

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I²C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf26j11-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

Features	PIC18F24J11	PIC18F25J11	PIC18F26J11			
Operating Frequency	DC – 48 MHz	DC – 48 MHz	DC – 48 MHz			
Program Memory (Bytes)	16K	32K	64K			
Program Memory (Instructions)	8,192	16,384	32,768			
Data Memory (Bytes)	3.8K	3.8K	3.8K			
Interrupt Sources	ources 30					
I/O Ports	Ports A, B, C					
Timers		5				
Enhanced Capture/Compare/PWM Modules		2				
Serial Communications	MS	SP (2), Enhanced USAR	Г (2)			
Parallel Communications (PMP/PSP)		No				
10-Bit Analog-to-Digital Module		10 Input Channels				
Resets (and Delays)	POR, BOR, RESET Instruction, Stack Full, Stack Underflow, MCLR, WDT (PWRT, OST)					
Instruction Set	75 Instructions,	83 with Extended Instruct	ion Set Enabled			
Packages	28-Pin QFN	I, SOIC, SSOP and SPD	IP (300 mil)			

TABLE 1-1:DEVICE FEATURES FOR THE PIC18F2XJ11 (28-PIN DEVICES)

TABLE 1-2: DEVICE FEATURES FOR THE PIC18F4XJ11 (44-PIN DEVICES)

Features	PIC18F44J11	PIC18F45J11	PIC18F46J11			
Operating Frequency	DC – 48 MHz	DC – 48 MHz	DC – 48 MHz			
Program Memory (Bytes)	16K	32K	64K			
Program Memory (Instructions)	8,192	16,384	32,768			
Data Memory (Bytes)	3.8K	3.8K	3.8K			
Interrupt Sources	30					
I/O Ports	Ports A, B, C, D, E					
Timers	5					
Enhanced Capture/Compare/PWM Modules		2				
Serial Communications	MS	SP (2), Enhanced USART	(2)			
Parallel Communications (PMP/PSP)		Yes				
10-Bit Analog-to-Digital Module		13 Input Channels				
Resets (and Delays)	POR, BOR, RESET Instruction, Stack Full, Stack Underflow, MCLR, WE (PWRT, OST)					
Instruction Set	75 Instructions, 83 with Extended Instruction Set Enabled					
Packages		44-Pin QFN and TQFP				

	Pin Number		D !	Duffer	
Pin Name	44- QFN	44- TQFP	Ріп Туре	Туре	Description
					PORTB is a bidirectional I/O port. PORTB can be
					all inputs.
RB0/AN12/INT0/RP3	9	8			
RB0			I/O	DIG	Digital I/O.
AN12			I	Analog	Analog input 12.
INTO				ST	External interrupt 0.
RP3			I/O	DIG	Remappable peripheral pin 3.
RB1/AN10/PMBE/RTCC/RP4	10	9			
RB1			I/O	DIG	Digital I/O.
AN10				Analog	Analog input 10.
PMBE			0	DIG	Parallel Master Port byte enable.
					Real Time Clock Calendar output.
			1/0	DIG	Remappable periprieral piri 4.
RB2/AN8/CTED1/PMA3/REFO/ RP5	11	10			
RB2			I/O	DIG	Digital I/O.
AN8			I	Analog	Analog input 8.
CTED1			Ι	ST	CTMU edge 1 input.
PMA3			0	DIG	Parallel Master Port address.
REFO			0	DIG	Reference output clock.
RP5			1/0	DIG	Remappable peripheral pin 5.
RB3/AN9/CTED2/PMA2/RP6	12	11			
RB3			I/O	DIG	Digital I/O.
AN9				Analog	Analog input 9.
CTED2				SI	CTMU edge 2 input.
PMA2					Parallel Master Port address.
			1/0		Nemappable periprieral pirro.
ST = Schmitt Trigger in	iput nut with		امريما		Sivilos = Civilos compatible input or output
	թուտո		101012	F (= Outout
P = Power				(DD = Open-Drain (no P diode to VDD)
DIG = Digital output					

TABLE 1-4: PIC18F4XJ11 PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: RA7 and RA6 will be disabled if OSC1 and OSC2 are used for the clock function.

2.4 Voltage Regulator Pins (VCAP/ VDDCORE)

When the regulator is enabled ("F" devices), a low-ESR (< 5 Ω) capacitor is required on the VCAP/VDDCORE pin to stabilize the voltage regulator output voltage. The VCAP/VDDCORE pin must not be connected to VDD and must use a capacitor of 10 μ F connected to ground. The type can be ceramic or tantalum. Suitable examples of capacitors are shown in Table 2-1. Capacitors with equivalent specifications can be used.

Designers may use Figure 2-3 to evaluate ESR equivalence of candidate devices.

It is recommended that the trace length not exceed 0.25 inch (6 mm). Refer to **Section 28.0** "**Electrical Characteristics**" for additional information.

When the regulator is disabled ("LF" devices), the VCAP/VDDCORE pin must be tied to a voltage supply at the VDDCORE level. Refer to **Section 28.0** "**Electrical Characteristics**" for information on VDD and VDDCORE.

Note that the "LF" versions are provided with the voltage regulator permanently disabled; they must always be provided with a supply voltage on the VDDCORE pin.

FIGURE 2-3: FREQUENCY vs. ESR PERFORMANCE FOR SUGGESTED VCAP

TABLE 2-1: SUITABLE CAPACITOR EQUIVALENTS

Make	Part #	Nominal Capacitance	Base Tolerance	Rated Voltage	Temp. Range
TDK	C3216X7R1C106K	10 µF	±10%	16V	-55 to 125°C
TDK	C3216X5R1C106K	10 µF	±10%	16V	-55 to 85°C
Panasonic	ECJ-3YX1C106K	10 µF	±10%	16V	-55 to 125°C
Panasonic	ECJ-4YB1C106K	10 µF	±10%	16V	-55 to 85°C
Murata	GRM32DR71C106KA01L	10 µF	±10%	16V	-55 to 125°C
Murata	GRM31CR61C106KC31L	10 µF	±10%	16V	-55 to 85°C

5.7 Reset State of Registers

Most registers are unaffected by a Reset. Their status is unknown on POR and unchanged by all other Resets. The other registers are forced to a "Reset state" depending on the type of Reset that occurred.

