Welcome to <u>E-XFL.COM</u>

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	3.8K × 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf26j11t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.0 LOW-POWER MODES

The PIC18F46J11 family devices can manage power consumption through clocking to the CPU and the peripherals. In general, reducing the clock frequency and the amount of circuitry being clocked reduces power consumption.

For managing power in an application, the primary modes of operation are:

- Run Mode
- Idle Mode
- Sleep Mode
- · Deep Sleep Mode

Additionally, there is an Ultra Low-Power Wake-up (ULPWU) mode for generating an interrupt-on-change on RA0.

These modes define which portions of the device are clocked and at what speed.

- The Run and Idle modes can use any of the three available clock sources (primary, secondary or internal oscillator blocks).
- The Sleep mode does not use a clock source.

The ULPWU mode on RA0 allows a slow falling voltage to generate an interrupt-on-change on RA0 without excess current consumption. See **Section 4.7** "**Ultra Low-Power Wake-up**".

The power-managed modes include several power-saving features offered on previous PIC[®] devices, such as clock switching, ULPWU and Sleep mode. In addition, the PIC18F46J11 family devices add a new power-managed Deep Sleep mode.

4.1 Selecting Power-Managed Modes

Selecting a power-managed mode requires these decisions:

- Will the CPU be clocked?
- If so, which clock source will be used?

The IDLEN bit (OSCCON<7>) controls CPU clocking and the SCS<1:0> bits (OSCCON<1:0>) select the clock source. The individual modes, bit settings, clock sources and affected modules are summarized in Table 4-1.

4.1.1 CLOCK SOURCES

The SCS<1:0> bits allow the selection of one of three clock sources for power-managed modes. They are:

- Primary clock source Defined by the FOSC<2:0> Configuration bits
- Timer1 clock Provided by the secondary oscillator
- Postscaled internal clock Derived from the internal oscillator block

4.1.2 ENTERING POWER-MANAGED MODES

Switching from one clock source to another begins by loading the OSCCON register. The SCS<1:0> bits select the clock source.

Changing these bits causes an immediate switch to the new clock source, assuming that it is running. The switch also may be subject to clock transition delays. These delays are discussed in **Section 4.1.3 "Clock Transitions and Status Indicators"** and subsequent sections.

Entry to the power-managed Idle or Sleep modes is triggered by the execution of a SLEEP instruction. The actual mode that results depends on the status of the IDLEN bit.

Depending on the current mode and the mode being switched to, a change to a power-managed mode does not always require setting all of these bits. Many transitions may be done by changing the oscillator select bits, the IDLEN bit or the DSEN bit prior to issuing a SLEEP instruction.

If the IDLEN and DSEN bits are already configured correctly, it may only be necessary to perform a SLEEP instruction to switch to the desired mode.

TABLE 6-3: NON-ACCESS BANK SPECIAL FUNCTION REGISTER MAP

Address	Name	Address	Name	Address	Name	Address	Name	Address	Name
F5Fh	PMCONH ⁽¹⁾	F3Fh	RTCCFG	F1Fh	—	EFFh	PPSCON	EDFh	_
F5Eh	PMCONL ⁽¹⁾	F3Eh	RTCCAL	F1Eh	_	EFEh	RPINR24	EDEh	RPOR24 ⁽¹⁾
F5Dh	PMMODEH ⁽¹⁾	F3Dh	REFOCON	F1Dh	_	EFDh	RPINR23	EDDh	RPOR23 ⁽¹⁾
F5Ch	PMMODEL ⁽¹⁾	F3Ch	PADCFG1	F1Ch	_	EFCh	RPINR22	EDCh	RPOR22 ⁽¹⁾
F5Bh	PMDOUT2H ⁽¹⁾	F3Bh	_	F1Bh	_	EFBh	RPINR21	EDBh	RPOR21 ⁽¹⁾
F5Ah	PMDOUT2L ⁽¹⁾	F3Ah	_	F1Ah	_	EFAh	_	EDAh	RPOR20 ⁽¹⁾
F59h	PMDIN2H ⁽¹⁾	F39h	_	F19h	_	EF9h	_	ED9h	RPOR19 ⁽¹⁾
F58h	PMDIN2L ⁽¹⁾	F38h	_	F18h	_	EF8h	_	ED8h	RPOR18
F57h	PMEH ⁽¹⁾	F37h	_	F17h	_	EF7h	RPINR17	ED7h	RPOR17
F56h	PMEL ⁽¹⁾	F36h		F16h	—	EF6h	RPINR16	ED6h	RPOR16
F55h	PMSTATH ⁽¹⁾	F35h		F15h	—	EF5h	_	ED5h	RPOR15
F54h	PMSTATL ⁽¹⁾	F34h		F14h	—	EF4h	_	ED4h	RPOR14
F53h	CVRCON	F33h		F13h	—	EF3h	_	ED3h	RPOR13
F52h	TCLKCON	F32h		F12h	—	EF2h	_	ED2h	RPOR12
F51h	-	F31h		F11h	—	EF1h	_	ED1h	RPOR11
F50h	-	F30h		F10h	—	EF0h	_	ED0h	RPOR10
F4Fh	DSGPR1 ⁽²⁾	F2Fh		F0Fh	—	EEFh	_	ECFh	RPOR9
F4Eh	DSGPR0 ⁽²⁾	F2Eh	—	F0Eh	—	EEEh	RPINR8	ECEh	RPOR8
F4Dh	DSCONH ⁽²⁾	F2Dh	—	F0Dh	—	EEDh	RPINR7	ECDh	RPOR7
F4Ch	DSCONL ⁽²⁾	F2Ch	_	F0Ch	—	EECh	RPINR6	ECCh	RPOR6
F4Bh	DSWAKEH ⁽²⁾	F2Bh	_	F0Bh	—	EEBh	—	ECBh	RPOR5
F4Ah	DSWAKEL ⁽²⁾	F2Ah	_	F0Ah	—	EEAh	RPINR4	ECAh	RPOR4
F49h	ANCON1	F29h	_	F09h	—	EE9h	RPINR3	EC9h	RPOR3
F48h	ANCON0	F28h	_	F08h	—	EE8h	RPINR2	EC8h	RPOR2
F47h	—	F27h	_	F07h	—	EE7h	RPINR1	EC7h	RPOR1
F46h	—	F26h	_	F06h	—	EE6h	—	EC6h	RPOR0
F45h	—	F25h	_	F05h	—	EE5h	—	EC5h	—
F44h	—	F24h	_	F04h	—	EE4h	—	EC4h	—
F43h	_	F23h	_	F03h	_	EE3h	_	EC3h	_
F42h	ODCON1	F22h	—	F02h	_	EE2h	—	EC2h	—
F41h	ODCON2	F21h	_	F01h	_	EE1h	—	EC1h	_
F40h	ODCON3	F20h	_	F00h	_	EE0h	_	EC0h	—

