

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf25j11t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

Device Overview	
Guidelines for Getting Started with PIC18FJ Microcontrollers	
Oscillator Configurations	
Low-Power Modes	
Reset	
Memory Organization	
Flash Program Memory	
8 x 8 Hardware Multiplier	
Interrupts	
I/O Ports	
Parallel Master Port (PMP)	
Timer0 Module	
Timer1 Module	
Timer2 Module	
Timer3 Module	
Timer4 Module	
Real-Time Clock and Calendar (RTCC)	
Enhanced Capture/Compare/PWM (ECCP) Module	
Master Synchronous Serial Port (MSSP) Module	
Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART)	
10-bit Analog-to-Digital Converter (A/D) Module	
Comparator Module	
Comparator Voltage Reference Module	
High/Low Voltage Detect (HLVD)	
Charge Time Measurement Unit (CTMU)	
Special Features of the CPU	
Instruction Set Summary	
Development Support	
Electrical Characteristics	
Packaging Information	
Appendix A: Revision History	
Appendix B: Device Differences	
The Microchip Web Site	
Customer Change Notification Service	
Customer Support	
Reader Response	
Product Identification System	

	Pin Number		Din Buffor				
Pin Name	44- QFN	44- TQFP	Ріп Туре	Туре	Description		
					PORTC is a bidirectional I/O port.		
RC0/T1OSO/T1CKI/RP11	34	32					
RC0			I/O	ST	Digital I/O.		
			0	Analog	limer1 oscillator output.		
RP11			1/O		Remappable peripheral pin 11		
	25	25		5.0			
RC1	- 35	- 55	1/0	ST	Digital I/O		
TIOSI			1	Analog	Timer1 oscillator input.		
RP12			I/O	DIG	Remappable peripheral pin 12.		
RC2/AN11/CTPLS/RP13	36	36					
RC2			I/O	ST	Digital I/O.		
AN11				Analog	Analog input 11.		
CIPLS PP13				DIG	CIMU pulse generator output.		
	~-		1/0	DIG	Remappable peripheral pill 13.		
RC3/SCK1/SCL1/RP14	37	37	1/0	ет	Digital I/O		
SCK1			1/O	DIG	Synchronous serial clock input/output for		
				_	SPI mode.		
SCL1			I/O	l ² C	Synchronous serial clock input/output for		
PD14			1/0		I ² C [™] mode.		
			1/0	DIG	Remappable periprieral pirt 14.		
RC4/SDI1/SDA1/RP15	42	42	1/0	ет	Digital I/O		
SDI1			1/0	ST	SPI data input		
SDA1			I/O	l ² C	l ² C data I/O.		
RP15			I/O	DIG	Remappable peripheral pin 15.		
RC5/SDO1/RP16	43	43					
RC5			I/O	ST	Digital /O.		
SDO1			0	DIG	SPI data output.		
	KP16 I/O DIG Remappable peripheral pin 16.						
Legend: IIL = IIL compatible in ST = Schmitt Trigger in	iput with		اوررواد	(JNIUS = CINUS compatible input or output		
I = Input		. 51000	10 1010	(D = Output		
P = Power				Ċ	DD = Open-Drain (no P diode to VDD)		
DIG = Digital output							

TABLE 1-4: PIC18F4XJ11 PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: RA7 and RA6 will be disabled if OSC1 and OSC2 are used for the clock function.

On transitions from SEC_RUN mode to PRI_RUN mode, the peripherals and CPU continue to be clocked from the Timer1 oscillator while the primary clock is started. When the primary clock becomes ready, a clock switch back to the primary clock occurs (see

Figure 4-2). When the clock switch is complete, the T1RUN bit is cleared, the OSTS bit is set and the primary clock would be providing the clock. The IDLEN and SCS bits are not affected by the wake-up; the Timer1 oscillator continues to run.

4.6.3 DEEP SLEEP WAKE-UP SOURCES

While in Deep Sleep mode, the device can be awakened by a MCLR, POR, RTCC, INTO I/O pin interrupt, DSWDT or ULPWU event. After waking, the device performs a POR. When the device is released from Reset, code execution will begin at the device's Reset vector.

The software can determine if the wake-up was caused from an exit from Deep Sleep mode by reading the DS bit (WDTCON<3>). If this bit is set, the POR was caused by a Deep Sleep exit. The DS bit must be manually cleared by the software.

The software can determine the wake event source by reading the DSWAKEH and DSWAKEL registers. When the application firmware is done using the DSWAKEH and DSWAKEL status registers, individual bits do not need to be manually cleared before entering Deep Sleep again. When entering Deep Sleep mode, these registers are automatically cleared.

4.6.3.1 Wake-up Event Considerations

Deep Sleep wake-up events are only monitored while the processor is fully in Deep Sleep mode. If a wake-up event occurs before Deep Sleep mode is entered, the event status will not be reflected in the DSWAKE registers. If the wake-up source asserts prior to entering Deep Sleep, the CPU may go to the interrupt vector (if the wake source has an interrupt bit and the interrupt is fully enabled), and may abort the Deep Sleep entry sequence by executing past the SLEEP instruction. In this case, a wake-up event handler should be placed after the SLEEP instruction to process the event and re-attempt entry into Deep Sleep if desired.