Most registers are not affected by a WDT wake-up, since this is viewed as the resumption of normal operation. Status bits from the RCON register (CM, RI,

TO, PD, POR and BOR) are set or cleared differently in different Reset situations, as indicated in Table 5-1. These bits are used in software to determine the nature of the Reset.

Table 5-2 describes the Reset states for all of the Special Function Registers. These are categorized by POR and BOR, MCLR and WDT Resets, and WDT wake-ups.

TABLE 5-1:	STATUS BITS, THEIR SIGNIFICANCE AND THE INITIALIZATION CONDITION FOR
	RCON REGISTER

Condition	Program	RCON Register						STKPTR Register	
Condition	Counter ⁽¹⁾	CM	RI	то	PD	POR	BOR	STKFUL	STKUNF
Power-on Reset	0000h	1	1	1	1	0	0	0	0
RESET instruction	0000h	u	0	u	u	u	u	u	u
Brown-out Reset	0000h	1	1	1	1	u	0	u	u
Configuration Mismatch Reset	0000h	0	u	u	u	u	u	u	u
MCLR Reset during power-managed Run modes	0000h	u	u	1	u	u	u	u	u
MCLR Reset during power-managed Idle modes and Sleep mode	0000h	u	u	1	0	u	u	u	u
MCLR Reset during full-power execution	0000h	u	u	u	u	u	u	u	u
Stack Full Reset (STVREN = 1)	0000h	u	u	u	u	u	u	1	u
Stack Underflow Reset (STVREN = 1)	0000h	u	u	u	u	u	u	u	1
Stack Underflow Error (not an actual Reset, STVREN = 0)	0000h	u	u	u	u	u	u	u	1
WDT time-out during full-power or power-managed Run modes	0000h	u	u	0	u	u	u	u	u
WDT time-out during power-managed Idle or Sleep modes	PC + 2	u	u	0	0	u	u	u	u
Interrupt exit from power-managed modes	PC + 2	u	u	u	0	u	u	u	u

Legend: u = unchanged

Note 1: When the wake-up is due to an interrupt and the GIEH or GIEL bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

TABLE 5-2.	INITIALIZAT		INS FOR ALL REGI	STERS (CONTINUEL	<i>י</i>)	
Register	Applicable Devices		Power-on Reset, Brown-out Reset, Wake From Deep Sleep	MCLR Resets WDT Reset RESET Instruction Stack Resets CM Resets	Wake-up via WDT or Interrupt	
PMDOUT2H ⁽⁵⁾		PIC18F4XJ11	0000 0000	0000 0000	uuuu uuuu	
PMDOUT2L ⁽⁵⁾	—	PIC18F4XJ11	0000 0000	0000 0000	uuuu uuuu	
PMDIN2H ⁽⁵⁾	—	PIC18F4XJ11	0000 0000	0000 0000	uuuu uuuu	
PMDIN2L ⁽⁵⁾	—	PIC18F4XJ11	0000 0000	0000 0000	uuuu uuuu	
PMEH ⁽⁵⁾	_	PIC18F4XJ11	0000 0000	0000 0000	uuuu uuuu	
PMEL ⁽⁵⁾	—	PIC18F4XJ11	0000 0000	0000 0000	uuuu uuuu	
PMSTATH ⁽⁵⁾	—	PIC18F4XJ11	00 0000	00 0000	uu uuuu	
PMSTATL ⁽⁵⁾	—	PIC18F4XJ11	10 1111	10 1111	uu uuuu	
CVRCON	PIC18F2XJ11	PIC18F4XJ11	0000 0000	0000 0000	uuuu uuuu	
TCLKCON	PIC18F2XJ11	PIC18F4XJ11	000	0uu	uuu	
DSGPR1 ⁽⁶⁾	PIC18F2XJ11	PIC18F4XJ11	uuuu uuuu	սսսս սսսս	uuuu uuuu	
DSGPR0 ⁽⁶⁾	PIC18F2XJ11	PIC18F4XJ11	uuuu uuuu	uuuu uuuu	uuuu uuuu	
DSCONH ⁽⁶⁾	PIC18F2XJ11	PIC18F4XJ11	0000	0uuu	uuuu	
DSCONL ⁽⁶⁾	PIC18F2XJ11	PIC18F4XJ11	000	u00	uuu	
DSWAKEH ⁽⁶⁾	PIC18F2XJ11	PIC18F4XJ11	0	0	u	
DSWAKEL ⁽⁶⁾	PIC18F2XJ11	PIC18F4XJ11	0-00 00-1	0-00 00-0	u-uu uu-u	
ANCON1	PIC18F2XJ11	PIC18F4XJ11	00-0 0000	00-0 0000	uu-u uuuu	
ANCON0	PIC18F2XJ11	PIC18F4XJ11	0000 0000	0000 0000	uuuu uuuu	
ODCON1	PIC18F2XJ11	PIC18F4XJ11	00	uu	uu	
ODCON2	PIC18F2XJ11	PIC18F4XJ11	00	uu	uu	
ODCON3	PIC18F2XJ11	PIC18F4XJ11	00	uu	uu	
RTCCFG	PIC18F2XJ11	PIC18F4XJ11	0-00 0000	u-uu uuuu	u-uu uuuu	
RTCCAL	PIC18F2XJ11	PIC18F4XJ11	0000 0000	uuuu uuuu	uuuu uuuu	
REFOCON	PIC18F2XJ11	PIC18F4XJ11	0-00 0000	0-00 0000	u-uu uuuu	
PADCFG1	PIC18F2XJ11	PIC18F4XJ11	000	000	uuu	
PPSCON	PIC18F2XJ11	PIC18F4XJ11	0	0	u	
RPINR24	PIC18F2XJ11	PIC18F4XJ11	1 1111	1 1111	u uuuu	
RPINR23	PIC18F2XJ11	PIC18F4XJ11	1 1111	1 1111	u uuuu	
RPINR22	PIC18F2XJ11	PIC18F4XJ11	1 1111	1 1111	u uuuu	
RPINR21	PIC18F2XJ11	PIC18F4XJ11	1 1111	1 1111	u uuuu	
RPINR17	PIC18F2XJ11	PIC18F4XJ11	1 1111	1 1111	u uuuu	
RPINR16	PIC18F2XJ11	PIC18F4XJ11	1 1111	1 1111	u uuuu	

TABLE 5-2: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition.