Note 1: This register is not available on 28-pin devices.

2: Deep Sleep registers are not available on LF devices.

7.5.3 WRITE VERIFY

Depending on the application, good programming practice may dictate that the value written to the memory should be verified against the original value. This should be used in applications where excessive writes can stress bits near the specification limit.

7.5.4 UNEXPECTED TERMINATION OF WRITE OPERATION

If a write is terminated by an unplanned event, such as loss of power or an unexpected Reset, the memory location just programmed should be verified and reprogrammed if needed. If the write operation is interrupted by a MCLR Reset or a WDT time-out Reset during normal operation, the user can check the WRERR bit and rewrite the location(s) as needed.

7.6 Flash Program Operation During Code Protection

See Section 26.6 "Program Verification and Code Protection" for details on code protection of Flash program memory.

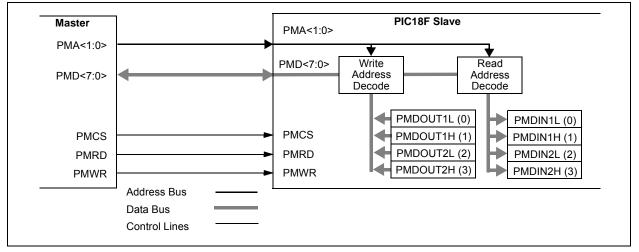
TABLE 7-2:	REGISTERS ASSOCIATED WITH PROGRAM FLASH MEMORY
------------	--

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:	
TBLPTRU	_	— — bit 21 Program Memory Table Pointer Upper Byte (TBLPTR<20:16>)								
TBPLTRH	Program M	emory Table	e Pointer H	ligh Byte (TE	BLPTR<15:8	>)			69	
TBLPTRL	Program M	emory Table	e Pointer L	ow Byte (TB	LPTR<7:0>))			69	
TABLAT	Program M	emory Table	e Latch						69	
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INTOIF	RBIF	69	
EECON2	Program M	emory Cont	rol Registe	er 2 (not a pl	nysical regist	ter)			71	
EECON1	—	_	WPROG	FREE	WRERR	WREN	WR	—	71	

Legend: — = unimplemented, read as '0'. Shaded cells are not used during Flash program memory access.

R/W-0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0				
SSP2IF	BCL2IF	RC2IF	TX2IF	TMR4IF	CTMUIF	TMR3GIF	RTCCIF				
bit 7							bit (
Legend:											
R = Readabl	le bit	W = Writable	bit		nented bit, rea	d as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown				
h:+ 7		ton Cumphrone	o Coriol Dort		L:4						
bit 7		•		2 Interrupt Flag		2)					
		o transmit/recep	•	te (must be clea	ired in soltware	e)					
bit 6	•			ISSP2 module)							
	1 = A bus co	llision occurred	(must be clea	ared in software)						
	0 = No bus c	ollision occurre	d								
bit 5	RC2IF: EUSA	ART2 Receive I	nterrupt Flag	bit							
	 1 = The EUSART2 receive buffer, RCREG2, is full (cleared when RCREG2 is read) 0 = The EUSART2 receive buffer is empty 										
				·							
bit 4		RT2 Transmit I									
		SART2 transmit		32, is empty (cl	eared when 12	KREG2 is writte	n)				
bit 3		R4 to PR4 Mate		aa hit							
				be cleared in sof	ftware)						
		4 to PR4 match	· ·		(Indi O)						
bit 2	CTMUIF: Cha	arge Time Meas	surement Unit	Interrupt Flag b	bit						
			``	e cleared in soft	ware)						
	$0 = CTMU e^{i}$	vent has not oc	curred								
bit 1		mer3 Gate Eve	•	•							
		•	• •	be cleared in s	oftware)						
		r3 gate event co	•								
bit 0		CC Interrupt Fla	-		,						
		terrupt occurred C interrupt occu		ared in software	e)						
	0 = 100 KIGC		iieu								

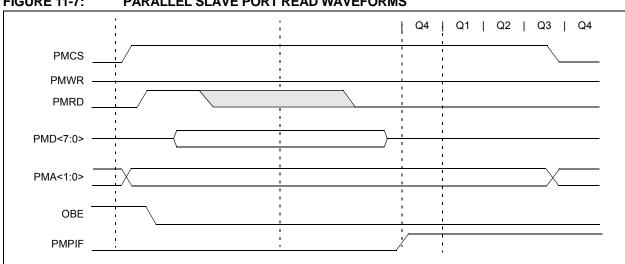
REGISTER 9-6: PIR3: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 3 (ACCESS FA4h)


11.2.5 ADDRESSABLE PARALLEL SLAVE PORT MODE

In the Addressable Parallel Slave Port mode (PMMODEH<1:0> = 01), the module is configured with two extra inputs, PMA<1:0>, which are the address lines 1 and 0. This makes the 4-byte buffer space directly addressable as fixed pairs of read and write buffers. As with Legacy Buffered mode, data is output from PMDOUT1L, PMDOUT1H, PMDOUT2L and PMDOUT2H, and is read in on PMDIN1L, PMDIN1H, PMDIN2L and PMDIN2L and PMDIN2H. Table 11-1 provides the buffer addressing for the incoming address to the input and output registers.

