |                   |                 |             |  |  |  |
|               | 1001 = Once a year (except when configured for February 29 <sup>th</sup> , once every four years)                                                                                         |                  |               |                   |                   |                 |             |  |  |  |
|               | 101x = Reserved – do not use<br>11xx = Reserved – do not use                                                                                                                              |                  |               |                   |                   |                 |             |  |  |  |
| bit 1-0       |                                                                                                                                                                                           | 1:0>: Alarm Val  |               | indow Pointer     | hits              |                 |             |  |  |  |
|               |                                                                                                                                                                                           |                  | -             |                   |                   | AI RMVAI H ar   | d ALRMVALL  |  |  |  |
|               | Points to the corresponding Alarm Value registers when reading the ALRMVALH and ALRMVALL registers. The ALRMPTR<1:0> value decrements on every read or write of ALRMVALH until it reaches |                  |               |                   |                   |                 |             |  |  |  |
|               | '00'.                                                                                                                                                                                     |                  |               |                   |                   |                 |             |  |  |  |
|               | <u>ALRMVALH&lt;15:8&gt;:</u>                                                                                                                                                              |                  |               |                   |                   |                 |             |  |  |  |
|               | 00 = ALRMMIN                                                                                                                                                                              |                  |               |                   |                   |                 |             |  |  |  |
|               | 01 = ALRMWD                                                                                                                                                                               |                  |               |                   |                   |                 |             |  |  |  |
|               | 10 = ALRMN                                                                                                                                                                                |                  |               |                   |                   |                 |             |  |  |  |
|               | 11 = Unimpl                                                                                                                                                                               |                  |               |                   |                   |                 |             |  |  |  |
|               | <u>ALRMVALL&lt;</u><br>00 = ALRMS                                                                                                                                                         |                  |               |                   |                   |                 |             |  |  |  |
|               | 01 = ALRMH                                                                                                                                                                                |                  |               |                   |                   |                 |             |  |  |  |
|               |                                                                                                                                                                                           |                  |               |                   |                   |                 |             |  |  |  |
|               | 10 = ALRME                                                                                                                                                                                |                  |               |                   |                   |                 |             |  |  |  |

## 18.3 Compare Mode

In Compare mode, the 16-bit CCPRx register value is constantly compared against either the TMR1 or TMR3 register pair value. When a match occurs, the ECCPx pin can be:

- Driven high
- Driven low
- Toggled (high-to-low or low-to-high)
- Remain unchanged (that is, reflects the state of the I/O latch)

The action on the pin is based on the value of the mode select bits (CCPxM<3:0>). At the same time, the interrupt flag bit, CCPxIF, is set.

## 18.3.1 ECCP PIN CONFIGURATION

Users must configure the ECCPx pin as an output by clearing the appropriate TRIS bit.

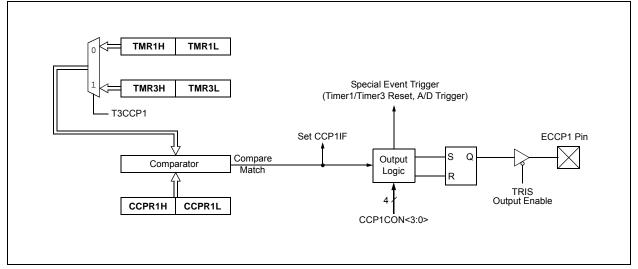
| Note: | Clearing the CCPxCON register will force   |  |  |  |  |  |  |  |
|-------|--------------------------------------------|--|--|--|--|--|--|--|
|       | the ECCPx compare output latch             |  |  |  |  |  |  |  |
|       | (depending on device configuration) to the |  |  |  |  |  |  |  |
|       | default low level. This is not the PORTx   |  |  |  |  |  |  |  |
|       | I/O data latch.                            |  |  |  |  |  |  |  |

## 18.3.2 TIMER1/TIMER3 MODE SELECTION

Timer1 and/or Timer3 must be running in Timer mode or Synchronized Counter mode if the ECCP module is using the compare feature. In Asynchronous Counter mode, the compare operation will not work reliably.