Note 1: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

3: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

- 4: See Table 5-1 for Reset value for specific condition.
- 5: Not implemented for PIC18F2XJ11 devices.
- 6: Not implemented on "LF" devices.

6.2.3 INSTRUCTIONS IN PROGRAM MEMORY

The program memory is addressed in bytes. Instructions are stored as 2 bytes or 4 bytes in program memory. The Least Significant Byte (LSB) of an instruction word is always stored in a program memory location with an even address (LSB = 0). To maintain alignment with instruction boundaries, the PC increments in steps of 2 and the LSB will always read '0' (see Section 6.1.3 "Program Counter").

Figure 6-5 provides an example of how instruction words are stored in the program memory.

The CALL and GOTO instructions have the absolute program memory address embedded into the instruction. Since instructions are always stored on word boundaries, the data contained in the instruction is a word address. The word address is written to PC<20:1>. which accesses the desired byte address in program memory. Instruction #2 in Figure 6-5 displays how the instruction, GOTO 0006h, is encoded in the program memory. Program branch instructions, which encode a relative address offset, operate in the same manner. The offset value stored in a branch instruction represents the number of single-word instructions that the PC will be offset by. Section 27.0 "Instruction Set Summary" provides further details of the instruction set.

FIGURE 6-5:	INSTRUCTIONS IN PROGRAM MEMORY	

	_		LSB = 1	LSB = 0	Word Address \downarrow
	Program M	lemory			000000h
	Byte Locat	ions \rightarrow			000002h
					000004h
					000006h
Instruction 1:	MOVLW	055h	0Fh	55h	000008h
Instruction 2:	GOTO	0006h	EFh	03h	00000Ah
			F0h	00h	00000Ch
Instruction 3:	MOVFF	123h, 456	n C1h	23h	00000Eh
			F4h	56h	000010h
					000012h
					000014h

6.2.4 **TWO-WORD INSTRUCTIONS**

The standard PIC18 instruction set has four two-word instructions: CALL, MOVFF, GOTO and LSFR. In all cases, the second word of the instructions always has '1111' as its four Most Significant bits (MSbs); the other 12 bits are literal data, usually a data memory address.

The use of '1111' in the 4 MSbs of an instruction specifies a special form of NOP. If the instruction is executed in proper sequence immediately after the first word, the data in the second word is accessed and

used by the instruction sequence. If the first word is skipped for some reason, and the second word is executed by itself, a NOP is executed instead. This is necessary for cases when the two-word instruction is preceded by a conditional instruction that changes the PC. Example 6-4 illustrates how this works.

Note: See Section 6.5 "Program Memory and the Extended Instruction Set" for information on two-word instructions in the extended instruction set.

EXAMPLE 6-4: **TWO-WORD INSTRUCTIONS**

CASE 1:		
Object Code	Source Code	
0110 0110 0000 0000	TSTFSZ REG1	; is RAM location 0?
1100 0001 0010 0011	MOVFF REG1,	REG2 ; No, skip this word
1111 0100 0101 0110		; Execute this word as a NOP
0010 0100 0000 0000	ADDWF REG3	; continue code
CASE 2:		
Object Code	Source Code	
0110 0110 0000 0000	TSTFSZ REG1	; is RAM location 0?
1100 0001 0010 0011	MOVFF REG1,	REG2 ; Yes, execute this word
1111 0100 0101 0110		; 2nd word of instruction
0010 0100 0000 0000	ADDWF REG3	; continue code

TABLE 6-3: NON-ACCESS BANK SPECIAL FUNCTION REGISTER MAP

Address	Name	Address	Name	Address	Name	Address	Name	Address	Name
F5Fh	PMCONH ⁽¹⁾	F3Fh	RTCCFG	F1Fh	_	EFFh	PPSCON	EDFh	_
F5Eh	PMCONL ⁽¹⁾	F3Eh	RTCCAL	F1Eh	_	EFEh	RPINR24	EDEh	RPOR24 ⁽¹⁾
F5Dh	PMMODEH ⁽¹⁾	F3Dh	REFOCON	F1Dh	_	EFDh	RPINR23	EDDh	RPOR23 ⁽¹⁾
F5Ch	PMMODEL ⁽¹⁾	F3Ch	PADCFG1	F1Ch	_	EFCh	RPINR22	EDCh	RPOR22 ⁽¹⁾
F5Bh	PMDOUT2H ⁽¹⁾	F3Bh	_	F1Bh	_	EFBh	RPINR21	EDBh	RPOR21 ⁽¹⁾
F5Ah	PMDOUT2L ⁽¹⁾	F3Ah	_	F1Ah	_	EFAh	—	EDAh	RPOR20 ⁽¹⁾
F59h	PMDIN2H ⁽¹⁾	F39h	_	F19h	_	EF9h	—	ED9h	RPOR19 ⁽¹⁾
F58h	PMDIN2L ⁽¹⁾	F38h	_	F18h	_	EF8h	—	ED8h	RPOR18
F57h	PMEH ⁽¹⁾	F37h	—	F17h	_	EF7h	RPINR17	ED7h	RPOR17
F56h	PMEL ⁽¹⁾	F36h	—	F16h	_	EF6h	RPINR16	ED6h	RPOR16
F55h	PMSTATH ⁽¹⁾	F35h	_	F15h	_	EF5h		ED5h	RPOR15
F54h	PMSTATL ⁽¹⁾	F34h	_	F14h	_	EF4h		ED4h	RPOR14
F53h	CVRCON	F33h	_	F13h	_	EF3h		ED3h	RPOR13
F52h	TCLKCON	F32h	_	F12h	_	EF2h		ED2h	RPOR12
F51h	_	F31h	_	F11h	_	EF1h		ED1h	RPOR11
F50h	—	F30h	—	F10h	—	EF0h	—	ED0h	RPOR10
F4Fh	DSGPR1 ⁽²⁾	F2Fh	—	F0Fh	—	EEFh	—	ECFh	RPOR9
F4Eh	DSGPR0 ⁽²⁾	F2Eh	—	F0Eh	—	EEEh	RPINR8	ECEh	RPOR8
F4Dh	DSCONH ⁽²⁾	F2Dh	—	F0Dh	—	EEDh	RPINR7	ECDh	RPOR7
F4Ch	DSCONL ⁽²⁾	F2Ch	—	F0Ch	—	EECh	RPINR6	ECCh	RPOR6
F4Bh	DSWAKEH ⁽²⁾	F2Bh	—	F0Bh	—	EEBh	—	ECBh	RPOR5
F4Ah	DSWAKEL ⁽²⁾	F2Ah	—	F0Ah	—	EEAh	RPINR4	ECAh	RPOR4
F49h	ANCON1	F29h	—	F09h	—	EE9h	RPINR3	EC9h	RPOR3
F48h	ANCON0	F28h	—	F08h	—	EE8h	RPINR2	EC8h	RPOR2
F47h	_	F27h	_	F07h	_	EE7h	RPINR1	EC7h	RPOR1
F46h	—	F26h	—	F06h	—	EE6h	—	EC6h	RPOR0
F45h	—	F25h	—	F05h	—	EE5h	—	EC5h	—
F44h	—	F24h	—	F04h	—	EE4h	—	EC4h	—
F43h	_	F23h	_	F03h	_	EE3h	_	EC3h	
F42h	ODCON1	F22h	_	F02h	_	EE2h	_	EC2h	_
F41h	ODCON2	F21h	_	F01h	_	EE1h	_	EC1h	_
F40h	ODCON3	F20h		F00h	_	EE0h	_	EC0h	