TABLE 11-1: SLAVE MODE BUFFER ADDRESSING

PMA<1:0>	Output Register (Buffer)	Input Register (Buffer)
00	PMDOUT1L (0)	PMDIN1L (0)
01	PMDOUT1H (1)	PMDIN1H (1)
10	PMDOUT2L (2)	PMDIN2L (2)
11	PMDOUT2H((3)	PMDIN2H (3)

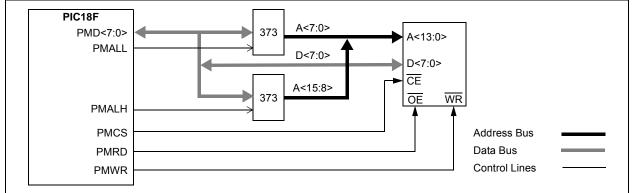

FIGURE 11-6: PARALLEL MASTER/SLAVE CONNECTION ADDRESSED BUFFER EXAMPLE

11.2.5.1 READ FROM SLAVE PORT

When chip select is active and a read strobe occurs (PMCS = 1 and PMRD = 1), the data from one of the four output bytes is presented onto PMD<7:0>. Which byte is read depends on the 2-bit address placed on ADDR<1:0>. Table 11-1 provides the corresponding

output registers and their associated address. When an output buffer is read, the corresponding OBxE bit is set. The OBxE flag bit is set when all the buffers are empty. If any buffer is already empty, OBxE = 1, the next read to that buffer will generate an OBUF event.

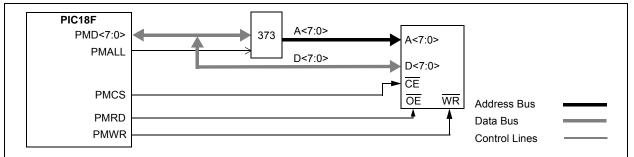
FIGURE 11-7: PARALLEL SLAVE PORT READ WAVEFORMS

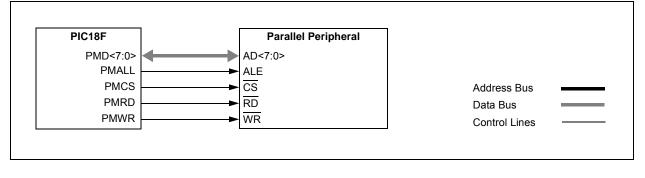

11.4 Application Examples

This section introduces some potential applications for the PMP module.

11.4.1 MULTIPLEXED MEMORY OR PERIPHERAL

Figure 11-27 demonstrates the hookup of a memory or another addressable peripheral in Full Multiplex mode. Consequently, this mode achieves the best pin saving from the microcontroller perspective. However, for this configuration, there needs to be some external latches to maintain the address.




11.4.2 PARTIALLY MULTIPLEXED MEMORY OR PERIPHERAL

Partial multiplexing implies using more pins; however, for a few extra pins, some extra performance can be achieved. Figure 11-28 provides an example of a memory or peripheral that is partially multiplexed with an external latch. If the peripheral has internal latches, as displayed in Figure 11-29, then no extra circuitry is required except for the peripheral itself.

FIGURE 11-28: EXAMPLE OF A PARTIALLY MULTIPLEXED ADDRESSING APPLICATION

FIGURE 11-29: EXAMPLE OF AN 8-BIT MULTIPLEXED ADDRESS AND DATA APPLICATION

REGISTER 17-16: ALRMWD: ALARM WEEKDAY VALUE REGISTER (ACCESS F8Fh, PTR 01b)⁽¹⁾

U-0	U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x
—	—	—	—	—	WDAY2	WDAY1	WDAY0
bit 7							bit 0

Legend:						
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 7-3 Unimplemented: Read as '0'

bit 2-0 **WDAY<2:0>:** Binary Coded Decimal Value of Weekday Digit bits Contains a value from 0 to 6.

Note 1: A write to this register is only allowed when RTCWREN = 1.

REGISTER 17-17: ALRMHR: ALARM HOURS VALUE REGISTER (ACCESS F8Eh, PTR 01b)⁽¹⁾

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	HRTEN1	HRTEN0	HRONE3	HRONE2	HRONE1	HRONE0
bit 7							bit 0

Legend:					
R = Readable bit	idable bit W = Writable bit U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 7-6	Unimplemented: Read as '0'
bit 5-4	HRTEN<1:0>: Binary Coded Decimal Value of Hour's Tens Digit bits Contains a value from 0 to 2.
bit 3-0	HRONE3:HRONE0: Binary Coded Decimal Value of Hour's Ones Digit bits Contains a value from 0 to 9.

