

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf26j11t-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	Pin N	umber					
Pin Name	44- QFN	44- TQFP	Pin Type	Buffer Type	Description		
MCLR	18	18	I	ST	Master Clear (Reset) input; this is an active-low Reset to the device.		
OSC1/CLKI/RA7 OSC1	32	30	I	ST	Oscillator crystal or external clock input. Oscillator crystal input or external clock source input. ST buffer when configured in RC mode; otherwise CMOS. Main oscillator input connection		
CLKI			I	CMOS	External clock source input; always associated with pin function OSC1 (see related OSC1/CLKI pins).		
RA7 ⁽¹⁾			I/O	TTL	Digital I/O.		
OSC2/CLKO/RA6 OSC2	33	31	0	_	Oscillator crystal or clock output Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode.		
CLKO			0	_	Main oscillator feedback output connection in RC mode, OSC2 pin outputs CLKO, which has 1/4 the frequency of OSC1 and denotes the instruction cycle rate		
RA6 ⁽¹⁾			I/O	TTL	Digital I/O.		
Legend: TTL = TTL compatible ST = Schmitt Trigger I = Input P = Power DIG = Digital output	input input with	CMOS	levels) / () ()	CMOS= CMOS compatible input or outputAnalog= Analog inputD= OutputDD= Open-Drain (no P diode to VDD)		

TABLE 1-4: PIC18F4XJ11 PINOUT I/O DESCRIPTIONS

Note 1: RA7 and RA6 will be disabled if OSC1 and OSC2 are used for the clock function.

4.6.9 DEEP SLEEP MODE REGISTERS

Deep Sleep mode registers are provided in Register 4-1 through Register 4-6.

REGISTER 4-1: DSCONH: DEEP SLEEP CONTROL HIGH BYTE REGISTER (BANKED F4Dh)

R/W-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
DSEN ⁽¹⁾	—	_	_	_	(Reserved)	DSULPEN	RTCWDIS
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7	bit 7 DSEN: Deep Sleep Enable bit ⁽¹⁾ 1 = Deep Sleep mode is entered on a SLEEP command 0 = Sleep mode is entered on a SLEEP command						
bit 6-3	Unimplement	ted: Read as '	כי				
bit 2	(Reserved): A	Always write '0'	to this bit				
bit 1	DSULPEN: U	Itra Low-Powe	r Wake-up Mo	dule Enable bi	it		
	1 = ULPWU r 0 = ULPWU r	module is enab module is disat	led in Deep S bled in Deep S	leep Sleep			
bit 0	RTCWDIS: R	TCC Wake-up	Disable bit				
	1 = Wake-up 0 = Wake-up	from RTCC is from RTCC is	disabled enabled				

Note 1: In order to enter Deep Sleep, Sleep must be executed immediately after setting DSEN.

REGISTER 4-2: DSCONL: DEEP SLEEP CONTROL LOW BYTE REGISTER (BANKED F4Ch)

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾
—	—	—	—	—	ULPWDIS	DSBOR	RELEASE
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-3	Unimplemented: Read as '0'
bit 2	ULPWDIS: Ultra Low-Power Wake-up Disable bit
	1 = ULPWU wake-up source is disabled
	0 = ULPWU wake-up source is enabled (must also set DSULPEN = 1)
bit 1	DSBOR: Deep Sleep BOR Event Status bit
	 1 = DSBOREN was enabled and VDD dropped below the DSBOR arming voltage during Deep Sleep, but did not fall below VDSBOR
	0 = DSBOREN was disabled or VDD did not drop below the DSBOR arming voltage during Deep Sleep
bit 0	RELEASE: I/O Pin State Release bit
	Upon waking from Deep Sleep, the I/O pins maintain their previous states. Clearing this bit will release the I/O pins and allow their respective TRIS and LAT bits to control their states.
Note 1:	This is the value when VDD is initially applied.

DS39932D-page 58

6.1.4.2 Return Stack Pointer (STKPTR)

The STKPTR register (Register 6-1) contains the Stack Pointer value, the STKFUL (Stack Full) and the STKUNF (Stack Underflow) status bits. The value of the Stack Pointer can be 0 through 31. The Stack Pointer increments before values are pushed onto the stack and decrements after values are popped off the stack. On Reset, the Stack Pointer value will be zero. The user may read and write the Stack Pointer value. This feature can be used by a Real-Time Operating System (RTOS) for return stack maintenance.

After the PC is pushed onto the stack 31 times (without popping any values off the stack), the STKFUL bit is set. The STKFUL bit is cleared by software or by a Power-on Reset (POR).

The action that takes place when the stack becomes full depends on the state of the Stack Overflow Reset Enable (STVREN) Configuration bit.

Refer to **Section 26.1 "Configuration Bits"** for device Configuration bits' description.

If STVREN is set (default), the 31^{st} push will push the (PC + 2) value onto the stack, set the STKFUL bit and reset the device. The STKFUL bit will remain set and the Stack Pointer will be set to zero.

If STVREN is cleared, the STKFUL bit will be set on the 31st push and the Stack Pointer will increment to 31. Any additional pushes will not overwrite the 31st push and the STKPTR will remain at 31.

When the stack has been popped enough times to unload the stack, the next pop will return zero to the PC and set the STKUNF bit, while the Stack Pointer remains at zero. The STKUNF bit will remain set until cleared by software or until a POR occurs.

Note:	Returning a value of zero to the PC on an
	underflow has the effect of vectoring the
	program to the Reset vector, where the
	stack conditions can be verified and
	appropriate actions can be taken. This is
	not the same as a Reset, as the contents
	of the SFRs are not affected.