#### 18.3.3 SOFTWARE INTERRUPT MODE

When the Generate Software Interrupt mode is chosen (CCPxM<3:0> = 1010), the ECCPx pin is not affected; only the CCPxIF interrupt flag is affected.


#### 18.3.4 SPECIAL EVENT TRIGGER

The ECCP module is equipped with a Special Event Trigger. This is an internal hardware signal generated in Compare mode to trigger actions by other modules. The Special Event Trigger is enabled by selecting the Compare Special Event Trigger mode (CCPxM<3:0> = 1011).

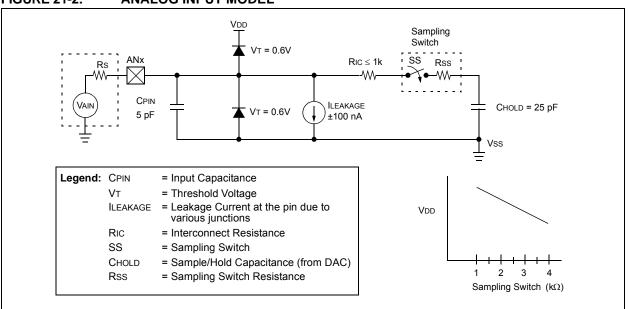
The Special Event Trigger resets the Timer register pair for whichever timer resource is currently assigned as the module's time base. This allows the CCPRx registers to serve as a programmable period register for either timer.

The Special Event Trigger can also start an A/D conversion. In order to do this, the A/D converter must already be enabled.

### FIGURE 18-2: COMPARE MODE OPERATION BLOCK DIAGRAM



| R/W-0         | R/W-0                                                                                                                                                | R/W-0                                                 | R/W-0            | R/W-0             | R-0             | R-0               | R-x            |  |  |  |  |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|------------------|-------------------|-----------------|-------------------|----------------|--|--|--|--|
| SPEN          | RX9                                                                                                                                                  | SREN                                                  | CREN             | ADDEN             | FERR            | OERR              | RX9D           |  |  |  |  |
| oit 7         |                                                                                                                                                      |                                                       |                  |                   |                 |                   | bit            |  |  |  |  |
| Legend:       |                                                                                                                                                      |                                                       |                  |                   |                 |                   |                |  |  |  |  |
| R = Readabl   | le bit                                                                                                                                               | W = Writable I                                        | oit              | U = Unimplem      | ented bit, read | l as '0'          |                |  |  |  |  |
| -n = Value at | t POR                                                                                                                                                | '1' = Bit is set                                      |                  | '0' = Bit is clea | ared            | x = Bit is unkn   | iown           |  |  |  |  |
| bit 7         | SPEN: Serial                                                                                                                                         | Port Enable bit                                       | :                |                   |                 |                   |                |  |  |  |  |
|               | 1 = Serial po                                                                                                                                        | rt enabled                                            |                  |                   |                 |                   |                |  |  |  |  |
|               | 0 = Serial po                                                                                                                                        | rt disabled (hel                                      | d in Reset)      |                   |                 |                   |                |  |  |  |  |
| bit 6         |                                                                                                                                                      | eceive Enable b                                       | it               |                   |                 |                   |                |  |  |  |  |
|               |                                                                                                                                                      | <ul><li>bit reception</li><li>bit reception</li></ul> |                  |                   |                 |                   |                |  |  |  |  |
| bit 5         | SREN: Single                                                                                                                                         | e Receive Enab                                        | le bit           |                   |                 |                   |                |  |  |  |  |
|               | Asynchronous mode:<br>Don't care.                                                                                                                    |                                                       |                  |                   |                 |                   |                |  |  |  |  |
|               |                                                                                                                                                      | mode – Master                                         |                  |                   |                 |                   |                |  |  |  |  |
|               | <ol> <li>1 = Enables single receive</li> <li>0 = Disables single receive</li> <li>This bit is cleared after reception is complete.</li> </ol>        |                                                       |                  |                   |                 |                   |                |  |  |  |  |
|               | <u>Synchronous mode – Slave:</u><br>Don't care.                                                                                                      |                                                       |                  |                   |                 |                   |                |  |  |  |  |
| bit 4         | CREN: Conti                                                                                                                                          | nuous Receive                                         | Enable bit       |                   |                 |                   |                |  |  |  |  |
|               | Asynchronous mode:<br>1 = Enables receiver                                                                                                           |                                                       |                  |                   |                 |                   |                |  |  |  |  |
|               | 0 = Disables                                                                                                                                         | receiver                                              |                  |                   |                 |                   |                |  |  |  |  |
|               | Synchronous                                                                                                                                          |                                                       |                  |                   |                 |                   |                |  |  |  |  |
|               | <ul> <li>1 = Enables continuous receive until enable bit, CREN, is cleared (CREN overrides SREN)</li> <li>0 = Disables continuous receive</li> </ul> |                                                       |                  |                   |                 |                   |                |  |  |  |  |
| bit 3         | ADDEN: Add                                                                                                                                           | ress Detect Ena                                       | able bit         |                   |                 |                   |                |  |  |  |  |
|               | <u>Asynchronous mode 9-Bit (RX9 = 1)</u> :<br>1 = Enables address detection, enables interrupt and loads the receive buffer when RSR<8> is set       |                                                       |                  |                   |                 |                   |                |  |  |  |  |
|               | 0 = Disables                                                                                                                                         | address detect                                        | ion, all bytes a | are received and  |                 |                   |                |  |  |  |  |
|               | <u>Asynchronou</u><br>Don't care.                                                                                                                    | <u>s mode 8-Bit (R</u>                                | <u>X9 = 0)</u> : |                   |                 |                   |                |  |  |  |  |
| bit 2         | FERR: Framing Error bit                                                                                                                              |                                                       |                  |                   |                 |                   |                |  |  |  |  |
|               | 1 = Framing<br>0 = No frami                                                                                                                          |                                                       | eared by read    | ling RCREGx re    | gister and rece | eiving next valio | d byte)        |  |  |  |  |
| bit 1         | OERR: Over                                                                                                                                           | un Error bit                                          |                  |                   |                 |                   |                |  |  |  |  |
|               |                                                                                                                                                      | rror is cleared.                                      | leared by clea   | aring bit CREN).  | UART reception  | on will be disca  | arded until th |  |  |  |  |
| bit 0         |                                                                                                                                                      | of Received Da                                        | ata              |                   |                 |                   |                |  |  |  |  |
|               |                                                                                                                                                      |                                                       |                  |                   |                 |                   |                |  |  |  |  |