Note 1: A write to this register is only allowed when RTCWREN = 1.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:	
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	69	
RCON	IPEN	_	CM	RI	TO	PD	POR	BOR	70	
PIR1	PMPIF	ADIF	RC1IF	TX1IF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	72	
PIE1	PMPIE	ADIE	RC1IE	TX1IE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	72	
IPR1	PMPIP	ADIP	RC1IP	TX1IP	SSP1IP	CCP1IP	TMR2IP	TMR1IP	72	
IPR2	OSCFIP	CM2IP	CM1IP	_	BCL1IP	LVDIP	TMR3IP	CCP2IP	71	
PIR2	OSCFIF	CM2IF	CM1IF	_	BCL1IF	LVDIF	TMR3IF	CCP2IF	71	
PIE2	OSCFIE	CM2IE	CM1IE	_	BCL1IE	LVDIE	TMR3IE	CCP2IE	71	
TCLKCON	_	—	_	T1RUN	_	_	T3CCP2	T3CCP1	74	
PIR3	SSP2IF	BCL2IF	RC2IF	TX2IF	TMR4IF	CTMUIF	TMR3GIF	RTCCIF	72	
PIE3	SSP2IE	BCL2IE	RC2IE	TX2IE	TMR4IE	CTMUIE	TMR3GIE	RTCCIE	72	
IPR3	SSP2IP	BCL2IP	RC2IP	TX2IP	TMR4IP	CTMUIP	TMR3GIP	RTCCIP	72	
TMR2	Timer2 Reg	jister							70	
PR2	Timer2 Peri	iod Register							70	
T2CON	_	T2OUTPS3	T2OUTPS2	T2OUTPS1	T2OUTPS0	TMR2ON	T2CKPS1	T2CKPS0	70	
TMR4	Timer4 Reg	jister							73	
PR4	Timer4 Peri	Timer4 Period Register								
T4CON	_	T4OUTPS3	T4OUTPS2	T4OUTPS1	T4OUTPS0	TMR4ON	T4CKPS1	T4CKPS0	73	
ODCON1	_	—	_	—	—	_	ECCP2OD	ECCP10D	74	

TABLE 18-3: REGISTERS ASSOCIATED WITH PWM, TIMER2 AND TIMER4

Legend: — = unimplemented, read as '0'. Shaded cells are not used by PWM, Timer2 or Timer4.

18.5.4 ENHANCED PWM AUTO-SHUTDOWN MODE

The PWM mode supports an Auto-Shutdown mode that will disable the PWM outputs when an external shutdown event occurs. Auto-Shutdown mode places the PWM output pins into a predetermined state. This mode is used to help prevent the PWM from damaging the application.

The auto-shutdown sources are selected using the ECCPxAS<2:0> bits of the ECCPAS register. A shutdown event may be generated by:

- A logic '0' on the pin that is assigned the FLT0 input function
- Comparator C1
- Comparator C2
- Setting the ECCPxASE bit in firmware

A shutdown condition is indicated by the ECCPxASE (Auto-Shutdown Event Status) bit of the ECCPxAS register. If the bit is a '0', the PWM pins are operating normally. If the bit is a '1', the PWM outputs are in the shutdown state.

When a shutdown event occurs, two things happen:

The ECCPxASE bit is set to '1'. The ECCPxASE will remain set until cleared in firmware or an auto-restart occurs (see **Section 18.5.5 "Auto-Restart Mode"**).

The enabled PWM pins are asynchronously placed in their shutdown states. The PWM output pins are grouped into pairs [PxA/PxC] and [PxB/PxD]. The state of each pin pair is determined by the PSSxAC and PSSxBD bits of the ECCPxAS register. Each pin pair may be placed into one of three states:

- Drive logic '1'
- Drive logic '0'
- Tri-state (high-impedance)

REGISTER 18-2: ECCPxAS: ECCPx AUTO-SHUTDOWN CONTROL REGISTER (ACCESS FBEh/FB8h)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ECCPxASE	ECCPxAS2	ECCPxAS1	ECCPxAS0	PSSxAC1	PSSxAC0	PSSxBD1	PSSxBD0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	ECCPxASE: ECCP Auto-Shutdown Event Status bit 1 = A shutdown event has occurred; ECCP outputs are in a shutdown state 0 = ECCP outputs are operating
bit 6-4	ECCPxAS<2:0>: ECCP Auto-Shutdown Source Select bits 000 = Auto-shutdown is disabled 001 = Comparator C1OUT output is high 010 = Comparator C2OUT output is high 011 = Either Comparator C1OUT or C2OUT is high 100 = VIL on FLT0 pin 101 = VIL on FLT0 pin or Comparator C1OUT output is high 110 = VIL on FLT0 pin or Comparator C2OUT output is high 111 = VIL on FLT0 pin or Comparator C1OUT or Comparator C2OUT is high
bit 3-2	PSSxAC<1:0>: Pins PxA and PxC Shutdown State Control bits 00 = Drive pins PxA and PxC to '0' 01 = Drive pins PxA and PxC to '1' 10 = Pins PxA and PxC tri-state
bit 1-0	PSSxBD<1:0>: Pins PxB and PxD Shutdown State Control bits 00 = Drive pins PxB and PxD to '0' 01 = Drive pins PxB and PxD to '1' 10 = Pins PxB and PxD tri-state
2:	The auto-shutdown condition is a level-based signal, not an edge-based signal. As long as the level is present, the auto-shutdown will persist. Writing to the ECCPxASE bit is disabled while an auto-shutdown condition persists. Once the auto-shutdown condition has been removed and the PWM restarted (either through firmware or auto-restart), the PWM signal will always restart at the beginning of the next PWM period.

19.3.7 SLAVE MODE

In Slave mode, the data is transmitted and received as the external clock pulses appear on SCKx. When the last bit is latched, the SSPxIF interrupt flag bit is set.

While in Slave mode, the external clock is supplied by the external clock source on the SCKx pin. This external clock must meet the minimum high and low times as specified in the electrical specifications.

While in Sleep mode, the slave can transmit/receive data. When a byte is received, the device can be configured to wake-up from Sleep.