When the device is in Deep Sleep with more than one wake-up source simultaneously enabled, only the first wake-up source to assert will be detected and logged in the DSWAKEH/DSWAKEL status registers.

4.6.4 DEEP SLEEP WATCHDOG TIMER (DSWDT)

Deep Sleep has its own dedicated WDT (DSWDT) with a postscaler for time-outs of 2.1 ms to 25.7 days, configurable through the bits, DSWDTPS<3:0> (CONFIG3L<7:4>).

The DSWDT can be clocked from either the INTRC or the T1OSC/T1CKI input. If the T1OSC/T1CKI source will be used with a crystal, the T1OSCEN bit in the T1CON register needs to be set prior to entering Deep Sleep. The reference clock source is configured through the DSWDTOSC bit (CONFIG3L<0>).

DSWDT is enabled through the DSWDTEN bit (CONFIG3L<3>). Entering Deep Sleep mode automatically clears the DSWDT. See **Section 26.0 "Special Features of the CPU"** for more information.

4.6.5 DEEP SLEEP BROWN OUT RESET (DSBOR)

The Deep Sleep module contains a dedicated Deep Sleep BOR (DSBOR) circuit. This circuit may be optionally enabled through the DSBOREN Configuration bit (CONFIG3L<2>).

The DSBOR circuit monitors the VDD supply rail voltage. The behavior of the DSBOR circuit is described in **Section 5.4** "**Brown-out Reset (BOR)**".

4.6.6 RTCC PERIPHERAL AND DEEP SLEEP

The RTCC can operate uninterrupted during Deep Sleep mode. It can wake the device from Deep Sleep by configuring an alarm.

The RTCC clock source is configured with the RTCOSC bit (CONFIG3L<1>). The available reference clock sources are the INTRC and T1OSC/T1CKI. If the INTRC is used, the RTCC accuracy will directly depend on the INTRC tolerance. For more information on configuring the RTCC peripheral, see Section 17.0 "Real-Time Clock and Calendar (RTCC)".

5.0 RESET

The PIC18F46J11 family of devices differentiates among various kinds of Reset:

- a) Power-on Reset (POR)
- b) MCLR Reset during normal operation
- c) MCLR Reset during power-managed modes
- d) Watchdog Timer (WDT) Reset (during execution)
- e) Configuration Mismatch (CM)
- f) Brown-out Reset (BOR)
- g) RESET Instruction
- h) Stack Full Reset
- i) Stack Underflow Reset
- j) Deep Sleep Reset

This section discusses Resets generated by $\overline{\text{MCLR}}$, POR and BOR, and covers the operation of the various start-up timers.

For information on WDT Resets, see Section 26.2 "Watchdog Timer (WDT)". For Stack Reset events, see Section 6.1.4.4 "Stack Full and Underflow Resets" and for Deep Sleep mode, see Section 4.6 "Deep Sleep Mode". Figure 5-1 provides a simplified block diagram of the on-chip Reset circuit.

5.1 RCON Register

Device Reset events are tracked through the RCON register (Register 5-1). The lower five bits of the register indicate that a specific Reset event has occurred. In most cases, these bits can only be set by the event and must be cleared by the application after the event. The state of these flag bits, taken together, can be read to indicate the type of Reset that just occurred. This is described in more detail in **Section 5.7 "Reset State of Registers"**.

The ECON register also has a control bit for setting interrupt priority (IPEN). Interrupt priority is discussed in **Section 9.0 "Interrupts"**.