6.1.4.3 PUSH and POP Instructions

Since the Top-of-Stack is readable and writable, the ability to push values onto the stack and pull values off the stack, without disturbing normal program execution is necessary. The PIC18 instruction set includes two instructions, PUSH and POP, that permit the TOS to be manipulated under software control. TOSU, TOSH and TOSL can be modified to place data or a return address on the stack.

The PUSH instruction places the current PC value onto the stack. This increments the Stack Pointer and loads the current PC value onto the stack.

The POP instruction discards the current TOS by decrementing the Stack Pointer. The previous value pushed onto the stack then becomes the TOS value.

REGISTER 6-1: STKPTR: STACK POINTER REGISTER (ACCESS FFCh)

R/C-0	R/C-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
STKFUL ⁽¹⁾	STKUNF ⁽¹⁾	—	SP4	SP3	SP2	SP1	SP0
bit 7							bit 0

Legend:	C = Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	STKFUL: Stack Full Flag bit ⁽¹⁾
	1 = Stack became full or overflowed
	0 = Stack has not become full or overflowed
bit 6	STKUNF: Stack Underflow Flag bit ⁽¹⁾
	1 = Stack underflow occurred
	0 = Stack underflow did not occur
bit 5	Unimplemented: Read as '0'
bit 4-0	SP<4:0>: Stack Pointer Location bits

Note 1: Bits 7 and 6 are cleared by user software or by a POR.

REGISTER 9-3: INTCON3: INTERRUPT CONTROL REGISTER 3 (ACCESS FF0h)

R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
INT2IP	INT1IP	INT3IE	INT2IE	INT1IE	INT3IF	INT2IF	INT1IF
bit 7		<u> </u>					bit 0
_ 							
Legend:							
R = Readabl	ie bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'	
-n = Value at	ι POR	'1' = Bit is set	•	'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 7	INT2IP: INT2	External Interr	rupt Priority bi	t			
	1 = High prior 0 = Low prior	rity rity	мр				
bit 6	INT1IP: INT1	External Interr	rupt Priority bi	t			
	1 = High prio 0 = Low prio	rity rity					
bit 5	INT3IE: INT3	External Interr	upt Enable bit	t			
	1 = Enables t 0 = Disables	the INT3 extern the INT3 extern	nal interrupt rnal interrupt				
bit 4	INT2IE: INT2	External Interr	upt Enable bit	t			
	1 = Enables t 0 = Disables	the INT2 extern the INT2 extern	nal interrupt				
bit 3	INT1IE: INT1	External Interr	rupt Enable bi	t			
••••	1 = Enables t 0 = Disables	the INT1 extern the INT1 exter	nal interrupt				
bit 2	INT3IF: INT3	External Interr	upt Flag bit				
	1 = The INT3 0 = The INT3	3 external interr 3 external inter	rupt occurred rupt did not oc	(must be cleare	d in software)		
bit 1	INT2IF: INT2	External Interr	upt Flag bit				
	1 = The INT2 0 = The INT2	2 external interr 2 external inter	rupt occurred rupt did not oc	(must be cleare	d in software)		
bit 0	INT1IF: INT1	External Interr	upt Flag bit				
	1 = The INT1 0 = The INT1	external interr external inter	rupt occurred or rupt did not oc	(must be cleare	d in software)		
Note: Ir	nterrupt flag bits	are set when	an interrupt c	ondition occurs	regardless of	the state of its	corresponding
er	nable bit or the G	Global Interrupt	: Enable bit. U	ser software she	ould ensure the	appropriate int no	terrupt flag bits

10.7.3.1 Input Mapping

The inputs of the PPS options are mapped on the basis of the peripheral; that is, a control register associated with a peripheral dictates the pin it will be mapped to. The RPINRx registers are used to configure peripheral input mapping (see Register 10-6 through Register 10-20). Each register contains a 5-bit field, which is associated with one of the pin selectable peripherals. Programming a given peripheral's bit field with an appropriate 5bit value maps the RPn pin with that value to that peripheral. For any given device, the valid range of values for any of the bit fields corresponds to the maximum number of peripheral pin selections supported by the device.

TABLE 10-13:	SELECTABLE INPUT SOURCES	(MAPS INPUT TO FUNCTION) ⁽¹⁾

Input Name	Function Name	Register	Configuration Bits
External Interrupt 1	INT1	RPINR1	INTR1R<4:0>
External Interrupt 2	INT2	RPINR2	INTR2R<4:0>
External Interrupt 3	INT3	RPINR3	INTR3R<4:0>
Timer0 External Clock Input	TOCKI	RPINR4	T0CKR<4:0>
Timer3 External Clock Input	T3CKI	RPINR6	T3CKR<4:0>
Input Capture 1	CCP1	RPINR7	IC1R<4:0>
Input Capture 2	CCP2	RPINR8	IC2R<4:0>
Timer1 Gate Input	T1G	RPINR12	T1GR<4:0>
Timer3 Gate Input	T3G	RPINR13	T3GR<4:0>
EUSART2 Asynchronous Receive/Synchronous Receive	RX2/DT2	RPINR16	RX2DT2R<4:0>
EUSART2 Asynchronous Clock Input	CK2	RPINR17	CK2R<4:0>
SPI2 Data Input	SDI2	RPINR21	SDI2R<4:0>
SPI2 Clock Input	SCK2IN	RPINR22	SCK2R<4:0>
SPI2 Slave Select Input	SS2IN	RPINR23	SS2R<4:0>
PWM Fault Input	FLT0	RPINR24	OCFAR<4:0>

Note 1: Unless otherwise noted, all inputs use the Schmitt Trigger input buffers.