Note 1: This register is not available on 28-pin devices.

2: Deep Sleep registers are not available on LF devices.

TABLE 6-4: REGISTER FILE SUMMARY (PIC18F46J11 FAMILY)

File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on Page:
TOSU	— — Top-of-Stack Upper Byte (TOS<20:16>)							0 0000	69, 81	
TOSH	Top-of-Stack	High Byte (TC	S<15:8>)						0000 0000	69, 79
TOSL	Top-of-Stack	Low Byte (TO	S<7:0>)						0000 0000	69, 79
STKPTR	STKFUL	STKUNF	_	SP4	SP3	SP2	SP1	SP0	00-0 0000	69, 80
PCLATU	_	_	bit 21 ⁽¹⁾	Holding Regi	ister for PC<20	:16>			0 0000	69, 79
PCLATH	Holding Regi	ster for PC<15	5:8>						0000 0000	69, 79
PCL	PC Low Byte	(PC<7:0>)							0000 0000	69, 79
TBLPTRU	—	_	bit 21	Program Me	mory Table Poi	nter Upper Byte	(TBLPTR<20:1	6>)	00 0000	69, 112
TBLPTRH	Program Mer	mory Table Poi	inter High Byte	e (TBLPTR<15	5:8>)				0000 0000	69, 112
TBLPTRL	Program Mer	mory Table Poi	inter Low Byte	(TBLPTR<7:0)>)				0000 0000	69, 112
TABLAT	Program Mer	mory Table Lat	ch						0000 0000	69, 112
PRODH	Product Regi	ster High Byte							xxxx xxxx	69, 69
PRODL	Product Regi	ster Low Byte							xxxx xxxx	69, 113
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	0000 000x	69, 117
INTCON2	RBPU	INTEDG0	INTEDG1	INTEDG2	INTEDG3	TMR0IP	INT3IP	RBIP	1111 1111	69, 118
INTCON3	INT2IP	INT1IP	INT3IE	INT2IE	INT1IE	INT3IF	INT2IF	INT1IF	1100 0000	69, 119
INDF0	Uses contents of FSR0 to address data memory - value of FSR0 not changed (not a physical register)						N/A	69, 98		
POSTINC0	Uses contents of FSR0 to address data memory – value of FSR0 post-incremented (not a physical register) N/A							69, 99		
POSTDEC0	Uses contents of FSR0 to address data memory – value of FSR0 post-decremented (not a physical register) N/A						N/A	69, 99		
PREINC0	Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented (not a physical register) N/A 69,						69, 99			
PLUSW0	Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented (not a physical register) – value N/A 69, 9 of FSR0 offset by W							69, 99		
FSR0H	_	—	_	_	Indirect Data	Memory Addres	s Pointer 0 Higł	n Byte	0000	69, 98
FSR0L	Indirect Data	Memory Addr	ess Pointer 0 I	Low Byte					XXXX XXXX	69, 98
WREG	Working Reg	ister							xxxx xxxx	69, 81
INDF1	Uses content	ts of FSR1 to a	address data n	nemory – valu	e of FSR1 not o	changed (not a	physical register	r)	N/A	69, 98
POSTINC1	Uses content	ts of FSR1 to a	address data n	nemory – valu	e of FSR1 post	-incremented (n	ot a physical re	gister)	N/A	69, 99
POSTDEC1	Uses content	ts of FSR1 to a	address data n	nemory – valu	e of FSR1 post	-decremented (not a physical re	egister)	N/A	69, 99
PREINC1	Uses content	ts of FSR1 to a	address data n	nemory – valu	e of FSR1 pre-	ncremented (no	ot a physical reg	ister)	N/A	69, 99
PLUSW1	Uses content of FSR1 offse	is of FSR1 to a et by W	ddress data m	nemory – value	e of FSR1 pre-i	ncremented (no	t a physical regi	ster) – value	N/A	69, 99
FSR1H	—	—	_	—	Indirect Data	Memory Addres	s Pointer 1 High	n Byte	0000	69, 98
FSR1L	Indirect Data	Memory Addr	ess Pointer 1 I	Low Byte					xxxx xxxx	69, 98
BSR	—	—	_	—	Bank Select F	Register			0000	69, 84
INDF2	Uses content	ts of FSR2 to a	address data n	nemory – valu	e of FSR2 not o	changed (not a	physical register	r)	N/A	69, 98
POSTINC2	Uses content	ts of FSR2 to a	address data n	nemory – valu	e of FSR2 post	-incremented (n	ot a physical re	gister)	N/A	70, 99
POSTDEC2	Uses content	ts of FSR2 to a	address data n	nemory – valu	e of FSR2 post	-decremented (not a physical re	egister)	N/A	70, 99
PREINC2	Uses content	ts of FSR2 to a	address data n	nemory – valu	e of FSR2 pre-	ncremented (no	ot a physical reg	ister)	N/A	70, 99
PLUSW2	Uses content of FSR2 offse	ts of FSR2 to a et by W	ddress data m	nemory – value	e of FSR2 pre-i	ncremented (no	t a physical regi	ster) – value	N/A	70, 99
FSR2H	_	_	_	_	Indirect Data	Memory Addres	s Pointer 2 High	n Byte	0000	70, 98
FSR2L	Indirect Data	Memory Addr	ess Pointer 2 I	Low Byte					xxxx xxxx	70, 98

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition, r = reserved. Bold indicates shared access SFRs.