19.3.8 SLAVE SELECT SYNCHRONIZATION

The \overline{SSx} pin allows a Synchronous Slave mode. The SPI must be in Slave mode with the \overline{SSx} pin control enabled (SSPxCON1<3:0> = 04h). When the \overline{SSx} pin is low, transmission and reception are enabled and the SDOx pin is driven. When the \overline{SSx} pin goes high, the SDOx pin is no longer driven, even if in the middle of a

transmitted byte and becomes a floating output. External pull-up/pull-down resistors may be desirable depending on the application.

Note 1:	Wher	n the S	PI is i	n Slave	mode	e with
	the	SSx	pin	control	en	abled
	(SSP:	xCON1	<3:0> =	•0100) ,	the	SPI
	modu	le will r	eset if	the SSx	oin is	set to
	Vdd.					

2: If the SPI is used in Slave mode with CKE set, then the SSx pin control must be enabled.

When the SPI module resets, the bit counter is forced to '0'. This can be done by either forcing the SSx pin to a high level or clearing the SSPEN bit.

To emulate two-wire communication, the SDOx pin can be connected to the SDIx pin. When the SPI needs to operate as a receiver, the SDOx pin can be configured as an input. This disables transmissions from the SDOx. The SDIx can always be left as an input (SDIx function) since it cannot create a bus conflict.

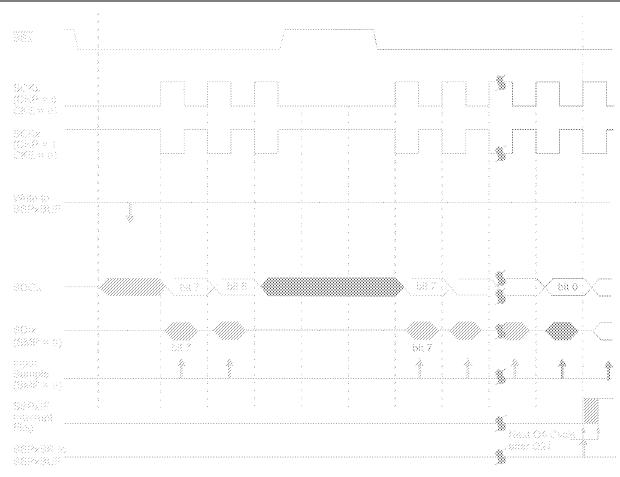
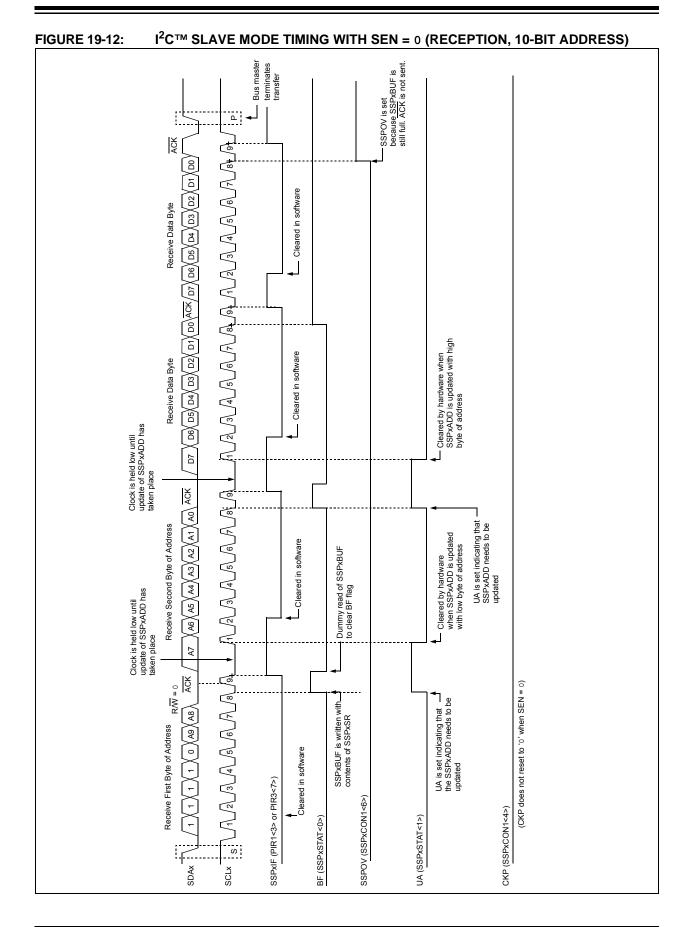



FIGURE 19-4: SLAVE SYNCHRONIZATION WAVEFORM

		SYNC = 0, BRGH = 0, BRG16 = 0											
BAUD	Fosc	Fosc = 40.000 MHz			Fosc = 20.000 MHz			Fosc = 10.000 MHz			Fosc = 8.000 MHz		
RATE (K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	
0.3	_								_	_	_	_	
1.2	—	—	—	1.221	1.73	255	1.202	0.16	129	1.201	-0.16	103	
2.4	2.441	1.73	255	2.404	0.16	129	2.404	0.16	64	2.403	-0.16	51	
9.6	9.615	0.16	64	9.766	1.73	31	9.766	1.73	15	9.615	-0.16	12	
19.2	19.531	1.73	31	19.531	1.73	15	19.531	1.73	7	_	_	_	
57.6	56.818	-1.36	10	62.500	8.51	4	52.083	-9.58	2	—	_	_	
115.2	125.000	8.51	4	104.167	-9.58	2	78.125	-32.18	1	—	_	_	

TABLE 20-3: BAUD RATES FOR ASYNCHRONOUS MODES

		SYNC = 0, BRGH = 0, BRG16 = 0							
BAUD RATE	Fos	Fosc = 4.000 MHz			c = 2.000	MHz	Fosc = 1.000 MHz		
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)
0.3	0.300	0.16	207	0.300	-0.16	103	0.300	-0.16	51
1.2	1.202	0.16	51	1.201	-0.16	25	1.201	-0.16	12
2.4	2.404	0.16	25	2.403	-0.16	12	_	_	_
9.6	8.929	-6.99	6	_	_	_	_	_	_
19.2	20.833	8.51	2	—	_	_	—	_	_
57.6	62.500	8.51	0	—	_	_	—	_	_
115.2	62.500	-45.75	0	_	_	—	_	—	—