11.1 Module Registers

The PMP module has a total of 14 Special Function Registers (SFRs) for its operation, plus one additional register to set configuration options. Of these, eight registers are used for control and six are used for PMP data transfer.

11.1.1 CONTROL REGISTERS

The eight PMP Control registers are:

- PMCONH and PMCONL
- PMMODEH and PMMODEL
- PMSTATL and PMSTATH
- PMEH and PMEL

The PMCON registers (Register 11-1 and Register 11-2) control basic module operations, including turning the module on or off. They also configure address multiplexing and control strobe configuration.

The PMMODE registers (Register 11-3 and Register 11-4) configure the various Master and Slave modes, the data width and interrupt generation.

The PMEH and PMEL registers (Register 11-5 and Register 11-6) configure the module's operation at the hardware (I/O pin) level.

The PMSTAT registers (Register 11-5 and Register 11-6) provide status flags for the module's input and output buffers, depending on the operating mode.

REGISTER 11-1: PMCONH: PARALLEL PORT CONTROL REGISTER HIGH BYTE (BANKED F5Fh)⁽¹⁾

R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0 R/W-0		R/W-0	
PMPEN	—	—	ADRMUX1	ADRMUX0	PTBEEN	PTWREN	PTRDEN	
bit 7 bit 0								

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	PMPEN: Parallel Master Port Enable bit
	1 = PMP enabled
	0 = PMP disabled, no off-chip access performed
bit 6-5	Unimplemented: Read as '0'
bit 4-3	ADRMUX<1:0>: Address/Data Multiplexing Selection bits
	11 = Reserved
	10 = All 16 bits of address are multiplexed on PMD<7:0> pins
	01 = Lower 8 bits of address are multiplexed on PMD<7:0> pins (only eight bits of address are available in this mode)
	00 = Address and data appear on separate pins (only eight bits of address are available in this mode)
bit 2	PTBEEN: Byte Enable Port Enable bit (16-Bit Master mode)
	1 = PMBE port enabled
	0 = PMBE port disabled
bit 1	PTWREN: Write Enable Strobe Port Enable bit
	1 = PMWR/PMENB port enabled
	0 = PMWR/PMENB port disabled
bit 0	PTRDEN: Read/Write Strobe Port Enable bit
	1 = PMRD/PMWR port enabled
	1 = PMRD/PMWR port enabled 0 = PMRD/PMWR port disabled

Note 1: This register is only available in 44-pin devices.

11.3 MASTER PORT MODES

In its Master modes, the PMP module provides an 8-bit data bus, up to 16 bits of address, and all the necessary control signals to operate a variety of external parallel devices, such as memory devices, peripherals and slave microcontrollers. To use the PMP as a master, the module must be enabled (PMPEN = 1) and the mode must be set to one of the two possible Master modes (PMMODEH<1:0> = 10 or 11).

Because there are a number of parallel devices with a variety of control methods, the PMP module is designed to be extremely flexible to accommodate a range of configurations. Some of these features include:

- · 8-Bit and 16-Bit Data modes on an 8-bit data bus
- · Configurable address/data multiplexing
- Up to two chip select lines
- Up to 16 selectable address lines
- · Address auto-increment and auto-decrement
- · Selectable polarity on all control lines
- Configurable Wait states at different stages of the read/write cycle

11.3.1 PMP AND I/O PIN CONTROL

Multiple control bits are used to configure the presence or absence of control and address signals in the module. These bits are PTBEEN, PTWREN, PTRDEN and PTEN<15:0>. They give the user the ability to conserve pins for other functions and allow flexibility to control the external address. When any one of these bits is set, the associated function is present on its associated pin; when clear, the associated pin reverts to its defined I/O port function.

Setting a PTENx bit will enable the associated pin as an address pin and drive the corresponding data contained in the PMADDR register. Clearing a PTENx bit will force the pin to revert to its original I/O function.

For the pins configured as chip select (PMCS) with the corresponding PTENx bit set, the PTEN0 and PTEN1 bits will also control the PMALL and PMALH signals. When multiplexing is used, the associated address latch signals should be enabled.

11.3.2 READ/WRITE CONTROL

The PMP module supports two distinct read/write signaling methods. In Master Mode 1, read and write strobes are combined into a single control line, PMRD/PMWR. A second control line, PMENB, determines when a read or write action is to be taken. In Master Mode 2, separate read and write strobes (PMRD and PMWR) are supplied on separate pins.

All control signals (PMRD, PMWR, PMBE, PMENB, PMAL and PMCS) can be individually configured as either positive or negative polarity. Configuration is controlled by separate bits in the PMCONL register.

Note that the polarity of control signals that share the same output pin (for example, PMWR and PMENB) are controlled by the same bit; the configuration depends on which Master Port mode is being used.

11.3.3 DATA WIDTH

The PMP supports data widths of both 8 bits and 16 bits. The data width is selected by the MODE16 bit (PMMODEH<2>). Because the data path into and out of the module is only 8 bits wide, 16-bit operations are always handled in a multiplexed fashion, with the Least Significant Byte (LSB) of data being presented first. To differentiate data bytes, the byte enable control strobe, PMBE, is used to signal when the Most Significant Byte (MSB) of data is being presented on the data lines.

11.3.4 ADDRESS MULTIPLEXING

In either of the Master modes (PMMODEH<1:0> = 1x), the user can configure the address bus to be multiplexed together with the data bus. This is accomplished by using the ADRMUX<1:0> bits (PMCONH<4:3>). There are three address multiplexing modes available; typical pinout configurations for these modes are displayed in Figure 11-9, Figure 11-10 and Figure 11-11.