Note 1: Bit 21 of the PC is only available in Serial Programming (SP) modes.

2: Reset value is '0' when Two-Speed Start-up is enabled and '1' if disabled.

3: The SSPxMSK registers are only accessible when SSPxCON2<3:0> = 1001.

4: Alternate names and definitions for these bits when the MSSP module is operating in I²C[™] Slave mode. See Section 19.5.3.2 "Address Masking Modes" for details.

5: These bits and/or registers are only available in 44-pin devices; otherwise, they are unimplemented and read as '0'. Reset values are shown for 44-pin devices.

6: The PMADDRH/PMDOUT1H and PMADDRL/PMDOUT1L register pairs share the same physical registers and addresses, but have different functions determined by the module's operating mode. See Section 11.1.2 "Data Registers" for more information.

13.0 TIMER1 MODULE

The Timer1 timer/counter module incorporates these features:

- Software selectable operation as a 16-bit timer or counter
- Readable and writable 8-bit registers (TMR1H and TMR1L)
- Selectable clock source (internal or external) with device clock or Timer1 oscillator internal options
- Interrupt-on-overflow
- Reset on ECCP Special Event Trigger
- Device clock status flag (T1RUN)
- · Timer with gated control

Figure 13-1 displays a simplified block diagram of the Timer1 module.

The module incorporates its own low-power oscillator to provide an additional clocking option. The Timer1 oscillator can also be used as a low-power clock source for the microcontroller in power-managed operation.

Timer1 is controlled through the T1CON Control register (Register 13-1). It also contains the Timer1 oscillator Enable bit (T1OSCEN). Timer1 can be enabled or disabled by setting or clearing control bit, TMR1ON (T1CON<0>).

The Fosc clock source (TMR1CS<1:0> = 01) should not be used with the ECCP capture/compare features. If the timer will be used with the capture or compare features, always select one of the other timer clocking options.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
TMR1CS1	TMR1CS0	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	RD16	TMR10N
bit 7							bit 0

REGISTER 13-1: T1CON: TIMER1 CONTROL REGISTER (ACCESS FCDh)

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 7-6	TMR1CS<1:0>: Timer1 Clock Source Select bits 10 = Timer1 clock source is T1OSC or T1CKI pin 01 = Timer1 clock source is system clock (Fosc) ⁽¹⁾ 00 = Timer1 clock source is instruction clock (Fosc/4)
bit 5-4	T1CKPS<1:0>: Timer1 Input Clock Prescale Select bits 11 = 1:8 Prescale value 10 = 1:4 Prescale value 01 = 1:2 Prescale value 00 = 1:1 Prescale value
bit 3	T1OSCEN: Timer1 Crystal Oscillator Enable bit 1 = Timer1 oscillator circuit enabled 0 = Timer1 oscillator circuit disabled The oscillator inverter and feedback resistor are turned off to eliminate power drain.
bit 2	TISYNC: Timer1 External Clock Input Synchronization Select bitTMR1CS<1:0> = 10:1 = Do not synchronize external clock input0 = Synchronize external clock inputTMR1CS<1:0> = 0x:This bit is ignored. Timer1 uses the internal clock when TMR1CS<1:0> = 0x.
bit 1	 RD16: 16-Bit Read/Write Mode Enable bit 1 = Enables register read/write of Timer1 in one 16-bit operation 0 = Enables register read/write of Timer1 in two 8-bit operations
bit 0	TMR1ON: Timer1 On bit 1 = Enables Timer1 0 = Stops Timer1

Note 1: The FOSC clock source should not be selected if the timer will be used with the ECCP capture/compare features.

FIGURE 13-7: TIMER1 GATE SINGLE PULSE AND TOGGLE COMBINED MODE TMR1GE T1GPOL T1GSPM T1GTM Cleared by Hardware on T1GGO/ Set by Software Falling Edge of T1GVAL T1DONE Counting Enabled on Rising Edge of T1G T1G_IN T1CKI T1GVAL Timer1 N + 1 Ν N + 2 N + 3 N + 4 Cleared by Software Set by Hardware on Cleared by Software Falling Edge of T1GVAL RTCCIF

|--|

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	90
PIR1	PMPIF ⁽¹⁾	ADIF	RC1IF	TX1IF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	92
PIE1	PMPIE ⁽¹⁾	ADIE	RC1IE	TX1IE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	92
IPR1	PMPIP ⁽¹⁾	ADIP	RC1IP	TX1IP	SSP1IP	CCP1IP	TMR2IP	TMR1IP	92
TMR1L	Timer1 Register Low Byte								
TMR1H	Timer1 Reg	gister High B	yte						91
T1CON	TMR1CS1	TMR1CS0	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	RD16	TMR10N	91
T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T1GGO/ T1DONE	T1GVAL	T1GSS1	T1GSS0	92
TCLKCON		_		T1RUN			T3CCP2	T3CCP1	94

Legend: Shaded cells are not used by the Timer1 module.

Note 1: These bits are only available in 44-pin devices.