TABLE J-Z.			NS FOR ALL REGI	<i>י</i>)		
Register	Applicable Devices		Power-on Reset, Brown-out Reset, Wake From Deep Sleep	MCLR Resets WDT Reset RESET Instruction Stack Resets CM Resets	Wake-up via WDT or Interrupt	
INDF2	PIC18F2XJ11	PIC18F4XJ11	N/A	N/A	N/A	
POSTINC2	PIC18F2XJ11	PIC18F4XJ11	N/A	N/A	N/A	
POSTDEC2	PIC18F2XJ11	PIC18F4XJ11	N/A	N/A	N/A	
PREINC2	PIC18F2XJ11	PIC18F4XJ11	N/A	N/A	N/A	
PLUSW2	PIC18F2XJ11	PIC18F4XJ11	N/A	N/A	N/A	
FSR2H	PIC18F2XJ11	PIC18F4XJ11	0000	0000	uuuu	
FSR2L	PIC18F2XJ11	PIC18F4XJ11	xxxx xxxx	uuuu uuuu	uuuu uuuu	
STATUS	PIC18F2XJ11	PIC18F4XJ11	x xxxx	u uuuu	u uuuu	
TMR0H	PIC18F2XJ11	PIC18F4XJ11	0000 0000	0000 0000	uuuu uuuu	
TMR0L	PIC18F2XJ11	PIC18F4XJ11	xxxx xxxx	uuuu uuuu	uuuu uuuu	
TOCON	PIC18F2XJ11	PIC18F4XJ11	1111 1111	1111 1111	uuuu uuuu	
OSCCON	PIC18F2XJ11	PIC18F4XJ11	0110 q100	0110 q100	0110 qluu	
CM1CON	PIC18F2XJ11	PIC18F4XJ11	0001 1111	0001 1111	uuuu uuuu	
CM2CON	PIC18F2XJ11	PIC18F4XJ11	0001 1111	0001 1111	uuuu uuuu	
RCON ⁽⁴⁾	PIC18F2XJ11	PIC18F4XJ11	0-11 11qq	0-qq qquu	u-qq qquu	
TMR1H	PIC18F2XJ11	PIC18F4XJ11	xxxx xxxx	uuuu uuuu	uuuu uuuu	
TMR1L	PIC18F2XJ11	PIC18F4XJ11	xxxx xxxx	uuuu uuuu	uuuu uuuu	
T1CON	PIC18F2XJ11	PIC18F4XJ11	0000 0000	uuuu uuuu	uuuu uuuu	
TMR2	PIC18F2XJ11	PIC18F4XJ11	0000 0000	0000 0000	uuuu uuuu	
PR2	PIC18F2XJ11	PIC18F4XJ11	1111 1111	1111 1111	uuuu uuuu	
T2CON	PIC18F2XJ11	PIC18F4XJ11	-000 0000	-000 0000	-uuu uuuu	
SSP1BUF	PIC18F2XJ11	PIC18F4XJ11	xxxx xxxx	uuuu uuuu	uuuu uuuu	
SSP1ADD	PIC18F2XJ11	PIC18F4XJ11	0000 0000	0000 0000	uuuu uuuu	
SSP1MSK	PIC18F2XJ11	PIC18F4XJ11	1111 1111	1111 1111	uuuu uuuu	
SSP1STAT	PIC18F2XJ11	PIC18F4XJ11	0000 0000	0000 0000	uuuu uuuu	
SSP1CON1	PIC18F2XJ11	PIC18F4XJ11	0000 0000	0000 0000	uuuu uuuu	
SSP1CON2	PIC18F2XJ11	PIC18F4XJ11	0000 0000	0000 0000	uuuu uuuu	
ADRESH	PIC18F2XJ11	PIC18F4XJ11	xxxx xxxx	uuuu uuuu	uuuu uuuu	
ADRESL	PIC18F2XJ11	PIC18F4XJ11	xxxx xxxx	uuuu uuuu	uuuu uuuu	
ADCON0	PIC18F2XJ11	PIC18F4XJ11	0000 0000	0000 0000	uuuu uuuu	
ADCON1	PIC18F2XJ11	PIC18F4XJ11	0000 0000	0000 0000	uuuu uuuu	
WDTCON	PIC18F2XJ11	PIC18F4XJ11	1qq- q000	1qq- 0000	uqq- uuuu	

TABLE 5-2: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition.

Note 1: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

3: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

- 4: See Table 5-1 for Reset value for specific condition.
- 5: Not implemented for PIC18F2XJ11 devices.
- 6: Not implemented on "LF" devices.

FIGURE 11-16: WRITE TIMING, 8-BIT DATA, WAIT STATES ENABLED, PARTIALLY MULTIPLEXED ADDRESS

FIGURE 11-17: READ TIMING, 8-BIT DATA, PARTIALLY MULTIPLEXED ADDRESS, ENABLE STROBE

15.0 TIMER3 MODULE

The Timer3 timer/counter module incorporates these features:

- Software selectable operation as a 16-bit timer or counter
- Readable and writable 8-bit registers (TMR3H and TMR3L)
- Selectable clock source (internal or external) with device clock or Timer1 oscillator internal options
- Interrupt-on-overflow
- · Module Reset on ECCP Special Event Trigger

A simplified block diagram of the Timer3 module is shown in Figure 15-1.

The Timer3 module is controlled through the T3CON register (Register 15-1). It also selects the clock source options for the ECCP modules; see **Section 18.1.1** "**ECCP Module and Timer Resources**" for more information.

The Fosc clock source (TMR3CS<1:0> = 01) should not be used with the ECCP capture/compare features. If the timer will be used with the capture or compare features, always select one of the other timer clocking options.

REGISTER 15-1: T3CON: TIMER3 CONTROL REGISTER (ACCESS F79h)

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
TMR3CS1	TMR3CS0	T3CKPS1	T3CKPS0	—	T3SYNC	RD16	TMR3ON
bit 7							bit 0

Legend:								
R = Readable bit W = Writable bit		W = Writable bit	U = Unimplemented bit	, read as '0'				
-n = Value	e at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				
bit 7-6	TMR3CS	<1:0>: Timer3 Clock Sourc	e Select bits ⁽²⁾					
10 = Timer3 clock source is the T3CKI input pin (assigned in the PPS module)								
	01 = Tim	er3 clock source is the syste	em clock (Fosc) ⁽¹⁾					
	00 = Tim	er3 clock source is the instr	uction clock (Fosc/4)					
bit 5-4	T3CKPS	<1:0>: Timer3 Input Clock F	Prescale Select bits					
	11 = 1:8	Prescale value						
	10 = 1:4	Prescale value						
	01 = 1:2	Prescale value						
hit 3	Beserve	d: Program as '0'						
bit 0	Tasync	I Timor? External Clock Inn	ut Synahranization Control hit					
DILZ	135 TNC		ut Synchronization Control bit					
	1 = Do n	<u>inscostiloz – 10.</u> ot synchronize external cloc	k input					
	0 = Sync	hronize external clock input	a nipat					
	When TM	/R3CS<1:0> = 0x:						
	This bit is	ignored; Timer3 uses the i	nternal clock.					
bit 1	RD16: 16	3-Bit Read/Write Mode Enal	ole bit					
	1 = Enab	les register read/write of Tir	mer3 in one 16-bit operation					
	0 = Enab	les register read/write of Tir	mer3 in two 8-bit operations					
bit 0	TMR3ON	I: Timer3 On bit						
	1 = Enab	les Timer3						
	0 = Stops	s Timer3						
Note 1:	The Fosc clo	ock source should not be se	lected if the timer will be used v	vith the ECCP capture/compare				
•			(h					

2: When switching clock sources and using the clock prescaler, write to TMR3L afterwards to reset the internal prescaler count to 0.