In Demultiplexed mode (PMCONH<4:3> = 00), data and address information are completely separated. Data bits are presented on PMD<7:0> and address bits are presented on PMADDRH<6:0> and PMADDRL<7:0>.

In Partially Multiplexed mode (PMCONH<4:3> = 01), the lower eight bits of the address are multiplexed with the data pins on PMD<7:0>. The upper eight bits of address are unaffected and are presented on PMADDRH<6:0>. The PMA0 pin is used as an address latch, and presents the address latch low enable strobe (PMALL). The read and write sequences are extended by a complete CPU cycle during which the address is presented on the PMD<7:0> pins.

In Fully Multiplexed mode (PMCONH<4:3> = 10), the entire 16 bits of the address are multiplexed with the data pins on PMD<7:0>. The PMA0 and PMA1 pins are used to present address latch low enable (PMALL) and address latch high enable (PMALH) strobes, respectively. The read and write sequences are extended by two complete CPU cycles. During the first cycle, the lower eight bits of the address are presented on the PMD<7:0> pins with the PMALL strobe active. During the second cycle, the upper eight bits of the address are presented on the PMD<7:0> pins with the PMALH strobe active. In the event the upper address bits are configured as chip select pins, the corresponding address bits are automatically forced to '0'.

13.8.3 TIMER1 GATE TOGGLE MODE

When Timer1 Gate Toggle mode is enabled, it is possible to measure the full cycle length of a Timer1 gate signal, as opposed to the duration of a single level pulse.

The Timer1 gate source is routed through a flip-flop that changes state on every incrementing edge of the signal. See Figure 13-5 for timing details.

FIGURE 13-5: TIMER1 GATE TOGGLE MODE

The T1GVAL bit will indicate when the Toggled mode is active and the timer is counting.

The Timer1 Gate Toggle mode is enabled by setting the T1GTM bit of the T1GCON register. When the T1GTM bit is cleared, the flip-flop is cleared and held clear. This is necessary in order to control which edge is measured.

17.1.3 ALRMVALH AND ALRMVALL REGISTER MAPPINGS

REGISTER 17-14: ALRMMNTH: ALARM MONTH VALUE REGISTER (ACCESS F8Fh, PTR 10b)⁽¹⁾

U-0	U-0	U-0	R/W-x	R/W-x	W-x R/W-x		R/W-x			
—			MTHTEN0	MTHONE3 MTHONE2		MTHONE1	MTHONE0			
bit 7						•	bit 0			
Legend:										
R = Readable I	bit	W = Writable	bit	U = Unimplemented bit, read as '0'						
-n = Value at P	OR	'1' = Bit is set	1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown			
bit 7-5 Unimplemented: Read as '0' bit 4 MTHTEN0: Binary Coded Decimal Value of Month's Tens Digit bit Contains a value of 0 or 1.										
bit 3-0 MTHONE<3:0>: Binary Coded Decimal Value of Month's Ones Digit bits Contains a value from 0 to 9.										

Note 1: A write to this register is only allowed when RTCWREN = 1.

REGISTER 17-15: ALRMDAY: ALARM DAY VALUE REGISTER (ACCESS F8Eh, PTR 10b)⁽¹⁾

U-0	U-0 U-0 R/W-x		R/W-x R/W-x R/		R/W-x	R/W-x	R/W-x
— — DAYTEN1		DAYTEN1	DAYTEN0	DAYONE3	DAYONE2	DAYONE1	DAYONE0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6 Unimplemented: Read as '0'

bit 5-4	DAYTEN<1:0>: Binary Coded Decimal Value of Day's Tens Digit bits
	Contains a value from 0 to 3.

bit 3-0 **DAYONE<3:0>:** Binary Coded Decimal Value of Day's Ones Digit bits Contains a value from 0 to 9.

Note 1: A write to this register is only allowed when RTCWREN = 1.

When the RXINC bit is set, the RXADDR register will automatically increment after each received byte. Automatic receive address increment can be disabled by clearing the RXINC bit. If RXINC is disabled in Full-Duplex or Half-Duplex Receive modes, all incoming data bytes on SDI2 will overwrite the same memory location pointed to by the RXADDR register. After the SPI DMA transaction has completed, the last received byte will reside in the memory location pointed to by the RXADDR register.

The SPI DMA module can be used for either half-duplex receive only communication, half-duplex transmit only communication or full-duplex simultaneous transmit and receive operations. All modes are available for both SPI master and SPI slave configurations. The DUPLEX0 and DUPLEX1 bits can be used to select the desired operating mode.

The behavior of the DLYINTEN bit varies greatly depending on the SPI operating mode. For example behavior for each of the modes, see Figure 19-3 through Figure 19-6.

SPI Slave mode, DLYINTEN = 1: In this mode, an SSP2IF interrupt will be generated during a transfer if the time between successful byte transmission events is longer than the value set by the DLYCYC<3:0> bits in the DMACON2 register. This interrupt allows slave firmware to know that the master device is taking an unusually large amount of time between byte transmissions. For example, this information may be useful for implementing application-defined communication protocols involving time-outs if the bus remains Idle for too long. When DLYINTEN = 1, the DLYLVL<3:0> interrupts occur normally according to the selected setting.

SPI Slave mode, DLYINTEN = 0: In this mode, the time-out based interrupt is disabled. No additional SSP2IF interrupt events will be generated by the SPI DMA module, other than those indicated by the INTLVL<3:0> bits in the DMACON2 register. In this mode, always set DLYCYC<3:0> = 0000.