		SYNC = 0, BRGH = 1, BRG16 = 0										
BAUD RATE	Fosc	Fosc = 40.000 MHz Fosc = 20.000 MHz) MHz	Fosc = 10.000 MHz			Fosc = 8.000 MHz		
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)
0.3	—	_	_	—	_	_	_	_	_	_	_	_
1.2	—	—	—	—	—	—	—	—	—	—	—	—
2.4	—	_	_	—	_	_	2.441	1.73	255	2.403	-0.16	207
9.6	9.766	1.73	255	9.615	0.16	129	9.615	0.16	64	9615.	-0.16	51
19.2	19.231	0.16	129	19.231	0.16	64	19.531	1.73	31	19.230	-0.16	25
57.6	58.140	0.94	42	56.818	-1.36	21	56.818	-1.36	10	55.555	3.55	8
115.2	113.636	-1.36	21	113.636	-1.36	10	125.000	8.51	4	—	_	_

		SYNC = 0, BRGH = 1, BRG16 = 0								
BAUD RATE	Foso	Fosc = 4.000 MHz			c = 2.000	MHz	Fosc = 1.000 MHz			
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	
0.3			_			_	0.300	-0.16	207	
1.2	1.202	0.16	207	1.201	-0.16	103	1.201	-0.16	51	
2.4	2.404	0.16	103	2.403	-0.16	51	2.403	-0.16	25	
9.6	9.615	0.16	25	9.615	-0.16	12	_	_	_	
19.2	19.231	0.16	12	_	_	_	_	_	_	
57.6	62.500	8.51	3	_	_	_	_	_	_	
115.2	125.000	8.51	1	_	_	—	_	_	_	

© 2011 Microchip Technology Inc.

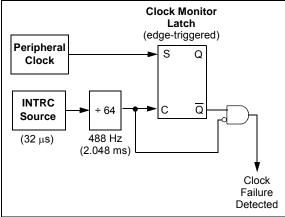
20.4 EUSART Synchronous Slave Mode

Synchronous Slave mode is entered by clearing bit, CSRC (TXSTAx<7>). This mode differs from the Synchronous Master mode in that the shift clock is supplied externally at the CKx pin (instead of being supplied internally in Master mode). This allows the device to transfer or receive data while in any low-power mode.

20.4.1 EUSART SYNCHRONOUS SLAVE TRANSMISSION

The operation of the Synchronous Master and Slave modes is identical, except in the case of Sleep mode.

If two words are written to the TXREGx and then the SLEEP instruction is executed, the following will occur:


- a) The first word will immediately transfer to the TSR register and transmit.
- b) The second word will remain in the TXREGx register.
- c) Flag bit, TXxIF, will not be set.
- d) When the first word has been shifted out of TSR, the TXREGx register will transfer the second word to the TSR and flag bit, TXxIF, will now be set.
- e) If enable bit, TXxIE, is set, the interrupt will wake the chip from Sleep. If the global interrupt is enabled, the program will branch to the interrupt vector.

To set up a Synchronous Slave Transmission:

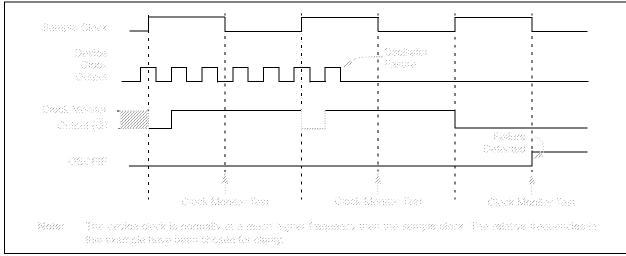
- 1. Enable the synchronous slave serial port by setting bits, SYNC and SPEN, and clearing bit, CSRC.
- 2. Clear bits, CREN and SREN.
- 3. If interrupts are desired, set enable bit, TXxIE.
- 4. If 9-bit transmission is desired, set bit, TX9.
- 5. Enable the transmission by setting enable bit, TXEN.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit, TX9D.
- 7. Start transmission by loading data to the TXREGx register.
- If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x	R/W-x
EDG2POL	EDG2SEL1	EDG2SEL0	EDG1POL	EDG1SEL1	EDG1SEL0	EDG2STAT	EDG1STAT
bit 7	•	•		•	•	•	bit C
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown
bit 7	EDG2POL: E	dge 2 Polarity	Select bit				
		rogrammed for rogrammed for					
bit 6-5	11 = CTED1 10 = CTED2 01 = ECCP1		Frigger	S			
bit 4	1 = Edge 1 p	dge 1 Polarity rogrammed for rogrammed for	a positive edg				
bit 3-2	11 = CTED1 10 = CTED2 01 = ECCP1		rigger	S			
bit 1	1 = Edge 2 e	Edge 2 Status b vent has occur vent has not oc	red				
bit 0	 0 = Edge 2 event has not occurred EDG1STAT: Edge 1 Status bit 1 = Edge 1 event has occurred 0 = Edge 1 event has not occurred 						

FIGURE 26-4: FSCM BLOCK DIAGRAM

Clock failure is tested for on the falling edge of the sample clock. If a sample clock falling edge occurs while the clock monitor is still set, and a clock failure has been detected (Figure 26-5), the following results:

- The FSCM generates an oscillator fail interrupt by setting bit, OSCFIF (PIR2<7>);
- The device clock source is switched to the internal oscillator block (OSCCON is not updated to show the current clock source – this is the Fail-safe condition); and
- The WDT is reset.