PxM1 PxM0 DCxB1 DCxB0 CCPxM3 CCPxM2 CCPxM1 C	CPxM0							
bit 7	bit 0							
Legend:								
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'								
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown	ı							
bit 7-6 PxM<1:0>: Enhanced PWM Output Configuration bits								
<u>If CCPxM<3:2> = 00, 01, 10:</u>								
xx = PxA assigned as capture/compare input/output; PxB, PxC and PxD assigned as port p	pins							
<u>If CCPxM<3:2> = 11:</u>								
00 = Single output: PxA, PxB, PxC and PxD controlled by steering (see Section 18.5.7 "Pulse	e Steering							
Mode")								
10 = Half-bridge output: PxA. PxB modulated with dead-band control: PxC and PxD ass	signed as							
port pins								
11 = Full-bridge output reverse: PxB modulated; PxC active; PxA and PxD inactive								
bit 5-4 DCxB<1:0>: PWM Duty Cycle bit 1 and bit 0								
Capture mode:								
Unused.								
Compare mode:	mode:							
<u>PWM mode:</u> These bits are the two I She of the 10 bit DWM duty evels. The eight MShe of the duty evels of	ara found							
in CCPRxI								
hit 3-0 CCPxM<3:0>: ECCPx Mode Select hits								
0.0.0 = Canture/Compare/PWM off (resets ECCPx module)								
0001 = Reserved								
0010 = Compare mode, toggle output on match								
0011 = Capture mode								
0100 = Capture mode, every falling edge								
0101 = Capture mode, every rising edge								
0110 = Capture mode, every 4th rising edge								
1000 = Compare mode, initialize ECCPx pin low set output on compare match (set CCPx)	IF)							
1001 = Compare mode, initialize ECCPx pin high, clear output on compare match (set CCF	PxIF)							
1010 = Compare mode, generate software interrupt only, ECCPx pin reverts to I/O state	/							
1011 = Compare mode, trigger special event (ECCPx resets TMR1 or TMR3, starts A/D co	onversion,							
sets CCxIF bit)								
1100 = PWM mode; PxA and PxC active-high; PxB and PxD active-high								
1101 = PWM mode; PxA and PxC active-high; PxB and PxD active-low								
1111 = PWW mode; PXA and PXC active-low; PXB and PXD active-high								

REGISTER 18-1: CCPxCON: ECCPx CONTROL (ACCESS FBAh/FB4h)

ECCP Mode	PxM<1:0>	PxA	PxB	PxC	PxD
Single	00	Yes ⁽¹⁾	Yes ⁽¹⁾	Yes ⁽¹⁾	Yes ⁽¹⁾
Half-Bridge	10	Yes	Yes	No	No
Full-Bridge, Forward	01	Yes	Yes	Yes	Yes
Full-Bridge, Reverse	11	Yes	Yes	Yes	Yes

TABLE 18-4: EXAMPLE PIN ASSIGNMENTS FOR VARIOUS PWM ENHANCED MODES

Note 1: Outputs are enabled by pulse steering in Single mode (see Register 18-4).

FIGURE 18-6: EXAMPLE PWM (ENHANCED MODE) OUTPUT RELATIONSHIPS (ACTIVE-HIGH STATE)

			1 - -	4	Period	
00	(Single Output)	PxA Modulated	:) Delav(1)		
		PxA Modulated				
10	(Half-Bridge)	PxB Modulated	;			
		PxA Active	!		<u> </u>	
0.1	(Full-Bridge,	PxB Inactive	!		1 1	1 1 1
01	Forward)	PxC Inactive				
		PxD Modulated	- - -		-	
		PxA Inactive			1 1 1	1 1 1
11 (F F	(Full-Bridge,	PxB Modulated				
	Reverse)	PxC Active				
		PxD Inactive			1 1 1	
Dale			•			•

Delay = 4 * Tosc * (ECCPxDEL<6:0>)

Note 1: Dead-band delay is programmed using the ECCPxDEL register (Section 18.5.6 "Programmable Dead-Band Delay Mode").

REGISTER 19-7: SSPxCON2: MSSPx CONTROL REGISTER 2 –I²C[™] MASTER MODE (ACCESS FC5h/F71h)

R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
GCEN ⁽³	ACKSTAT	ACKDT ⁽¹⁾	ACKEN ⁽²⁾	RCEN ⁽²⁾	PEN ⁽²⁾	RSEN ⁽²⁾	SEN ⁽²⁾		
bit 7							bit 0		
Legend:									
R = Reada	able bit	W = Writable I	oit	U = Unimplen	nented bit, rea	d as '0'			
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own		
bit 7	GCEN: General 1 = Enable int 0 = General c	ral Call Enable errupt when a all address disa	bit (Slave moo general call ac abled	le only) ⁽³⁾ Idress (0000h)	is received in t	the SSPxSR			
bit 6	ACKSTAT: Ac 1 = Acknowle 0 = Acknowle	ACKSTAT: Acknowledge Status bit (Master Transmit mode only) 1 = Acknowledge was not received from slave 0 = Acknowledge was received from slave							
bit 5	ACKDT: Acknowledge Data bit (Master Receive mode only) ⁽¹⁾ 1 = Not Acknowledge 0 = Acknowledge								
bit 4	 ACKEN: Acknowledge Sequence Enable bit⁽²⁾ 1 = Initiates Acknowledge sequence on SDAx and SCLx pins and transmits ACKDT data bit; automatically cleared by hardware 0 = Acknowledge sequence Idle 								
bit 3	RCEN: Recei 1 = Enables F 0 = Receive Io	RCEN: Receive Enable bit (Master Receive mode only) ⁽²⁾ 1 = Enables Receive mode for I ² C 0 = Receive Idle							
bit 2	PEN: Stop Co 1 = Initiates S 0 = Stop cond	ndition Enable top condition o lition Idle	bit ⁽²⁾ n SDAx and S	CLx pins; autor	natically cleare	ed by hardware			
bit 1	RSEN: Repea 1 = Initiates F 0 = Repeated	ated Start Cond Repeated Start I Start conditior	ition Enable bi condition on S n Idle	it (2) DAx and SCLx	pins; automat	ically cleared by	/ hardware		
bit 0	SEN: Start Co 1 = Initiates S 0 = Start cond	SEN: Start Condition Enable bit ⁽²⁾ 1 = Initiates Start condition on SDAx and SCLx pins; automatically cleared by hardware 0 = Start condition Idle							
Note 1: 2:	Value that will be If the I ² C module	transmitted whe	en the user ini bits may not t	tiates an Ackno be set (no spoo	wledge seque ling) and the S	nce at the end o SPxBUF may n	of a receive. ot be written		

- (or writes to the SSPxBUF are disabled).
- **3:** This bit is not implemented in I^2C Master mode.