SPI Master mode, DLYINTEN = 0: The DLYCYC<3:0> bits in the DMACON2 register determine the amount of additional inter-byte delay, which is added by the <u>SPI</u> DMA module during a transfer. The Master mode <u>SS2</u> output feature may be used.

SPI Master mode, DLYINTEN = 1: The amount of hardware overhead is slightly reduced in this mode, and the minimum inter-byte delay is 8 TcY for Fosc/4, 9 TcY for Fosc/16 and 15 TcY for Fosc/64. This mode can potentially be used to obtain slightly higher effective SPI bandwidth. In this mode, the SS2 control feature cannot be used, and should always be disabled (DMACON1<7:6> = 00). Additionally, the interrupt generating hardware (used in Slave mode) remains active. To avoid extraneous SSP2IF interrupt events, set the DMACON2 delay bits, DLYCYC<3:0> = 1111, and ensure that the SPI serial clock rate is no slower than Fosc/64.

In SPI Master modes, the DMAEN bit is used to enable the SPI DMA module and to initiate an SPI DMA transaction. After user firmware sets the DMAEN bit, the DMA hardware will begin transmitting and/or receiving data bytes according to the configuration used. In SPI Slave modes, setting the DMAEN bit will finish the initialization steps needed to prepare the SPI DMA module for communication (which must still be initiated by the master device).

To avoid possible data corruption, once the DMAEN bit is set, user firmware should not attempt to modify any of the MSSP2 or SPI DMA related registers, with the exception of the INTLVL bits in the DMACON2 register.

If user firmware wants to halt an ongoing DMA transaction, the DMAEN bit can be manually cleared by the firmware. Clearing the DMAEN bit while a byte is currently being transmitted will not immediately halt the byte in progress. Instead, any byte currently in progress will be completed before the MSSP2 and SPI DMA modules go back to their Idle conditions. If user firmware clears the DMAEN bit, the TXADDR, RXADDR and DMABC registers will no longer update, and the DMA module will no longer make any additional read or writes to SRAM; therefore, state information can be lost.

22.0 COMPARATOR MODULE

The analog comparator module contains two comparators that can be independently configured in a variety of ways. The inputs can be selected from the analog inputs and two internal voltage references. The digital outputs are available at the pin level and can also be read through the control register. Multiple output and interrupt event generation is also available. Figure 22-1 provides a generic single comparator from the module.

Key features of the module are:

- Independent comparator control
- Programmable input configuration
- Output to both pin and register levels
- · Programmable output polarity
- Independent interrupt generation for each comparator with configurable interrupt-on-change

22.1 Registers

The CMxCON registers (Register 22-1) select the input and output configuration for each comparator, as well as the settings for interrupt generation.

The CMSTAT register (Register 22-2) provides the output results of the comparators. The bits in this register are read-only.

FIGURE 22-1: COMPARATOR SIMPLIFIED BLOCK DIAGRAM

22.6 Comparator Interrupts

The comparator interrupt flag is set whenever any of the following occurs:

- Low-to-high transition of the comparator output
- High-to-low transition of the comparator output
- Any change in the comparator output

The comparator interrupt selection is done by the EVPOL<1:0> bits in the CMxCON register (CMxCON<4:3>).

In order to provide maximum flexibility, the output of the comparator may be inverted using the CPOL bit in the CMxCON register (CMxCON<5>). This is functionally identical to reversing the inverting and non-inverting inputs of the comparator for a particular mode.

An interrupt is generated on the low-to-high or high-tolow transition of the comparator output. This mode of interrupt generation is dependent on EVPOL<1:0> in the CMxCON register. When EVPOL<1:0> = 01 or 10, the interrupt is generated on a low-to-high or high-tolow transition of the comparator output. Once the interrupt is generated, it is required to clear the interrupt flag by software. When EVPOL<1:0> = 11, the comparator interrupt flag is set whenever there is a change in the output value of either comparator. Software will need to maintain information about the status of the output bits, as read from CMSTAT<1:0>, to determine the actual change that occurred. The CMxIF bits (PIR2<6:5>) are the Comparator Interrupt Flags. The CMxIF bits must be reset by clearing them. Since it is also possible to write a '1' to this register, a simulated interrupt may be initiated.

Table 22-2 provides the interrupt generation corresponding to comparator input voltages and EVPOL bit settings.

Both the CMxIE bits (PIE2<6:5>) and the PEIE bit (INTCON<6>) must be set to enable the interrupt. In addition, the GIE bit (INTCON<7>) must also be set. If any of these bits are clear, the interrupt is not enabled, though the CMxIF bits will still be set if an interrupt condition occurs.

Figure 22-1 provides a simplified diagram of the interrupt section.

CPOL	EVPOL<1:0>	Comparator Input Change	COUTx Transition	Interrupt Generated
		VIN+ > VIN-	Low-to-High	No
	00	VIN+ < VIN-	High-to-Low	No
		VIN+ > VIN-	Low-to-High	Yes
0	01	VIN+ < VIN-	High-to-Low	No
0	1.0	VIN+ > VIN-	Low-to-High	No
	10	VIN+ < VIN-	High-to-Low	Yes
		VIN+ > VIN-	Low-to-High	Yes
	11	VIN+ < VIN-	High-to-Low	Yes
	0.0	VIN+ > VIN-	High-to-Low	No
	00	VIN+ < VIN-	Low-to-High	No
		VIN+ > VIN-	High-to-Low	No
1	UL	VIN+ < VIN-	Low-to-High	Yes
Ţ	10	VIN+ > VIN-	High-to-Low	Yes
	ΤŪ	VIN+ < VIN-	Low-to-High	No
	11	VIN+ > VIN-	High-to-Low	Yes
	11	VIN+ < VIN-	Low-to-High	Yes