TABLE 17-3:RTCVALH AND RTCVALLREGISTER MAPPING

	RTCC Value Register Window				
KICFIK(I.0)	RTCVALH<15:8>	RTCVALL<7:0>			
00	MINUTES	SECONDS			
01	WEEKDAY	HOURS			
10	MONTH	DAY			
11	_	YEAR			

The Alarm Value register window (ALRMVALH and ALRMVALL) uses the ALRMPTR bits (ALRMCFG<1:0>) to select the desired Alarm register pair.

By reading or writing to the ALRMVALH register, the Alarm Pointer value, ALRMPTR<1:0>, decrements by 1 until it reaches '00'. Once it reaches '00', the ALRMMIN and ALRMSEC value will be accessible through ALRMVALH and ALRMVALL until the pointer value is manually changed.

TABLE 17-4:	ALRMVAL REGISTER
	MAPPING

	Alarm Value Register Window				
ALRMPTR<1:0>	ALRMVALH<15:8>	ALRMVALL<7:0>			
0 0	ALRMMIN	ALRMSEC			
01	ALRMWD	ALRMHR			
10	ALRMMNTH	ALRMDAY			
11	_	_			

17.2.9 CALIBRATION

The real-time crystal input can be calibrated using the periodic auto-adjust feature. When properly calibrated, the RTCC can provide an error of less than three seconds per month.

To perform this calibration, find the number of error clock pulses and store the value in the lower half of the RTCCAL register. The 8-bit, signed value – loaded into RTCCAL – is multiplied by '4' and will either be added or subtracted from the RTCC timer, once every minute.

To calibrate the RTCC module:

- 1. Use another timer resource on the device to find the error of the 32.768 kHz crystal.
- 2. Convert the number of error clock pulses per minute (see Equation 17-1).

EQUATION 17-1: CONVERTING ERROR CLOCK PULSES

(Ideal Frequency (32,768) – Measured Frequency) * 60 = Error Clocks per Minute

- If the oscillator is *faster* than ideal (negative result from step 2), the RTCCALL register value needs to be negative. This causes the specified number of clock pulses to be subtracted from the timer counter once every minute.
- If the oscillator is *slower* than ideal (positive result from step 2), the RTCCALL register value needs to be positive. This causes the specified number of clock pulses to be added to the timer counter once every minute.
- 3. Load the RTCCAL register with the correct value.

Writes to the RTCCAL register should occur only when the timer is turned off, or immediately after the rising edge of the seconds pulse.

Note:	In determining the crystal's error value, it									
	is the user's responsibility to include the									
	crystal's initial error from drift due to									
	temperature or crystal aging.									

NOTES:

20.2 EUSART Asynchronous Mode

The Asynchronous mode of operation is selected by clearing the SYNC bit (TXSTAx<4>). In this mode, the EUSART uses standard Non-Return-to-Zero (NRZ) format (one Start bit, eight or nine data bits and one Stop bit). The most common data format is 8 bits. An on-chip dedicated 8-bit/16-bit BRG can be used to derive standard baud rate frequencies from the oscillator.

The EUSART transmits and receives the LSb first. The EUSART's transmitter and receiver are functionally independent but use the same data format and baud rate. The BRG produces a clock, either x16 or x64 of the bit shift rate, depending on the BRGH and BRG16 bits (TXSTAx<2> and BAUDCONx<3>). Parity is not supported by the hardware but can be implemented in software and stored as the ninth data bit.

When operating in Asynchronous mode, the EUSART module consists of the following important elements:

- Baud Rate Generator
- Sampling Circuit
- Asynchronous Transmitter
- Asynchronous Receiver
- Auto-Wake-up on Sync Break Character
- 12-Bit Break Character Transmit
- Auto-Baud Rate Detection

20.2.1 EUSART ASYNCHRONOUS TRANSMITTER

Figure 20-3 displays the EUSART transmitter block diagram.

The heart of the transmitter is the Transmit (Serial) Shift Register (TSR). The Shift register obtains its data from the Read/Write Transmit Buffer register, TXREGx. The TXREGx register is loaded with data in software. The TSR register is not loaded until the Stop bit has been transmitted from the previous load. As soon as the Stop bit is transmitted, the TSR is loaded with new data from the TXREGx register (if available). Once the TXREGx register transfers the data to the TSR register (occurs in one TcY), the TXREGx register is empty and the TXxIF flag bit is set. This interrupt can be enabled or disabled by setting or clearing the interrupt enable bit, TXxIE. TXxIF will be set regardless of the state of TXxIE; it cannot be cleared in software. TXxIF is also not cleared immediately upon loading TXREGx, but becomes valid in the second instruction cycle following the load instruction. Polling TXxIF immediately following a load of TXREGx will return invalid results.