REGISTER 2	20-3: BAUD	DCONx: BAU	D RATE CO	NTROL REG	ISTER (ACCI	ESS F7Eh/F7	Ch)
R/W-0	R-1	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
ABDOVF	RCIDL	RXDTP	TXCKP	BRG16	—	WUE	ABDEN
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplei	mented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7	ABDOVF: Au	to-Baud Acquis	sition Rollover	Status bit			
	1 = A BRG ro 0 = No BRG	ollover has occo rollover has oc	urred during A curred	uto-Baud Rate	Detect mode (must be cleared	d in software)
bit 6	RCIDL: Rece	ive Operation I	dle Status bit				
	1 = Receive o	peration is Idle					
bit 5		Receive Polar	ity Select hit				
bit o	Asynchronous	s mode:					
	1 = Receive d	lata (RXx) is in	verted (active-	low)			
	0 = Receive d	lata (RXx) is no	ot inverted (act	ive-high)			
	$\frac{\text{Synchronous}}{1 = \text{Data}(DT)}$	<u>mode:</u> () is inverted (a	ctive-low)				
	0 = Data (DT)	() is not inverte	d (active-high)	1			
bit 4	TXCKP: Sync	hronous Clock	Polarity Selec	t bit			
	Asynchronous	s mode:					
	1 = Idle state 0 = Idle state	for transmit (1)	(x) is a low lev (x) is a high le	rel vel			
	Synchronous	mode:	(X) lo a high lo				
	1 = Idle state	for clock (CKx)	is a high leve	l			
	0 = Idle state	for clock (CKx)	is a low level				
bit 3	BRG16: 16-B	it Baud Rate R	egister Enable	bit			
	1 = 16-bit Bau 0 = 8-bit Bauc	d Rate General Rate Generat	ator – SPBRGI or – SPBRGx	only (Compatil	5x ple mode), SPE	RGHx value ig	nored
bit 2	Unimplemen	ted: Read as ')'				
bit 1	WUE: Wake-u	up Enable bit					
	Asynchronous	<u>s mode:</u>				.	
	1 = EUSARI hardware	will continue to on following ri	o sample the H sing edge	RXX pin – inter	rupt generated	on falling edge	; bit cleared in
	0 = RXx pin r	not monitored c	or rising edge of	letected			
	Synchronous	mode:					
	Unused in this	s mode.					
bit 0	ABDEN: Auto	-Baud Detect I	Enable bit				
	Asynchronous 1 = Enable b	<u>s mode:</u> aud rate meas	urement on th	e next charac	ter: requires re	cention of a Sv	nc field (55h).
	cleared in	n hardware upo	on completion				
	0 = Baud rate	e measuremen	t disabled or co	ompleted			
	Synchronous	<u>mode:</u>					
		s moue.					

25.1 CTMU Operation

The CTMU works by using a fixed current source to charge a circuit. The type of circuit depends on the type of measurement being made. In the case of charge measurement, the current is fixed, and the amount of time the current is applied to the circuit is fixed. The amount of voltage read by the A/D is then a measurement of the capacitance of the circuit. In the case of time measurement, the current, as well as the capacitance of the circuit, is fixed. In this case, the voltage read by the A/D is then representative of the amount of time elapsed from the time the current source starts and stops charging the circuit.

If the CTMU is being used as a time delay, both capacitance and current source are fixed, as well as the voltage supplied to the comparator circuit. The delay of a signal is determined by the amount of time it takes the voltage to charge to the comparator threshold voltage.

25.1.1 THEORY OF OPERATION

The operation of the CTMU is based on the equation for charge:

$$I = C \cdot \frac{dV}{dT}$$

More simply, the amount of charge measured in coulombs in a circuit is defined as current in amperes (*I*) multiplied by the amount of time in seconds that the current flows (*t*). Charge is also defined as the capacitance in farads (*C*) multiplied by the voltage of the circuit (*V*). It follows that:

$$I \cdot t = C \cdot V$$

The CTMU module provides a constant, known current source. The A/D Converter is used to measure (V) in the equation, leaving two unknowns: capacitance (C) and time (t). The above equation can be used to calculate capacitance or time, by either the relationship using the known fixed capacitance of the circuit:

$$t = (C \cdot V) / I$$

or by:

$$C = (I \cdot t) / V$$

using a fixed time that the current source is applied to the circuit.

25.1.2 CURRENT SOURCE

At the heart of the CTMU is a precision current source, designed to provide a constant reference for measurements. The level of current is user-selectable across three ranges or a total of two orders of magnitude, with the ability to trim the output in $\pm 2\%$ increments (nominal). The current range is selected by the IRNG<1:0> bits (CTMUICON<1:0>), with a value of '01' representing the lowest range.

Current trim is provided by the ITRIM<5:0> bits (CTMUICON<7:2>). These six bits allow trimming of the current source in steps of approximately 2% per step. Note that half of the range adjusts the current source positively and the other half reduces the current source. A value of '000000' is the neutral position (no change). A value of '100001' is the maximum negative adjustment (approximately -62%) and '011111' is the maximum positive adjustment (approximately +62%).

25.1.3 EDGE SELECTION AND CONTROL

CTMU measurements are controlled by edge events occurring on the module's two input channels. Each channel, referred to as Edge 1 and Edge 2, can be configured to receive input pulses from one of the edge input pins (CTED1 and CTED2) or ECCPx Special Event Triggers. The input channels are level-sensitive, responding to the instantaneous level on the channel rather than a transition between levels. The inputs are selected using the EDG1SEL and EDG2SEL bit pairs (CTMUCONL<3:2 and 6:5>).

In addition to source, each channel can be configured for event polarity using the EDGE2POL and EDGE1POL bits (CTMUCONL<7,4>). The input channels can also be filtered for an edge event sequence (Edge 1 occurring before Edge 2) by setting the EDGSEQEN bit (CTMUCONH<2>).

25.1.4 EDGE STATUS

The CTMUCONL register also contains two status bits: EDG2STAT and EDG1STAT (CTMUCONL<1:0>). Their primary function is to show if an edge response has occurred on the corresponding channel. The CTMU automatically sets a particular bit when an edge response is detected on its channel. The level-sensitive nature of the input channels also means that the status bits become set immediately if the channel's configuration is changed and is the same as the channel's current state.

The module uses the edge status bits to control the current source output to external analog modules (such as the A/D Converter). Current is only supplied to external modules when only one (but not both) of the status bits is set, and shuts current off when both bits are either set or cleared. This allows the CTMU to measure current only during the interval between edges. After both status bits are set, it is necessary to clear them before another measurement is taken. Both bits should be cleared simultaneously, if possible, to avoid re-enabling the CTMU current source.

In addition to being set by the CTMU hardware, the edge status bits can also be set by software. This is also the user's application to manually enable or disable the current source. Setting either one (but not both) of the bits enables the current source. Setting or clearing both bits at once disables the source.