TABLE 22-2: COMPARATOR INTERRUPT GENERATION

EXAMPLE 25-2: CURRENT CALIBRATION ROUTINE

```
#include <pl8cxxx.h>
#define COUNT 500
                                         //@ 8MHz = 125uS.
#define DELAY for(i=0;i<COUNT;i++)</pre>
#define RCAL .027
                                         //R value is 4200000 (4.2M)
                                         //scaled so that result is in
                                         //1/100th of uA
#define ADSCALE 1023
                                         //for unsigned conversion 10 sig bits
#define ADREF 3.3
                                         //Vdd connected to A/D Vr+
int main(void)
{
   int i;
   int j = 0;
                                         //index for loop
   unsigned int Vread = 0;
   double VTot = 0;
   //assume CTMU and A/D have been setup correctly
//see Example 25-1 for CTMU & A/D setup
setup();
CTMUCONHbits.CTMUEN = 1;
                                         //Enable the CTMU
CTMUCONLbits.EDG1STAT = 0;
                                         // Set Edge status bits to zero
CTMUCONLbits.EDG2STAT = 0;
   for(j=0;j<10;j++)</pre>
   {
       CTMUCONHbits.IDISSEN = 1;
                                         //drain charge on the circuit
                                         //wait 125us
       DELAY;
       CTMUCONHbits.IDISSEN = 0;
                                         //end drain of circuit
       CTMUCONLbits.EDG1STAT = 1;
                                         //Begin charging the circuit
                                         //using CTMU current source
       DELAY;
                                         //wait for 125us
       CTMUCONLbits.EDG1STAT = 0;
                                         //Stop charging circuit
       PIR1bits.ADIF = 0;
                                         //make sure A/D Int not set
       ADCON0bits.GO=1;
                                         //and begin A/D conv.
       while(!PIR1bits.ADIF);
                                         //Wait for A/D convert complete
       Vread = ADRES;
                                         //Get the value from the A/D
       PIR1bits.ADIF = 0;
                                         //Clear A/D Interrupt Flag
       VTot += Vread;
                                        //Add the reading to the total
   }
   Vavg = (float)(VTot/10.000);
                                         //Average of 10 readings
   Vcal = (float)(Vavg/ADSCALE*ADREF);
   CTMUISrc = Vcal/RCAL;
                                          //CTMUISrc is in 1/100ths of uA
```

25.3.2 CAPACITANCE CALIBRATION

There is a small amount of capacitance from the internal A/D Converter sample capacitor as well as stray capacitance from the circuit board traces and pads that affect the precision of capacitance measurements. A measurement of the stray capacitance can be taken by making sure the desired capacitance to be measured has been removed. The measurement is then performed using the following steps:

- 1. Initialize the A/D Converter and the CTMU.
- 2. Set EDG1STAT (= 1).
- 3. Wait for a fixed delay of time *t*.
- 4. Clear EDG1STAT.
- 5. Perform an A/D conversion.
- 6. Calculate the stray and A/D sample capacitances:

$$C_{\text{OFFSET}} = C_{\text{STRAY}} + C_{\text{AD}} = (I \cdot t) / V$$

where *I* is known from the current source measurement step, *t* is a fixed delay and *V* is measured by performing an A/D conversion.

This measured value is then stored and used for calculations of time measurement or subtracted for capacitance measurement. For calibration, it is expected that the capacitance of $C_{\text{STRAY}} + C_{\text{AD}}$ is approximately known. C_{AD} is approximately 4 pF.

An iterative process may need to be used to adjust the time, t, that the circuit is charged to obtain a reasonable voltage reading from the A/D Converter. The value of t may be determined by setting COFFSET to a theoretical value, then solving for t. For example, if CSTRAY is theoretically calculated to be 11 pF, and V is expected to be 70% of VDD, or 2.31V, then t would be:

$$(4 \text{ pF} + 11 \text{ pF}) \cdot 2.31 \text{V}/0.55 \ \mu\text{A}$$

or 63 µs.

See Example 25-3 for a typical routine for CTMU capacitance calibration.

TABLE 26-1:MAPPING OF THE FLASH CONFIGURATION WORDS TO THE CONFIGURATION
REGISTERS

Configuration Register (Volatile)	Configuration Register Address	Flash Configuration Byte Address
CONFIG1L	300000h	XXXF8h
CONFIG1H	300001h	XXXF9h
CONFIG2L	300002h	XXXFAh
CONFIG2H	300003h	XXXFBh
CONFIG3L	300004h	XXXFCh
CONFIG3H	300005h	XXXFDh
CONFIG4L	300006h	XXXFEh
CONFIG4H	300007h	XXXFFh

TABLE 26-2: CONFIGURATION BITS AND DEVICE IDs

File	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default/ Unprog. Value ⁽¹⁾
300000h	CONFIG1L	DEBUG	XINST	STVREN	—	_	_	_	WDTEN	1111
300001h	CONFIG1H	(2)	(2)	(2)	(2)		CP0	_	_	1111 -1
300002h	CONFIG2L	IESO	FCMEN	—	LPT1OSC	T1DIG	FOSC2	FOSC1	FOSC0	11-1 1111
300003h	CONFIG2H	(2)	(2)	_(2)	(2)	WDTPS3	WDTPS2	WDTPS1	WDTPS0	1111 1111
300004h	CONFIG3L	DSWDTPS3	DSWDTPS2	DSWDTPS1	DSWDTPS0	DSWDTEN	DSBOREN	RTCOSC	DSWDTOSC	1111 1111
300005h	CONFIG3H	(2)	(2)	(2)	(2)	MSSPMSK	_	_	IOL1WAY	1111 11
300006h	CONFIG4L	WPCFG	WPEND	WPFP5	WPFP4	WPFP3	WPFP2	WPFP1	WPFP0	1111 1111
300007h	CONFIG4H	(2)	(2)	(2)	(2)	_	_	_	WPDIS	11111
3FFFFEh	DEVID1	DEV2	DEV1	DEV0	REV4	REV3	REV2	REV1	REV0	xxx0 0000 (3)
3FFFFFh	DEVID2	DEV10	DEV9	DEV8	DEV7	DEV6	DEV5	DEV4	DEV3	0100 00xx ⁽³⁾

Legend: x = unknown, u = unchanged, - = unimplemented. Shaded cells are unimplemented, read as '0'.