During switchover, the postscaler frequency from the internal oscillator block may not be sufficiently stable for timing-sensitive applications. In these cases, it may be desirable to select another clock configuration and enter an alternate power-managed mode. This can be done to attempt a partial recovery or execute a controlled shutdown. See Section 4.1.4 "Multiple Sleep Commands" and Section 26.4.1 "Special Considerations for Using Two-Speed Start-up" for more details.

The FSCM will detect failures of the primary or secondary clock sources only. If the internal oscillator block fails, no failure would be detected, nor would any action be possible.

26.5.1 FSCM AND THE WATCHDOG TIMER

Both the FSCM and the WDT are clocked by the INTRC oscillator. Since the WDT operates with a separate divider and counter, disabling the WDT has no effect on the operation of the INTRC oscillator when the FSCM is enabled.

As already noted, the clock source is switched to the INTRC clock when a clock failure is detected; this may mean a substantial change in the speed of code execution. If the WDT is enabled with a small prescale value, a decrease in clock speed allows a WDT time-out to occur and a subsequent device Reset. For this reason, Fail-Safe Clock Monitor events also reset the WDT and postscaler, allowing it to start timing from when execution speed was changed and decreasing the likelihood of an erroneous time-out.

FIGURE 26-5: FSCM TIMING DIAGRAM

26.7 In-Circuit Serial Programming (ICSP)

PIC18F46J11 family microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data and three other lines for power, ground and the programming voltage. This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

26.8 In-Circuit Debugger

When the $\overline{\text{DEBUG}}$ Configuration bit is programmed to a '0', the In-Circuit Debugger functionality is enabled. This function allows simple debugging functions when used with MPLAB[®] IDE. When the microcontroller has this feature enabled, some resources are not available for general use.

Table 26-4 lists the resources required by the background debugger.

I/O pins:	RB6, RB7
Stack:	TOSx registers reserved

BCF	Bit Clear f			BN			
Syntax:	BCF f, b	{,a}		Syntax:			
Operands:	$0 \leq f \leq 255$	$0 \leq f \leq 255$					
	0 ≤ b ≤ 7 a ∈ [0,1]			Operation			
Operation:	$0 \rightarrow f \le b >$			Status Affe			
Status Affected:	None			Encoding:			
Encoding:	1001	bbba ff:	ff ffff	Descriptio			
Description:	Bit 'b' in reg	jister 'f' is clea	red.				
		he BSR is use	nk is selected. d to select the				
	set is enabl in Indexed I mode when Section 27 Bit-Oriente	If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 27.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.					
Words:	1			If Jump:			
Cycles:	1			De			
Q Cycle Activity:							
Q1	Q2	Q3	Q4				
Decode	Read register 'f'	Process Data	Write register 'f'	ope If No Jum			
	register i	Data	register i				
Example:		LAG_REG,	7, 0	De			
Before Instruc	tion EG = C7h						
After Instruction				Example:			
FLAG_R	EG = 47h			Befor			
				After			

BN		Branch if N	legative				
Synta	ax:	BN n	BN n				
Oper	ands:	-128 ≤ n ≤ 1	$-128 \le n \le 127$				
Oper	ation:	if Negative bit is '1', (PC) + 2 + 2n \rightarrow PC					
Statu	s Affected:	None					
Enco	ding:	1110	0110 nnn	in nnnn			
Description:			If the Negative bit is '1', then the program will branch.				
		The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a two-cycle instruction.					
Words: 1							
Cycle	es:	1(2)					
Q C <u>y</u> If Ju	ycle Activity: mp:						
	Q1	Q2	Q3	Q4			
	Decode	Read literal 'n'	Process Data	Write to PC			
	No operation	No operation	No operation	No operation			
lf No	y Jump:						
	Q1	Q2	Q3	Q4			
	Decode	Read literal	Process	No			
		'n'	Data	operation			
<u>Exam</u>	<u>nple:</u>	HERE	BN Jump				
Before Instruction PC = address (HERE) After Instruction If Negative = 1; PC = address (Jump)							
PC = address (Jump) If Negative = 0; PC = address (HERE + 2)							

BTG		Bit Toggle	f		BOV		Branch if (Overflow		
Syntax:		BTG f, b {,a}		Synta	ax:	BOV n				
Operands	:	$0 \le f \le 255$		Oper	ands:	-128 ≤ n ≤	127			
		$0 \le b < 7$ a $\in [0,1]$		Oper	ation:	if Overflow bit is '1', (PC) + 2 + 2n \rightarrow PC				
Operation	ration: $(\overline{f}, b) \to f, b>$		Statu	s Affected:	None					
Status Affe	ected:	None		Enco	ding:	1110	0100 nn	nn nnnn		
Encoding:		0111	bbba ff	ff ffff	Description:		If the Overflow bit is '1', then the			
Descriptio	on:	Bit 'b' in data memory location 'f' is inverted.				program wi	ll branch.			
	If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default).				The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be					
				ed instruction			PC + 2 + 2n. This instruction is then a two-cycle instruction.			
		set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 27.2.3 "Byte-Oriented and		Word	Words: Cycles:		1			
				Cycle			1(2)			
		Bit-Oriente	•	is in Indexed	Q C If Ju	ycle Activity: mp:				
Words:		1				Q1	Q2	Q3	Q4	
Cycles:		1				Decode	Read literal 'n'	Process Data	Write to PC	
Q Cycle A	Activity:					No	No	No	No	
	Q1	Q2	Q3	Q4		operation	operation	operation	operation	
De	ecode	Read	Process	Write	lf No	o Jump:				
		register 'f'	Data	register 'f'		Q1	Q2	Q3	Q4	
Example:		BTG L	ATC, 4,	D		Decode	Read literal 'n'	Process Data	No operation	
	re Instruc LATC		0101 [75h]		Exan	<u>nple:</u>	HERE	BOV Jum	Ç	
After Instruction: LATC = 0110 0101 [65h]			Before Instruction PC = address (HERE) After Instruction							
					If Overflo PC If Overflo PC	= ad ow = 0;	dress (Jumg dress (HERE			