TSTFSZ	Test f, Skip	Test f, Skip if 0					
Syntax:	TSTFSZ f {	,a}					
Operands:	$0 \leq f \leq 255$	$0 \leq f \leq 255$					
	a ∈ [0,1]						
Operation:	skip if f = 0						
Status Affected:	None						
Encoding:	0110	011a fff	f ffff				
Description:	If 'f' = 0, the during the c is discarded making this	e next instructio current instruct d and a NOP is a two-cycle in	on fetched ion execution executed, struction.				
	lf 'a' is '0', tl If 'a' is '1', tl GPR bank (he Access Bar he BSR is used (default).	ik is selected. I to select the				
	If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 27.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed						
Words:							
Cycles: 1(2) Note: 3 cycles if skip and followed							
Q Cvcle Activity:	~ ,		ou on a				
Q1	Q2	Q3	Q4				
Decode	Read	Process	No				
	register 'f'	Data	operation				
lf skip:			_				
Q1	Q2	Q3	Q4				
NO	N0 operation	N0 operation	N0 operation				
If skip and followe	d by 2-word in:	struction:	oporation				
Q1	Q2	Q3	Q4				
No	No	No	No				
operation	operation	operation	operation				
No	No	No	No				
operation	operation	operation	operation				
Example:	HERE T NZERO ZERO	ISTFSZ CNT :	, 1				
Before Instruc	tion						
PC	= Ad	dress (HERE))				
After Instruction If CNT PC If CNT PC	Address (HERE) After Instruction If CNT = 00h, PC = Address (ZERO) If CNT \neq 00h, PC = Address (ZERO)						

XORLW		Exclusi	Exclusive OR Literal with W							
Syntax:		XORLW	XORLW k							
Oper	rands:	$0 \le k \le 2$	$0 \le k \le 255$							
Oper	ration:	(W) .XC	(W) .XOR. $k \rightarrow W$							
Statu	is Affected:	N, Z	N, Z							
Enco	oding:	0000		1010 kkkk		k	kkkk			
Desc	cription:	The cor the 8-bit in W.	The contents of W are XORed with the 8-bit literal 'k'. The result is placed in W.							
Words:		1								
Cycles:		1								
Q Cycle Activity:										
Q1		Q2		Q3		Q4				
Decode		Read literal 'k'		Process Data		Write to W				
Exar	<u>nple:</u>	XORLW		0xAF						
	Before Instruc W After Instructio	tion = B5h on								
	W	= 1Ah								

29.2 DC Characteristics: Power-Down and Supply Current PIC18F46J11 Family (Industrial) (Continued)

PIC18LFXXJ11 Family		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial								
PIC18FXXJ11 Family		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial								
Param No.	Device	Тур	Max	Units	Conditions					
Supply Current (IDD) ⁽²⁾										
	PIC18LFXXJ11	5.2	14.2	μΑ	-40°C		Fosc = 31 kHz, RC_RUN mode, Internal RC Oscillator, INTSRC = 0			
		6.2	14.2	μA	+25°C	VDD = 2.0V, VDDCORE = 2.0V				
		8.6	19.0	μA	+85°C	VDDCORE - 2.0V				
	PIC18LFXXJ11	7.6	16.5	μA	-40°C					
		8.5	16.5	μA	+25°C	VDD = 2.5V, VDDCORF = 2.5V				
		11.3	22.4	μA	+85°C					
	PIC18FXXJ11	37	77	μA	-40°C	VDD = 2.15V,				
		48	77	μA	+25°C	VDDCORE = 10 µF				
		60	93	μA	+85°C	Capacitor				
	PIC18FXXJ11	52	84	μA	-40°C	VDD = 3.3V,				
		61	84	μA	+25°C	VDDCORE = 10 μF				
		70	108	μA	+85°C	Capacitor				
	PIC18LFXXJ11	1.1	1.5	mA	-40°C					
		1.1	1.5	mA	+25°C	VDD = 2.0V, VDDCORE = 2.0V				
		1.2	1.6	mA	+85°C					
	PIC18LFXXJ11	1.5	1.7	mA	-40°C	Vpp = 2.5V				
		1.6	1.7	mA	+25°C	VDD = 2.5V, VDDCORE = 2.5V				
		1.6	1.9	mA	+85°C		Fosc = 4 MHz, RC_RUN			
	PIC18FXXJ11	1.3	2.6	mA	-40°C	VDD = 2.15V,	mode, Internal RC Oscillator			
		1.4	2.6	mA	+25°C	VDDCORE = $10 \mu F$	_			
		1.4	2.8	mA	+85°C	Capacitor				
	PIC18FXXJ11	1.6	2.9	mA	-40°C	VDD = 3.3V,				
		1.6	2.9	mA	+25°C	VDDCORE = $10 \mu F$				
		1.6	3.0	mA	+85°C	Capacitor				

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSs and all features that add delta current disabled (such as WDT, Timer1 oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption. All features that add delta current are disabled (WDT, etc.). The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD/VSS;

MCLR = VDD; WDT disabled unless otherwise specified.

3: Low-Power Timer1 with standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.

Param. No	Symbol	Characteristics	Min	Тур	Мах	Units
PM1		PMALL/PMALH Pulse Width		0.5 TCY		ns
PM2		Address Out Valid to PMALL/PMALH Invalid (address setup time)	—	0.75 Tcy	—	ns
PM3		PMALL/PMALH Invalid to Address Out Invalid (address hold time)	—	0.25 TCY	—	ns
PM5		PMRD Pulse Width	_	0.5 TCY	_	ns
PM6		PMRD or PMENB Active to Data In Valid (data setup time)	—	—	—	ns
PM7		PMRD or PMENB Inactive to Data In Invalid (data hold time)	—	—	—	ns

TABI E 29-17.	PARALLE	MASTER R	PORT READ	TIMING REQUIREMENTS
TADEE 23-17.				

44-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIM			
Dimension	MIN	NOM	MAX	
Contact Pitch	E	0.80 BSC		
Contact Pad Spacing	C1		11.40	
Contact Pad Spacing	C2		11.40	
Contact Pad Width (X44)	X1			0.55
Contact Pad Length (X44)	Y1			1.50
Distance Between Pads	G	0.25		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2076A