While TXxIF indicates the status of the TXREGx register; another bit, TRMT (TXSTAx<1>), shows the status of the TSR register. TRMT is a read-only bit, which is set when the TSR register is empty. No interrupt logic is tied to this bit so the user has to poll this bit in order to determine if the TSR register is empty.

Note 1:	The TSR register is not mapped in data memory, so it is not available to the user						
2:	Flag bit, TXxIF, is set when enable bit, TXEN, is set.						

To set up an Asynchronous Transmission:

- 1. Initialize the SPBRGHx:SPBRGx registers for the appropriate baud rate. Set or clear the BRGH and BRG16 bits, as required, to achieve the desired baud rate.
- 2. Enable the asynchronous serial port by clearing bit, SYNC, and setting bit, SPEN.
- 3. If interrupts are desired, set enable bit, TXxIE.
- 4. If 9-bit transmission is desired, set transmit bit, TX9. Can be used as address/data bit.
- 5. Enable the transmission by setting bit, TXEN, which will also set bit, TXxIF.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit, TX9D.
- 7. Load data to the TXREGx register (starts transmission).
- If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

FIGURE 20-3: EUSART TRANSMIT BLOCK DIAGRAM

FIGURE 20-5: ASYNCHRONOUS TRANSMISSION (BACK-TO-BACK)

TABLE 20-5: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	69
PIR1	PMPIF ⁽¹⁾	ADIF	RC1IF	TX1IF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	72
PIE1	PMPIE ⁽¹⁾	ADIE	RC1IE	TX1IE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	72
IPR1	PMPIP ⁽¹⁾	ADIP	RC1IP	TX1IP	SSP1IP	CCP1IP	TMR2IP	TMR1IP	72
PIR3	SSP2IF	BCL2IF	RC2IF	TX2IF	TMR4IF	CTMUIF	TMR3GIF	RTCCIF	72
PIE3	SSP2IE	BCL2IE	RC2IE	TX2IE	TMR4IE	CTMUIE	TMR3GIE	RTCCIE	72
IPR3	SSP2IP	BCL2IP	RC2IP	TX2IP	TMR4IP	CTMUIP	TMR3GIP	RTCCIP	72
RCSTAx	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	72
TXREGx	EUSARTx	Transmit Re	gister						72
TXSTAx	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	72
BAUDCONx	ABDOVF	RCIDL	RXDTP	TXDTP	BRG16	—	WUE	ABDEN	73
SPBRGHx	EUSARTx Baud Rate Generator Register High Byte								
SPBRGx	EUSARTx	Baud Rate (Generator R	legister Low	Byte				72
ODCON2	_	_	_	_			U2OD	U10D	74

Legend: - = unimplemented locations read as '0'. Shaded cells are not used for asynchronous transmission.

Note 1: These bits are only available on 44-pin devices.

The WUE bit is automatically cleared once a low-to-high transition is observed on the RXx line following the wake-up event. At this point, the EUSART module is in Idle mode and returns to normal operation. This signals to the user that the Sync Break event is over.

20.2.4.1 Special Considerations Using Auto-Wake-up

Since auto-wake-up functions by sensing rising edge transitions on RXx/DTx, information with any state changes before the Stop bit may signal a false End-Of-Character (EOC) and cause data or framing errors. To work properly, therefore, the initial character in the transmission must be all '0's. This can be 00h (8 bits) for standard RS-232 devices or 000h (12 bits) for LIN/J2602 bus.

Oscillator start-up time must also be considered, especially in applications using oscillators with longer start-up intervals (i.e., HS or HSPLL mode). The Sync Break (or Wake-up Signal) character must be of sufficient length and be followed by a sufficient interval to allow enough time for the selected oscillator to start and provide proper initialization of the EUSART.

20.2.4.2 Special Considerations Using the WUE Bit

The timing of WUE and RCxIF events may cause some confusion when it comes to determining the validity of received data. As noted, setting the WUE bit places the EUSART in an Idle mode. The wake-up event causes a receive interrupt by setting the RCxIF bit. The WUE bit is cleared after this when a rising edge is seen on RXx/DTx. The interrupt condition is then cleared by reading the RCREGx register. Ordinarily, the data in RCREGx will be dummy data and should be discarded.

The fact that the WUE bit has been cleared (or is still set) and the RCxIF flag is set should not be used as an indicator of the integrity of the data in RCREGx. Users should consider implementing a parallel method in firmware to verify received data integrity.

To assure that no actual data is lost, check the RCIDL bit to verify that a receive operation is not in process. If a receive operation is not occurring, the WUE bit may then be set just prior to entering the Sleep mode.