COMF	Compleme	ent f		CPFS	SEQ	Compare f	with W, Skip	if f = W
Syntax:	COMF f	{,d {,a}}		Synta	IX:	CPFSEQ	f {,a}	
Operands:	0 ≤ f ≤ 255			Oper	ands:	$0 \leq f \leq 255$		
oporaniaon	d ∈ [0,1]					a ∈ [0,1]		
	a ∈ [0,1]			Opera	ation:	(f) – (W),		
Operation:	$\overline{f} \rightarrow dest$					skip if (f) = (unsigned c	(W) comparison)	
Status Affected:	N, Z			Statu	s Affected:	None	• •	
Encoding:	0001	11da ff:	ff ffff	Enco		0110	001a fff	f ffff
Description:	complemer stored in W	nts of register " nted. If 'd' is '0 /. If 'd' is '1', th k in register 'f'	', the result is e result is		ription:	Compares to ory location	the contents o ff to the contents an unsigned s	f data mem- ents of W by
	lf 'a' is '0', t	he Access Bar he BSR is use	nk is selected.			discarded a	en the fetched and a NOP is ex aking this a two	xecuted
	set is enab in Indexed	Ind the extend led, this instruct Literal Offset	ction operates Addressing				ne Access Bar ne BSR is useo (default).	
	Section 27 Bit-Oriente	never f ≤ 95 (5 7.2.3 "Byte-Or ed Instruction set Mode" for	iented and is in Indexed			set is enabl in Indexed	nd the extended ed, this instruct Literal Offset A bever f \leq 95 (51	ction operates Addressing
Words:	1						.2.3 "Byte-Or	
Cycles:	1					Bit-Oriente	ed Instruction set Mode" for	s in Indexed
Q Cycle Activity:				Word	s.	1		
Q1	Q2	Q3	Q4	Cycle		1(2)		
Decode	Read register 'f'	Process Data	Write to destination	Gycie		Note: 3 cy	cles if skip and 2-word instrue	
				Q C	cle Activity:			
Example:	COMF	REG, 0, 0			Q1	Q2	Q3	Q4
Before Instruc					Decode	Read	Process	No
REG After Instructio	= 13h					register 'f'	Data	operation
REG	= 13h			lf sk	•			
W	= ECh				Q1	Q2 No	Q3	Q4
					No operation	operation	No operation	No operation
				lf sk		d by 2-word in		operation
					Q1	Q2	Q3	Q4
					No	No	No	No
					operation	operation	operation	operation
					No	No	No	No
					operation	operation	operation	operation
				<u>Exam</u>	<u>iple:</u>	HERE NEQUAL	CPFSEQ REG	s, O
					·	EQUAL	:	
					Before Instruc PC Addr		RE	

Before Instruction PC Address W REG	= = =	HERE ? ?	
After Instruction			
If REG	=	W;	
PC	=	Address	(EQUAL)
If REG	≠	W;	
PC	=	Address	(NEQUAL)

Table Read (Continued)

34h 01A358h

=

TBL	RD	Table Read						
Synta	ax:	TBLRD (*; *+; *-; +*)						
Oper	ands:	None						
Oper	ation:	if TBLRD *, (Prog Mem (TBLPTR)) \rightarrow TABLAT, TBLPTR – No Change; if TBLRD *+, (Prog Mem (TBLPTR)) \rightarrow TABLAT, (TBLPTR) + 1 \rightarrow TBLPTR; if TBLRD *-, (Prog Mem (TBLPTR)) \rightarrow TABLAT, (TBLPTR) – 1 \rightarrow TBLPTR; if TBLRD +*, (TBLPTR) + 1 \rightarrow TBLPTR, (Prog Mem (TBLPTR)) \rightarrow TABLAT						
Statu	is Affected:	None						
Enco	oding:	0000	00	000	000	0	10nn nn=0 =1 =2 =3	1 *+ *- +*
Desc	ription:	This instruction is used to read the contents of Program Memory (P.M.). To address the program memory, a pointer called Table Pointer (TBLPTR) is used.						
		The TBLPT each byte ir TBLPTR ha	the	progr	am me	emor	y.	
		TBLPTR<0>	• = 0				nt Byte o ory Word	
		TBLPTR<0>	• = 1				nt Byte o ory Word	
		The TBLRD instruction can modify the value of TBLPTR as follows:						
		no chang	е					
		 post-increase 	emei	nt				
		 post-deci 						
		 pre-incre 	men	t				
Word	ls:	1						
Cycle	es:	2						
QC	ycle Activity:						-	
	Q1	Q2		1	23		Q4	
	Decode	No operation			lo ation	0	No peration	1

Example 1:	TBLRD	*+		
Before Instructi	ion			
TABLAT			=	55h
TBLPTR MEMORY	/004356b	`	=	00A356h 34h
After Instruction	•)	-	3411
TABLAT	Ĩ		=	34h
TBLPTR			=	00A357h
Example 2:	TBLRD	+*		
Before Instructi	ion			
TABLAT			=	AAh
TBLPTR	101A2576	`	=	01A357h 12h
MEMORY MEMORY	(01A358h	$\left(\right)$	=	34h
	•	,		

After Instruction TABLAT TBLPTR

TBLRD

© 2011 Microchip Technology Inc.

No

operation

No operation

(Read Program

Memory)

No

operation

No operation (Write TABLAT)