After the A/D module has been configured as desired, the selected channel must be acquired before the conversion is started. The analog input channels must have their corresponding TRIS bits selected as an input. To determine acquisition time, see **Section 21.1 "A/D Acquisition Requirements"**. After this acquisition time has elapsed, the A/D conversion can be started. An acquisition time <u>can be</u> programmed to occur between setting the GO/DONE bit and the actual start of the conversion.

The following steps should be followed to do an A/D conversion:

- 1. Configure the A/D module:
  - Configure the required ADC pins as analog pins using ANCON0, ANCON1
  - Set voltage reference using ADCON0
  - Select A/D input channel (ADCON0)
  - Select A/D acquisition time (ADCON1)
  - Select A/D conversion clock (ADCON1)
  - Turn on A/D module (ADCON0)



- 2. Configure A/D interrupt (if desired):
  - Clear ADIF bit
  - Set ADIE bit
  - Set GIE bit
- 3. Wait the required acquisition time (if required).
- 4. Start conversion:
  - Set GO/DONE bit (ADCON0<1>)
- 5. Wait for A/D conversion to complete, by either:
  Polling for the GO/DONE bit to be cleared OR
  - Waiting for the A/D interrupt
- 6. Read A/D Result registers (ADRESH:ADRESL); clear bit, ADIF, if required.
- 7. For next conversion, go to step 1 or step 2, as required. The A/D conversion time per bit is defined as TAD. A minimum wait of 2 TAD is required before next acquisition starts.