Note 1: Values reflect the unprogrammed state as received from the factory and following Power-on Resets. In all other Reset states, the configuration bytes maintain their previously programmed states.

2: The value of these bits in program memory should always be programmed to '1'. This ensures that the location is executed as a NOP if it is accidentally executed.

3: See Register 26-9 and Register 26-10 for DEVID values. These registers are read-only and cannot be programmed by the user.

R/W-1	R-x	R-x	U-0	R-0	R/W-0	R/W-0	R/W-0
REGSLP ⁽²⁾	LVDSTAT ⁽²⁾	ULPLVL	—	DS ⁽²⁾	ULPEN	ULPSINK	SWDTEN ⁽¹⁾
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown							nown
bit 7	REGSLP: Vol	tage Regulator	Low-Power O	peration Enable	e bit ⁽²⁾		
	1 = On-chip re	egulator enters	low-power ope	eration when de	evice enters SI	eep mode	
	0 = On-chip re	egulator is activ	e even in Slee	ep mode			
bit 6	LVDSTAT: Lov	w-Voltage Dete	ct Status bit ⁽²⁾				
	1 = VDDCORE	> 2.45V nomin	al				
	0 = VDDCORE	< 2.45V nomin	al				
bit 5	ULPLVL: Ultra	a Low-Power V	/ake-up Outpu	t bit (not valid ι	unless ULPEN	= 1)	
	1 = Voltage or	RA0 > ~0.5V					
hit 4			3				
DIL 4		eu. Reau as (
DIT 3	Reset source)	ер vvaке-up Sta (2)	atus dit (used i	n conjunction w	/ith RCON, PO	IR and BOR bit	s to determine
	1 = If the last	exit from POR	was caused b	y a normal wak	e-up from Dee	ep Sleep	
	0 = If the last	exit from POR	was a result o	of hard cycling א אסר אסרא אסרא	VDD, or if the D andition	eep Sleep BOI	R was enabled
hit 2		Low-Power W	ake-un Module	Enable bit			
Dit 2	1 = Ultra I ow	Power Wake-i	in module is ei	habled: I II PI VI	bit indicates	comparator out	inut
	0 = Ultra Low-	Power Wake-u	p module is di	sabled			put
bit 1	ULPSINK: Ultra Low-Power Wake-up Current Sink Enable bit						
	1 = Ultra Low-	Power Wake-u	p current sink	is enabled (if L	JLPEN = 1)		
	0 = Ultra Low-	Power Wake-u	p current sink	is disabled			
bit 0	SWDTEN: So	ftware Controll	ed Watchdog	Timer Enable b	it ⁽¹⁾		
	1 = Watchdog	Timer is on					
	0 = Watchdog	Timer is off					

- **Note 1:** This bit has no effect if the Configuration bit, WDTEN, is enabled.
 - 2: Not available on devices where the on-chip voltage regulator is disabled ("LF" devices).

TABLE 26-3: SUMMARY OF WATCHDOG TIMER REGISTERS

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:
RCON	IPEN	—	CM	RI	TO	PD	POR	BOR	70
WDTCON	REGSLP	LVDSTAT	ULPLVL	_	DS	ULPEN	ULPSINK	SWDTEN	70

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the Watchdog Timer.

PIC18F46J11 FAMILY

BNC		Branch if N	Branch if Not Carry						
Syntax:		BNC n	BNC n						
Oper	ands:	-128 ≤ n ≤ 1	127				0		
Oper	ation:	if Carry bit i (PC) + 2 + 2	s '0', 2n → PC)			0		
Statu	s Affected:	None	None						
Enco	ding:	1110	0011	nnn	n	nnnn	E		
Desc	ription:	If the Carry will branch.	bit is '0'	, then t	the	program	D		
		The 2's con added to th have incren instruction, PC + 2 + 2r two-cycle in	nplemen e PC. Si nented to the new n. This in nstruction	t numb nce the o fetch addre nstructi n.	ber ' e P(the ss v on i	2n' is C will next vill be s then a			
Words:		1	1 V						
Cycle	es:	1(2)	1(2) C						
Q C <u>y</u> If Ju	ycle Activity: mp:						C It		
	Q1	Q2	Q	3		Q4	_		
	Decode	Read literal 'n'	Proce Data	ess a	V	/rite to PC			
	No	No	No			No			
	operation	operation	operation		operation				
lf No	o Jump:						li		
	Q1	Q2	Q	3		Q4	1		
	Decode	Read literal	Proce	ess		No			
		'n	Data	а	ор	eration]		
<u>Exam</u>	<u>iple:</u>	HERE	BNC	Jump			E		
	Before Instruc	tion							
	PC	= ad	dress (HERE)					
After Instruction									
PC = address (Jump)									
	If Carry PC	= 1; = ad	= 1; = address (HERE + 2)						