FIGURE 20-8: AUTO-WAKE-UP BIT (WUE) TIMINGS DURING NORMAL OPERATION

FIGURE 20-9: AUTO-WAKE-UP BIT (WUE) TIMINGS DURING SLEEP

	(ospeies	sies (en lees)		74.	33	(ouiosio4	jon jozionijo	ka koko je	doelozjen(oa	logogodos)
0803	gunun.	ערערקערא	nininin			MANA.	pununin	unnun.	INNNN.	pununurji
	2 - 888 see	toyigaan					· · ·		S. June 1863	kinang l
986 B C (2	s. Synnesener		n den en e					· · · ·	~~, X 	
	K								n de la companya de l	i k
- AXADALAA				,		,	<i>M</i>	ANNANNAN (Alter C	· · · · · · · · · · · · · · · · · · ·
	с. С					8	1	۰ ج برونینینینینینی	····	
300X331	,	Belefe Opmes	and Executed	2 2	Steep State	å d	3883-cd (598)	ki ukar seker s	e ^l eosecu?	ý ,

More structures when requires long contents were to the sub-ofer of the Willi we can accur before the position is ready. This section a block not depend on the pressure of Controls.

2: The EUSART commune in the while the VEUE at a set.

The ANCON0 and ANCON1 registers are used to configure the operation of the I/O pin associated with each analog channel. Setting any one of the PCFG bits configures the corresponding pin to operate as a digital only I/O. Clearing a bit configures the pin to operate as an analog input for either the A/D Converter or the comparator module; all digital peripherals are disabled and digital inputs read as '0'. As a rule, I/O pins that are multiplexed with analog inputs default to analog operation on device Resets.

In order to correctly perform A/D conversions on the VBG band gap reference (ADCON0<5:2> = 1111), the reference circuit must be powered on first. The VBGEN bit in the ANCON1 register allows the firmware to manually

request that the band gap reference circuit should be enabled. For best accuracy, firmware should allow a settling time of at least 10 ms prior to performing the first acquisition on this channel after enabling the band gap reference.

The reference circuit may already have been turned on if some other hardware module (such as comparators or HLVD) has already requested it. In this case, the initial turn-on settling time may have already elapsed and firmware does not need to wait as long before measuring VBG. Once the acquisition is complete, firmware may clear the VBGEN bit, which will save a small amount of power if no other modules are still requesting the VBG reference.

R = Readable bit $W = W/rit;$			vit	II = I inimplemented bit read as '0'					
Legend:									
bit 7							bit 0		
PCFG7 ⁽¹⁾ F	PCFG6 ⁽¹⁾	PCFG5 ⁽¹⁾	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		

R = Readable bit	vv = vvritable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 **PCFG<7:0>:** Analog Port Configuration bits (AN<7:0>) 1 = Pin configured as a digital port 0 = Pin configured as an analog channel – digital input disabled and reads '0'

Note 1: These bits are not implemented on 28-pin devices.

REGISTER 21-4: ANCON1: A/D PORT CONFIGURATION REGISTER 1 (BANKED F49h)

R/W-0	r	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
VBGEN	—	—	PCFG12	PCFG11	PCFG10	PCFG9	PCFG8
bit 7							bit 0

Legend:	r = Reserved				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 7	VBGEN: 1.2V Band Gap Reference Enable bit
	1 = 1.2V band gap reference is powered on0 = 1.2V band gap reference is turned off to save power (if no other modules are requesting it)
bit 6	Reserved: Always maintain as '0' for lowest power consumption
bit 5	Unimplemented: Read as '0'
bit 4-0	PCFG<12:8>: Analog Port Configuration bits (AN<12:8>)
	 1 = Pin configured as a digital port 0 = Pin configured as an analog channel – digital input disabled and reads '0'

21.7 A/D Converter Calibration

The A/D Converter in the PIC18F46J11 family of devices includes a self-calibration feature, which compensates for any offset generated within the module. The calibration process is automated and is initiated by setting the ADCAL bit (ADCON1<6>). The next time the GO/DONE bit is set, the module will perform a "dummy" conversion (that is, with reading none of the input channels) and store the resulting value internally to compensate for the offset. Thus, subsequent offsets will be compensated.

Example 21-1 provides an example of a calibration routine.

The calibration process assumes that the device is in a relatively steady-state operating condition. If A/D calibration is used, it should be performed after each device Reset or if there are other major changes in operating conditions.

21.8 Operation in Power-Managed Modes

The selection of the automatic acquisition time and A/D conversion clock is determined in part by the clock source and frequency while in a power-managed mode.

If the A/D is expected to operate while the device is in a power-managed mode, the ACQT<2:0> and ADCS<2:0> bits in ADCON1 should be updated in accordance with the power-managed mode clock that will be used. After the power-managed mode is entered (either of the power-managed Run modes), an A/D acquisition or conversion may be started. Once an acquisition or conversion is started, the device should continue to be clocked by the same power-managed mode clock source until the conversion has been completed. If desired, the device may be placed into the corresponding power-managed Idle mode during the conversion.

If the power-managed mode clock frequency is less than 1 MHz, the A/D RC clock source should be selected.

Operation in the Sleep mode requires the A/D RC clock to be selected. If bits, ACQT<2:0>, are set to '000' and a conversion is started, the conversion will be delayed one instruction cycle to allow execution of the SLEEP instruction and entry to Sleep mode. The IDLEN and SCS bits in the OSCCON register must have already been cleared prior to starting the conversion.