# 26.0 SPECIAL FEATURES OF THE CPU

PIC18F46J11 family devices include several features intended to maximize reliability and minimize cost through elimination of external components. These are:

- · Oscillator Selection
- Resets:
  - Power-on Reset (POR)
  - Power-up Timer (PWRT)
  - Oscillator Start-up Timer (OST)
- Brown-out Reset (BOR)
- Interrupts
- Watchdog Timer (WDT)
- Fail-Safe Clock Monitor (FSCM)
- Two-Speed Start-up
- Code Protection
- In-Circuit Serial Programming (ICSP)

The oscillator can be configured for the application depending on frequency, power, accuracy and cost. All of the options are discussed in detail in **Section 3.0 "Oscillator Configurations"**.

A complete discussion of device Resets and interrupts is available in previous sections of this data sheet. In addition to their Power-up and Oscillator Start-up Timers provided for Resets, the PIC18F46J11 family of devices have a configurable Watchdog Timer (WDT), which is controlled in software.

The inclusion of an internal RC oscillator also provides the additional benefits of a Fail-Safe Clock Monitor (FSCM) and Two-Speed Start-up. FSCM provides for background monitoring of the peripheral clock and automatic switchover in the event of its failure. Two-Speed Start-up enables code to be executed almost immediately on start-up, while the primary clock source completes its start-up delays.

All of these features are enabled and configured by setting the appropriate Configuration register bits.

## 26.1 Configuration Bits

The Configuration bits can be programmed to select various device configurations. The configuration data is stored in the last four words of Flash program memory; Figure 6-1 depicts this. The configuration data gets loaded into the volatile Configuration registers, CONFIG1L through CONFIG4H, which are readable and mapped to program memory starting at location 300000h.

Table 26-2 provides a complete list. A detailed explanation of the various bit functions is provided in Register 26-1 through Register 26-6.

#### 26.1.1 CONSIDERATIONS FOR CONFIGURING THE PIC18F46J11 FAMILY DEVICES

Unlike some previous PIC18 microcontrollers, devices of the PIC18F46J11 family do not use persistent memory registers to store configuration information. The Configuration registers, CONFIG1L through CONFIG4H, are implemented as volatile memory.

Immediately after power-up, or after a device Reset, the microcontroller hardware automatically loads the CONFIG1L through CONFIG4L registers with configuration data stored in nonvolatile Flash program memory. The last four words of Flash program memory, known as the Flash Configuration Words (FCW), are used to store the configuration data.

Table 26-1 provides the Flash program memory, which will be loaded into the corresponding Configuration register.

When creating applications for these devices, users should always specifically allocate the location of the FCW for configuration data. This is to make certain that program code is not stored in this address when the code is compiled.

The four Most Significant bits (MSb) of the FCW corresponding to CONFIG1H, CONFIG2H, CONFIG3H and CONFIG4H should always be programmed to '1111'. This makes these FCWs appear to be NOP instructions in the remote event that their locations are ever executed by accident.

To prevent inadvertent configuration changes during code execution, the Configuration registers, CONFIG1L through CONFIG4L, are loaded only once per power-up or Reset cycle. User's firmware can still change the configuration by using self-reprogramming to modify the contents of the FCW.

Modifying the FCW will not change the active contents being used in the CONFIG1L through CONFIG4H registers until after the device is reset.

# PIC18F46J11 FAMILY

## REGISTER 26-10: DEVID2: DEVICE ID REGISTER 2 FOR PIC18F46J11 FAMILY DEVICES (BYTE ADDRESS 3FFFFFh)

| DEV10         DEV9         DEV8         DEV7         DEV6         DEV5         DEV4         DEV3           bit 7         bit 0 | R     | R    | R    | R    | R    | R    | R    | R     |
|--------------------------------------------------------------------------------------------------------------------------------|-------|------|------|------|------|------|------|-------|
| bit 7 bit 0                                                                                                                    | DEV10 | DEV9 | DEV8 | DEV7 | DEV6 | DEV5 | DEV4 | DEV3  |
|                                                                                                                                | bit 7 |      |      |      |      | •    |      | bit 0 |

| Legend:             |                  |                             |                    |  |
|---------------------|------------------|-----------------------------|--------------------|--|
| R = Readable bit    | W = Writable bit | U = Unimplemented bit, read | d as '0'           |  |
| -n = Value at Reset | '1' = Bit is set | '0' = Bit is cleared        | x = Bit is unknown |  |