BNN		Branch if I	Branch if Not Negative						
Synta	ax:	BNN n							
Oper	ands:	-128 ≤ n ≤	127						
Oper	ation:	if Negative (PC) + 2 +	bit is '0', 2n → PC						
Statu	is Affected:	None	None						
Enco	oding:	1110	0111 nnr	in nnnn					
Desc	ription:	If the Nega program wi	tive bit is '0', thill branch.	nen the					
The 2's complement number '2n' i added to the PC. Since the PC will have incremented to fetch the nex instruction, the new address will b PC + 2 + 2n. This instruction is the two-cycle instruction.									
Word	ls:	1	1						
Cycle	es:	1(2)	1(2)						
Q C If Ju	ycle Activity: imp:								
	Q1	Q2	Q3	Q4					
	Decode	Read literal 'n'	Process Data	Write to PC					
	No	No	No	No					
	operation	operation	operation	operation					
lf No	o Jump:								
	Q1	Q2	Q3	Q4					
	Decode	Read literal	Process	No					
		'n	Data	operation					
Even	nple:	HERE	BNN Jump						
<u>rrgu</u>									
<u>cxan</u>	Before Instruc	tion							
<u>Exan</u>	Before Instruc PC	tion = ad	dress (HERE)					
	Before Instruct PC After Instruction	tion = ad on we = 0:	dress (HERE)					
<u>cxan</u>	Before Instruct PC After Instruction If Negativ PC	tion = ad on ve = 0; = ad	dress (HERE)					

PIC18F46J11 FAMILY

CALI	LW	Subroutine	Subroutine Call using WREG							
Synta	ax:	CALLW	CALLW							
Oper	ands:	None	None							
Oper	ation:	$(PC + 2) \rightarrow$ $(W) \rightarrow PCL$ (PCLATH) - (PCLATU) -	$(PC + 2) \rightarrow TOS,$ $(W) \rightarrow PCL,$ $(PCLATH) \rightarrow PCH,$ $(PCLATU) \rightarrow PCU$							
Statu	s Affected:	None	None							
Enco	ding:	0000	0000 000	1 0100						
Desc	ription	First, the re pushed onto contents of existing vali contents of latched into tively. The s a NOP instru- instruction i	First, the return address (PC + 2) is pushed onto the return stack. Next, the contents of W are written to PCL; the existing value is discarded. Then, the contents of PCLATH and PCLATU are latched into PCH and PCU, respec- tively. The second cycle is executed as a NOP instruction while the new next instruction is fetched							
		Unlike CALI update W, S	Unlike CALL, there is no option to update W, STATUS or BSR.							
Word	s:	1	1							
Cycle	es:	2								
QC	ycle Activity:									
	Q1	Q2	Q3	Q4						
	Decode	Read WREG	Push PC to stack	No operation						
	No	No	No	No						
	operation	operation	operation	operation						
Exam	<u>iple:</u> Before Instruc	HERE	CALLW							
PC = address (HERE) PCLATH = 10h PCLATU = 00h W = 06h										
	PC TOS PCLATH PCLATU W	= 001006 = address = 10h = 00h = 06h	h ; (HERE + 2)						

ΜΟν	SF	Move Inde	Move Indexed to f						
Synta	ax:	MOVSF [z _s], f _d						
Oper	ands:	$\begin{array}{l} 0 \leq z_s \leq 12 \\ 0 \leq f_d \leq 40 \end{array}$	$\begin{array}{l} 0 \leq z_s \leq 127 \\ 0 \leq f_d \leq 4095 \end{array}$						
Oper	ation:	((FSR2) +	$z_s) \rightarrow f_d$						
Statu	s Affected:	None	None						
Enco 1st w 2nd v	ding: ord (source) vord (destin.)	1110 1111	1011 ffff	0zz fff	z zzzz _s f ffff _d				
Description: The contents of the source register moved to destination register 'f _d '. T actual address of the source regist determined by adding the 7-bit liter offset ' z_s ', in the first word, to the v of FSR2. The address of the destin tion register is specified by the 12-l eral 'f _d ' in the second word. Both addresses can be anywhere in the 4096-byte data space (000h to FFI The MOVSF instruction cannot use PCL_TOSULTOSH or TOSL as the									
		destination If the result an Indirect	If the resultant source address points to an Indirect Addressing register, the						
		value retur		be uun	•				
vvord	IS:	2							
Cycle	es:	2							
QC	ycle Activity:	00	0		0.1				
	Decode	Q2 Determine	Detern	nine addr	Read				
	Decode	No operation No dummy read	No No operation operation lo dummy read		Write register 'f' (dest)				
Example: MOVSF [0x05], REG2 Before Instruction FSR2 = 80h Contents									
	After Instructio FSR2 Contents of 85h REG2	= 3. = 11 on = 8(= 3: = 3:	h Dh Bh Bh						

PIC18F46J11 FAMILY

TABLE 29-24: I²C[™] BUS START/STOP BITS REQUIREMENTS (SLAVE MODE)

Param. No.	Symbol	Characteristic		Min	Мах	Units	Conditions	
90	TSU:STA	Start Condition	100 kHz mode	4700		ns	Only relevant for Repeated	
		Setup Time	400 kHz mode	600	—		Start condition	
91	THD:STA	Start Condition	100 kHz mode	4000	—	ns	After this period, the first	
		Hold Time	400 kHz mode	600			clock pulse is generated	
92	Tsu:sto	Stop Condition	100 kHz mode	4700	—	ns		
		Setup Time	400 kHz mode	600				
93	THD:STO	Stop Condition	100 kHz mode	4000	_	ns		
		Hold Time	400 kHz mode	600	—			

FIGURE 29-18: I²C[™] BUS DATA TIMING