EXAMPLE 21-1: SAMPLE A/D CALIBRATION ROUTINE

BCF	ANCONO , PCFGO	;Make Channel 0 analog
BSF	ADCONO , ADON	;Enable A/D module
BSF	ADCON1 , ADCAL	;Enable Calibration
BSF	ADCONO , GO	;Start a dummy A/D conversion
BTFSC BRA BCF	ADCON0,GO CALIBRATION ADCON1,ADCAL	, ;Wait for the dummy conversion to finish ; ;Calibration done, turn off calibration enable ;Proceed with the actual A/D conversion

24.6 Operation During Sleep

When enabled, the HLVD circuitry continues to operate during Sleep. If the device voltage crosses the trip point, the LVDIF bit will be set and the device will wakeup from Sleep. Device execution will continue from the interrupt vector address if interrupts have been globally enabled.

24.7 Effects of a Reset

A device Reset forces all registers to their Reset state. This forces the HLVD module to be turned off.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
HLVDCON	VDIRMAG	BGVST	IRVST	HLVDEN	HLVDL3	HLVDL2	HLVDL1	HLVDL0	72
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	69
PIR2	OSCFIF	CM1IF	CM2IF	—	BCLIF	LVDIF	TMR3IF	CCP2IF	71
PIE2	OSCFIE	CM1IE	CM2IE	—	BCLIE	LVDIE	TMR3IE	CCP2IE	71
IPR2	OSCFIP	CM1IP	CM2IP	_	BCLIP	LVDIP	TMR3IP	CCP2IP	71

TABLE 24-1: REGISTERS ASSOCIATED WITH HIGH/LOW-VOLTAGE DETECT MODULE

Legend: — = unimplemented, read as '0'. Shaded cells are unused by the HLVD module.

25.4 Measuring Capacitance with the CTMU

There are two separate methods of measuring capacitance with the CTMU. The first is the absolute method, in which the actual capacitance value is desired. The second is the relative method, in which the actual capacitance is not needed, rather an indication of a change in capacitance is required.

25.4.1 ABSOLUTE CAPACITANCE MEASUREMENT

For absolute capacitance measurements, both the current and capacitance calibration steps found in **Section 25.3 "Calibrating the CTMU Module"** should be followed. Capacitance measurements are then performed using the following steps:

- 1. Initialize the A/D Converter.
- 2. Initialize the CTMU.
- 3. Set EDG1STAT.
- 4. Wait for a fixed delay, *T*.
- 5. Clear EDG1STAT.
- 6. Perform an A/D conversion.
- 7. Calculate the total capacitance, CTOTAL = (I * T)/V, where *I* is known from the current source measurement step (see **Section 25.3.1 "Current Source Calibration"**), *T* is a fixed delay and *V* is measured by performing an A/D conversion.
- 8. Subtract the stray and A/D capacitance (*C*OFFSET from **Section 25.3.2** "**Capacitance Calibration**") from *CTOTAL* to determine the measured capacitance.

25.4.2 RELATIVE CHARGE MEASUREMENT

An application may not require precise capacitance measurements. For example, when detecting a valid press of a capacitance-based switch, detecting a relative change of capacitance is of interest. In this type of application, when the switch is open (or not touched), the total capacitance is the capacitance of the combination of the board traces, the A/D Converter, etc. A larger voltage will be measured by the A/D Converter. When the switch is closed (or is touched), the total capacitance is larger due to the addition of the capacitance of the human body to the above listed capacitances, and a smaller voltage will be measured by the A/D Converter.

Detecting capacitance changes is easily accomplished with the CTMU using these steps:

- 1. Initialize the A/D Converter and the CTMU.
- 2. Set EDG1STAT.
- 3. Wait for a fixed delay.
- 4. Clear EDG1STAT.
- 5. Perform an A/D conversion.

The voltage measured by performing the A/D conversion is an indication of the relative capacitance. Note that in this case, no calibration of the current source or circuit capacitance measurement is needed. See Example 25-4 for a sample software routine for a capacitive touch switch.