#### bit 7-0 DEV<10:3>: Device ID bits

These bits are used with the DEV<2:0> bits in the Device ID Register 1 to identify the part number.

| DEV<10:3><br>(DEVID2<7:0>) | DEV<2:0><br>(DEVID1<7:5>) | Device       |
|----------------------------|---------------------------|--------------|
| 0100 1110                  | 001                       | PIC18F46J11  |
| 0100 1110                  | 000                       | PIC18F45J11  |
| 0100 1101                  | 111                       | PIC18F44J11  |
| 0100 1101                  | 110                       | PIC18F26J11  |
| 0100 1101                  | 101                       | PIC18F25J11  |
| 0100 1101                  | 100                       | PIC18F24J11  |
| 0100 1110                  | 111                       | PIC18LF46J11 |
| 0100 1110                  | 110                       | PIC18LF45J11 |
| 0100 1110                  | 101                       | PIC18LF44J11 |
| 0100 1110                  | 100                       | PIC18LF26J11 |
| 0100 1110                  | 011                       | PIC18LF25J11 |
| 0100 1110                  | 010                       | PIC18LF24J11 |

## 26.7 In-Circuit Serial Programming (ICSP)

PIC18F46J11 family microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data and three other lines for power, ground and the programming voltage. This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

## 26.8 In-Circuit Debugger

When the  $\overline{\text{DEBUG}}$  Configuration bit is programmed to a '0', the In-Circuit Debugger functionality is enabled. This function allows simple debugging functions when used with MPLAB<sup>®</sup> IDE. When the microcontroller has this feature enabled, some resources are not available for general use.

Table 26-4 lists the resources required by the background debugger.

| I/O pins: | RB6, RB7                |
|-----------|-------------------------|
| Stack:    | TOSx registers reserved |

## 29.2 DC Characteristics: Power-Down and Supply Current PIC18F46J11 Family (Industrial) (Continued)

| PIC18LFXXJ11 Family |              | Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial |      |       |            |                               |                                                         |  |  |
|---------------------|--------------|------------------------------------------------------------------------------------------------------------------------------------|------|-------|------------|-------------------------------|---------------------------------------------------------|--|--|
| PIC18FXX            | J11 Family   | Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial |      |       |            |                               |                                                         |  |  |
| Param<br>No.        | Device       | Тур                                                                                                                                | Max  | Units | Conditions |                               |                                                         |  |  |
|                     | PIC18LFXXJ11 | 5.2                                                                                                                                | 6.5  | mA    | -40°C      |                               |                                                         |  |  |
|                     |              | 5.1                                                                                                                                | 6.4  | mA    | +25°C      | VDD = 2.5V,<br>VDDCORE = 2.5V | Fosc = 16 MHz                                           |  |  |
|                     |              | 5.1                                                                                                                                | 6.4  | mA    | +85°C      | VEDCORE - 2.5V                | (PRI_RUN mode,<br>4 MHz Internal Oscillator<br>with PLL |  |  |
|                     | PIC18FXXJ11  | 5.3                                                                                                                                | 7.5  | mA    | -40°C      | VDD = 3.3V,                   |                                                         |  |  |
|                     |              | 5.2                                                                                                                                | 7.4  | mA    | +25°C      | VDDCORE = 10 $\mu$ F          |                                                         |  |  |
|                     |              | 5.2                                                                                                                                | 7.4  | mA    | +85°C      | Capacitor                     |                                                         |  |  |
|                     | PIC18LFXXJ11 | 9.3                                                                                                                                | 12.0 | mA    | -40°C      |                               |                                                         |  |  |
|                     |              | 9.2                                                                                                                                | 11.8 | mA    | +25°C      | VDD = 2.5V,<br>VDDCORE = 2.5V | Fosc = 32 MHz,                                          |  |  |
|                     |              | 9.0                                                                                                                                | 11.8 | mA    | +85°C      |                               | PRI_RUN mode,                                           |  |  |
|                     | PIC18FXXJ11  | 9.7                                                                                                                                | 17.5 | mA    | -40°C      | VDD = 3.3V,                   | 8 MHz Internal Oscillator                               |  |  |
|                     |              | 9.6                                                                                                                                | 17.2 | mA    | +25°C      | VDDCORE = $10 \mu F$          | with PLL                                                |  |  |
|                     |              | 9.6                                                                                                                                | 17.2 | mA    | +85°C      | Capacitor                     |                                                         |  |  |
|                     | PIC18LFXXJ11 | 12.4                                                                                                                               | 13.5 | mA    | -40°C      | VDD = 2.5V,                   |                                                         |  |  |
|                     |              | 12.2                                                                                                                               | 13.5 | mA    | +25°C      | VDD = 2.5V,<br>VDDCORE = 2.5V | Fosc = 48 MHz,                                          |  |  |
|                     |              | 12.1                                                                                                                               | 13.9 | mA    | +85°C      |                               | PRI_RUN mode,                                           |  |  |
|                     | PIC18FXXJ11  | 14.3                                                                                                                               | 24.1 | mA    | -40°C      | VDD = 3.3V,                   | 12 MHz External Oscillator                              |  |  |
|                     |              | 14.2                                                                                                                               | 23.0 | mA    | +25°C      | VDDCORE = $10 \mu F$          | with PLL                                                |  |  |
|                     |              | 14.2                                                                                                                               | 23.0 | mA    | +85°C      | Capacitor                     |                                                         |  |  |

**Note 1:** The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSs and all features that add delta current disabled (such as WDT, Timer1 oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption. All features that add delta current are disabled (WDT, etc.). The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD/Vss;

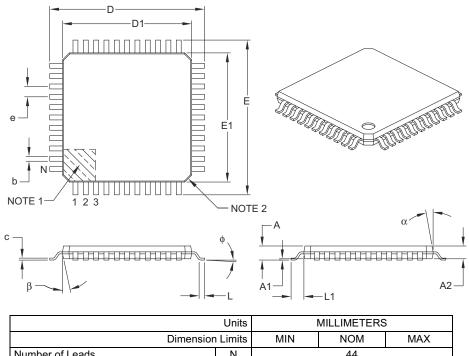
MCLR = VDD; WDT disabled unless otherwise specified.

**3:** Low-Power Timer1 with standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.

## 29.2 DC Characteristics: Power-Down and Supply Current PIC18F46J11 Family (Industrial) (Continued)

| PIC18LFXXJ11 Family                                |                          | Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial |            |                |                |                               |                             |  |  |
|----------------------------------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------|------------|----------------|----------------|-------------------------------|-----------------------------|--|--|
|                                                    |                          | Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial |            |                |                |                               |                             |  |  |
| Param<br>No.                                       | Device                   | Тур                                                                                                                                | Max        | Units          |                | Condi                         | tions                       |  |  |
| Module Differential Currents (∆IwDT, ∆IoscB, ∆IAD) |                          |                                                                                                                                    |            |                |                |                               |                             |  |  |
| D022                                               | Watchdog Timer           | 0.86                                                                                                                               | 8          | μA             | -40°C          | VDD = 2.5V,                   |                             |  |  |
| (∆lwdt)                                            |                          | 0.97                                                                                                                               | 8          | μA             | +25°C          | VDD = 2.5V,<br>VDDCORE = 2.5V | PIC18LFXXJ11                |  |  |
|                                                    |                          | 0.98                                                                                                                               | 10.4       | μA             | +85°C          | VBBCORE 2.01                  |                             |  |  |
|                                                    |                          | 0.71                                                                                                                               | 7          | μA             | -40°C          | VDD = 2.15V,                  |                             |  |  |
|                                                    |                          | 0.82                                                                                                                               | 7          | μA             | +25°C          | VDDCORE = $10 \mu F$          | PIC18FXXJ11                 |  |  |
|                                                    |                          | 0.65                                                                                                                               | 10         | μA             | +85°C          | Capacitor                     |                             |  |  |
|                                                    |                          | 1.54                                                                                                                               | 12.1       | μA             | -40°C          | VDD = 3.3V,                   | PIC18FXXJ11                 |  |  |
|                                                    |                          | 1.33                                                                                                                               | 12.1       | μA             | +25°C          | VDDCORE = $10 \mu F$          |                             |  |  |
|                                                    |                          | 1.16                                                                                                                               | 13.6       | μA             | +85°C          | Capacitor                     |                             |  |  |
| D022B<br>(∆IHLVD)                                  | High/Low-Voltage Detect  | 3.9                                                                                                                                | 8          | μA             | -40°C          | VDD = 2.5V,<br>VDDCORE = 2.5V | PIC18LFXXJ11<br>PIC18FXXJ11 |  |  |
|                                                    |                          | 4.7                                                                                                                                | 8          | μA             | +25°C          |                               |                             |  |  |
|                                                    |                          | 5.4                                                                                                                                | 9          | μA             | +85°C          |                               |                             |  |  |