	2. 1			16 Pit Instruction Word					
Mnemo	onic,	Description	Cvcles					Status	Notes
Operands		• • •		MSb			LSb	Affected	
BIT-ORIEN	ED OPE	RATIONS							
BCF	f, b, a	Bit Clear f	1	1001	bbba	ffff	ffff	None	1, 2
BSF	f, b, a	Bit Set f	1	1000	bbba	ffff	ffff	None	1, 2
BTFSC	f, b, a	Bit Test f, Skip if Clear	1 (2 or 3)	1011	bbba	ffff	ffff	None	3, 4
BTFSS	f, b, a	Bit Test f, Skip if Set	1 (2 or 3)	1010	bbba	ffff	ffff	None	3, 4
BTG	f, b, a	Bit Toggle f	1	0111	bbba	ffff	ffff	None	1, 2
CONTROL	OPERAT	IONS							
BC	n	Branch if Carry	1 (2)	1110	0010	nnnn	nnnn	None	
BN	n	Branch if Negative	1 (2)	1110	0110	nnnn	nnnn	None	
BNC	n	Branch if Not Carry	1 (2)	1110	0011	nnnn	nnnn	None	
BNN	n	Branch if Not Negative	1 (2)	1110	0111	nnnn	nnnn	None	
BNOV	n	Branch if Not Overflow	1 (2)	1110	0101	nnnn	nnnn	None	
BNZ	n	Branch if Not Zero	1 (2)	1110	0001	nnnn	nnnn	None	
BOV	n	Branch if Overflow	1 (2)	1110	0100	nnnn	nnnn	None	
BRA	n	Branch Unconditionally	2	1101	0nnn	nnnn	nnnn	None	
BZ	n	Branch if Zero	1 (2)	1110	0000	nnnn	nnnn	None	
CALL	n, s	Call Subroutine 1st word	2	1110	110s	kkkk	kkkk	None	
		2nd word		1111	kkkk	kkkk	kkkk		
CLRWDT	—	Clear Watchdog Timer	1	0000	0000	0000	0100	TO, PD	
DAW	—	Decimal Adjust WREG	1	0000	0000	0000	0111	С	
GOTO	n	Go to Address 1st word	2	1110	1111	kkkk	kkkk	None	
		2nd word		1111	kkkk	kkkk	kkkk		
NOP	—	No Operation	1	0000	0000	0000	0000	None	
NOP	—	No Operation	1	1111	XXXX	xxxx	xxxx	None	4
POP	—	Pop Top of Return Stack (TOS)	1	0000	0000	0000	0110	None	
PUSH	_	Push Top of Return Stack (TOS)	1	0000	0000	0000	0101	None	
RCALL	n	Relative Call	2	1101	1nnn	nnnn	nnnn	None	
RESET		Software Device Reset	1	0000	0000	1111	1111	All	
RETFIE	S	Return from Interrupt Enable	2	0000	0000	0001	000s	GIE/GIEH,	
								PEIE/GIEL	
RETLW	k	Return with Literal in WREG	2	0000	1100	kkkk	kkkk	None	
RETURN	S	Return from Subroutine	2	0000	0000	0001	001s	None	
SLEEP	—	Go into Standby mode	1	0000	0000	0000	0011	TO, PD	

TABLE 27-2: PIC18F46J11 FAMILY INSTRUCTION SET (CONTINUED)

Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned.

3: If the Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

4: Some instructions are two-word instructions. The second word of these instructions will be executed as a NOP unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all program memory locations have a valid instruction.

GOTO		Unconditi	onal Bra	nch						
Syntax:		GOTO k	GOTO k							
Operands:		$0 \le k \le 10^4$	$0 \leq k \leq 1048575$							
Operation:		$k \rightarrow PC<2$	0:1>							
Status Affected	:	None								
Encoding: 1st word (k<7:0 2nd word(k<19)>) :8>)	1110 1111	1111 k ₁₉ kkk	k ₇ kkk kkkk	kkkk ₀ kkkk ₈					
Description.		anywhere within entire 2-Mbyte mem- ory range. The 20-bit value 'k' is loaded into PC<20:1>. GOTO is always a two-cycle instruction								
Words:		2	2							
Cycles:		2	2							
Q Cycle Activit	ty:									
Q1		Q2	Q	3	Q4					
Decode	;	Read literal 'k'<7:0>,	No operat	tion (ead literal k'<19:8>, /rite to PC					
No operatio	n	No operation	No operat	tion	No operation					
Example: GOTO THERE After Instruction										

INCF	Increment	f						
Syntax:	INCF f{,o	d {,a}}						
Operands:	$0 \leq f \leq 255$							
	d ∈ [0,1]							
o "	a ∈ [0,1]							
Operation:	$(f) + 1 \rightarrow d$	est						
Status Affected:	C, DC, N,	ov, z						
Encoding:	0010	10da	ffff	ffff				
Description:	The conter incremente placed in V placed bac	The contents of register 'f' are incremented. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f' (default).						
	If 'a' is '0', t If 'a' is '1', t GPR bank	he Acces he BSR i (default).	s Bank s used t	is selected. o select the				
	If 'a' is '0' a set is enab in Indexed mode when Section 27 Bit-Oriente Literal Off	Ind the ex led, this in Literal O never f ≤ 7.2.3 "By ed Instru set Mode	xtended nstructic ffset Ade 95 (5Fh te-Orien ctions i e" for de	instruction on operates dressing). See nted and in Indexed etails.				
Words:	1							
Cycles:	1							
Q Cycle Activity								
Q1	Q2	Q3	5	Q4				
Decode	Read register 'f'	Proce Data	ess a d	Write to lestination				
Example:	INCF	CNT,	1, 0					
Before Instruc	tion							
CNT Z	= FFh = 0							
Ċ	= ?							
DC After Instructio	≓ ? on							
CNT	= 00h							
Z	= 1 = 1							
ĎС	= 1							

FIGURE 29-9: ENHANCED CAPTURE/COMPARE/PWM TIMINGS

TABLE 29-16: ENHANCED CAPTURE/COMPARE/PWM REQUIREMENTS

Param No.	Symbol	Characteristic		Min	Max	Units	Conditions
50	TccL	ECCPx Input Low Time	No prescaler	0.5 Tcy + 20	_	ns	
			With prescaler	10		ns	
51	TccH	ECCPx Input High Time	No prescaler	0.5 Tcy + 20		ns	
			With prescaler	10	_	ns	
52	TCCP	ECCPx Input Period		<u>3 Tcy + 40</u> N		ns	N = prescale value (1, 4 or 16)
53	TccR	ECCPx Output Fall Time		—	25	ns	
54	TccF	ECCPx Output Fall Time		_	25	ns	