|                                                    |                          | 2.7                                                                                                                                | 6          | μA             | -40°C          | VDD = 2.15V,                  |                             |  |  |
|                                                    |                          | 3.2                                                                                                                                | 6          | μA             | +25°C          | VDDCORE = $10 \mu F$          |                             |  |  |
|                                                    |                          | 3.6                                                                                                                                | 8          | μA             | +85°C          | Capacitor                     |                             |  |  |
|                                                    |                          | 3.5                                                                                                                                | 9          | μA             | -40°C          | VDD = 3.3V,                   | PIC18FXXJ11                 |  |  |
|                                                    |                          | 4.1                                                                                                                                | 9          | μA             | +25°C          | VDDCORE = 10 μF<br>Capacitor  |                             |  |  |
|                                                    |                          | 4.5                                                                                                                                | 12         | μA             | +85°C          | Capacitor                     |                             |  |  |
| D025                                               | Real-Time Clock/Calendar | 0.67                                                                                                                               | 4.0        | μA             | -40°C          | VDD = 2.15V,                  |                             |  |  |
| (∆IOSCB)                                           | with Low-Power           | 0.83                                                                                                                               | 4.5        | μA             | +25°C          | VDDCORE = 10 µF               |                             |  |  |
|                                                    | Timer1 Oscillator        | 0.95                                                                                                                               | 4.5        | μA<br><b>A</b> | +60°C          | Capacitor                     |                             |  |  |
|                                                    |                          | 1.10<br>0.75                                                                                                                       | 4.5<br>4.5 | μA<br><b>A</b> | +85°C<br>-40°C |                               |                             |  |  |
|                                                    |                          | 0.75                                                                                                                               | 4.5<br>5.0 | μΑ<br>μΑ       | +25°C          | Vdd = 2.5V,                   | PIC18FXXJ11                 |  |  |
|                                                    |                          | 1.04                                                                                                                               | 5.0        | μΑ<br>μΑ       | +25 C<br>+60°C | VDDCORE = $10  \mu F$         | 32.768 kHz, T1OSCEN = 1,    |  |  |
|                                                    |                          | 1.21                                                                                                                               | 5.0        | μΑ<br>μΑ       | +85°C          | Capacitor                     | LPT1OSC = 0                 |  |  |
|                                                    |                          | 0.94                                                                                                                               | 6.5        | μΑ             | -40°C          |                               |                             |  |  |
|                                                    |                          | 1.11                                                                                                                               | 6.5        | μA<br>μA       | +25°C          | VDD = 3.3V,                   |                             |  |  |
|                                                    |                          | 1.24                                                                                                                               | 8.0        | μA             | +60°C          | VDDCORE = 10 μF               |                             |  |  |
|                                                    |                          | 1.43                                                                                                                               | 8.0        | μΑ             | +85°C          | Capacitor                     |                             |  |  |

**Note 1:** The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSs and all features that add delta current disabled (such as WDT, Timer1 oscillator, BOR, etc.).


2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption. All features that add delta current are disabled (WDT, etc.). The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD/Vss;

- MCLR = VDD; WDT disabled unless otherwise specified.
- **3:** Low-Power Timer1 with standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.

## 44-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm [TQFP]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



|                          | INITELINETERO           |           |           |      |
|--------------------------|-------------------------|-----------|-----------|------|
|                          | <b>Dimension Limits</b> | MIN       | NOM       | MAX  |
| Number of Leads          |                         |           | 44        |      |
| Lead Pitch               | е                       | 0.80 BSC  |           |      |
| Overall Height           | А                       | -         | -         | 1.20 |
| Molded Package Thickness | A2                      | 0.95      | 1.00      | 1.05 |
| Standoff                 | A1                      | 0.05      | -         | 0.15 |
| Foot Length              | L                       | 0.45      | 0.60      | 0.75 |
| Footprint                | L1                      |           | 1.00 REF  |      |
| Foot Angle               | ¢                       | 0°        | 3.5°      | 7°   |
| Overall Width            | E                       |           | 12.00 BSC |      |
| Overall Length           | D                       | 12.00 BSC |           |      |
| Molded Package Width     | E1                      | 10.00 BSC |           |      |
| Molded Package Length    | D1                      | 10.00 BSC |           |      |
| Lead Thickness           | С                       | 0.09      | -         | 0.20 |
| Lead Width               | b                       | 0.30      | 0.37      | 0.45 |
| Mold Draft Angle Top     | α                       | 11°       | 12°       | 13°  |
| Mold Draft Angle Bottom  | β                       | 11°       | 12°       | 13°  |

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-076B

NOTES:

## PIC18F46J11 FAMILY

| Write, 8-Bit Data, Partially Multiplexed Address 189        |
|-------------------------------------------------------------|
| Write, 8-Bit Data, Partially Multiplexed Address,           |
| Enable Strobe190                                            |
| Write, 8-Bit Data, Wait States Enabled, Partially           |
| Multiplexed Address                                         |
| Timing Diagrams and Specifications                          |
| AC Characteristics                                          |
| Internal RC Accuracy487                                     |
| CLKO and I/O Requirements                                   |
| Enhanced Capture/Compare/PWM Requirements492                |
| EUSARTx Synchronous Receive Requirements 504                |
| EUSARTx Synchronous Transmission                            |
| Requirements504                                             |
| Example SPI Mode Requirements (Master Mode,                 |
| CKE = 0)                                                    |
| Example SPI Mode Requirements (Master Mode,                 |
| CKE = 1)                                                    |
| Example SPI Mode Requirements (Slave Mode,                  |
| CKE = 0)                                                    |
| Example SPI Slave Mode Requirements (CKE = 1) 499           |
| External Clock Requirements                                 |
| I <sup>2</sup> C Bus Data Requirements (Slave Mode)501      |
| I <sup>2</sup> C Bus Start/Stop Bits Requirements           |
| (Slave Mode)500                                             |
| Low-Power Wake-up Time490                                   |
| MSSPx I <sup>2</sup> C Bus Data Requirements                |
| MSSPx I <sup>2</sup> C Bus Start/Stop Bits Requirements 502 |
| Parallel Master Port Read Requirements                      |
| Parallel Master Port Write Requirements                     |
| Parallel Slave Port Requirements                            |
| PLL Clock                                                   |
| Reset, Watchdog Timer, Oscillator Start-up Timer,           |
| Power-up Timer and Brown-out Reset                          |
| Requirements489                                             |
| Timer0 and Timer1 External Clock Requirements 491           |
| TSTFSZ453                                                   |
| Two-Speed Start-up 395, 409                                 |
| Two-Word Instructions                                       |
| Example Cases83                                             |
| TXSTAx Register                                             |
| BRGH Bit                                                    |
| U                                                           |
| -                                                           |
| Ultra Low-Power Wake-up61                                   |
| V                                                           |
|                                                             |
| Voltage Reference Specifications                            |
| Voltage Regulator (On-Chip)407                              |
| Operation in Sleep Mode408                                  |
| W                                                           |
|                                                             |
| Watchdog Timer (WDT)                                        |
| Associated Registers                                        |
| Control Register                                            |
| During Oscillator Failure                                   |
| Programming Considerations                                  |
|                                                             |
| WCOL Status Flag                                            |
| WWW, Online Support                                         |
|                                                             |
| X                                                           |
| XORLW                                                       |
| XORWF                                                       |
|                                                             |
|                                                             |