

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	34
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf44j11t-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC18F46J11 FAMILY

REGISTER 9-5: PIR2: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 2 (ACCESS FA1h)

R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
OSCFIF	CM2IF	CM1IF	—	BCL1IF	LVDIF	TMR3IF	CCP2IF
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	OSCFIF: Oscillator Fail Interrupt Flag bit
	1 = Device oscillator failed, clock input has changed to INTOSC (must be cleared in software)0 = Device clock operating
bit 6	CM2IF: Comparator 2 Interrupt Flag bit
	 1 = Comparator input has changed (must be cleared in software) 0 = Comparator input has not changed
bit 5	CM1IF: Comparator 1 Interrupt Flag bit
	 1 = Comparator input has changed (must be cleared in software) 0 = Comparator input has not changed
bit 4	Unimplemented: Read as '0'
bit 3	BCL1IF: Bus Collision Interrupt Flag bit (MSSP1 module)
	1 = A bus collision occurred (must be cleared in software)0 = No bus collision occurred
bit 2	LVDIF: High/Low-Voltage Detect (HLVD) Interrupt Flag bit
	 1 = A high/low-voltage condition occurred (must be cleared in software) 0 = An HLVD event has not occurred
bit 1	TMR3IF: TMR3 Overflow Interrupt Flag bit
	1 = TMR3 register overflowed (must be cleared in software)0 = TMR3 register did not overflow
bit 0	CCP2IF: ECCP2 Interrupt Flag bit
	<u>Capture mode:</u> 1 = A TMR1/TMR3 register capture occurred (must be cleared in software) 0 = No TMR1/TMR3 register capture occurred
	<u>Compare mode:</u> 1 = A TMR1/TMR3 register compare match occurred (must be cleared in software) 0 = No TMR1/TMR3 register compare match occurred
	<u>PWM mode:</u> Unused in this mode.

Pin	Function	TRIS Setting	I/O	l/O Type	Description
RC0/T1OSO/	RC0	1	Ι	ST	PORTC<0> data input.
T1CKI/RP11		0	0	DIG	LATC<0> data output.
	T10S0	x	0	ANA	Timer1 oscillator output; enabled when Timer1 oscillator enabled. Disables digital I/O.
	T1CKI	1	I	ST	Timer1 counter input.
	RP11	1	Ι	ST	Remappable peripheral pin 11 input.
		0	0	DIG	Remappable peripheral pin 11 output.
RC1/T10SI/	RC1	1	Ι	ST	PORTC<1> data input.
RP12		0	0	DIG	LATC<1> data output.
	T10SI	x	I	ANA	Timer1 oscillator input; enabled when Timer1 oscillator enabled. Disables digital I/O.
	Pin Function 20/T1OSO/ CKI/RP11 RC0 T1OSO T1CKI RP11 RP11 C1/T1OSI/ P12 RC1 C1/T1OSI/ P12 RC1 C1/T1OSI/ P12 RC1 C1/T1OSI/ P12 RC1 C2/AN11/ IPLS/RP13 RC2 C2/AN11/ IPLS/RP13 RC2 C3/SCK1/ CL1/RP14 RC3 C3/SCK1/ CL1/RP14 RC3 C3/SCK1/ CL1/RP14 SCK1 SCL1 SCL1 RP14 SDI1 SDA1 SDA1 RP15 RP15	1	I	ST	Remappable peripheral pin 12 input.
		0	0	DIG	Remappable peripheral pin 12 output.
RC2/AN11/	RC2	1	Ι	ST	PORTC<2> data input.
CTPLS/RP13		0	0	DIG	LATC<2> data output.
	AN11	1	Ι	ANA	A/D input channel 11.
	CTPLS	0	0	DIG	CTMU pulse generator output.
	RP13	1	Ι	ST	Remappable peripheral pin 13 input.
		0	0	DIG	Remappable peripheral pin 13 output.
RC3/SCK1/	RC3	1	Ι	ST	PORTC<3> data input.
SCL1/RP14		0	0	DIG	LATC<3> data output.
	SCK1	1	Ι	ST	SPI clock input (MSSP1 module).
		0	0	DIG	SPI clock output (MSSP1 module).
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	I ² C™ clock input (MSSP1 module).			
		0	0	DIG	I ² C clock output (MSSP1 module).
	RP14	1	Ι	ST	Remappable peripheral pin 14 input.
		0	0	DIG	Remappable peripheral pin 14 output.
RC4/SDI1/	RC4	1	Ι	ST	PORTC<4> data input.
SDA1/RP15		0	0	DIG	LATC<4> data output.
	SDI1	1	Ι	ST	SPI data input (MSSP1 module).
	SDA1	1	I	I ² C/ SMBus	I ² C data input (MSSP1 module).
		0	0	DIG	I ² C/SMBus.
	RP15	1	Ι	ST	Remappable peripheral pin 15 input.
		0	0	DIG	Remappable peripheral pin 15 output.

 TABLE 10-7:
 PORTC I/O SUMMARY

Legend: DIG = Digital level output; TTL = TTL input buffer; ST = Schmitt Trigger input buffer; ANA = Analog level input/output; I²C/SMB = I²C/SMBus input buffer; x = Don't care (TRIS bit does not affect port direction or is overridden for this option)

Note 1: This bit is only available on 44-pin devices.

10.7.3.1 Input Mapping

The inputs of the PPS options are mapped on the basis of the peripheral; that is, a control register associated with a peripheral dictates the pin it will be mapped to. The RPINRx registers are used to configure peripheral input mapping (see Register 10-6 through Register 10-20). Each register contains a 5-bit field, which is associated with one of the pin selectable peripherals. Programming a given peripheral's bit field with an appropriate 5bit value maps the RPn pin with that value to that peripheral. For any given device, the valid range of values for any of the bit fields corresponds to the maximum number of peripheral pin selections supported by the device.

TABLE 10-13:	SELECTABLE INPUT SOURCES	(MAPS INPUT TO FUNCTION) ⁽¹⁾

Input Name	Function Name	Register	Configuration Bits
External Interrupt 1	INT1	RPINR1	INTR1R<4:0>
External Interrupt 2	INT2	RPINR2	INTR2R<4:0>
External Interrupt 3	INT3	RPINR3	INTR3R<4:0>
Timer0 External Clock Input	TOCKI	RPINR4	T0CKR<4:0>
Timer3 External Clock Input	T3CKI	RPINR6	T3CKR<4:0>
Input Capture 1	CCP1	RPINR7	IC1R<4:0>
Input Capture 2	CCP2	RPINR8	IC2R<4:0>
Timer1 Gate Input	T1G	RPINR12	T1GR<4:0>
Timer3 Gate Input	T3G	RPINR13	T3GR<4:0>
EUSART2 Asynchronous Receive/Synchronous Receive	RX2/DT2	RPINR16	RX2DT2R<4:0>
EUSART2 Asynchronous Clock Input	CK2	RPINR17	CK2R<4:0>
SPI2 Data Input	SDI2	RPINR21	SDI2R<4:0>
SPI2 Clock Input	SCK2IN	RPINR22	SCK2R<4:0>
SPI2 Slave Select Input	SS2IN	RPINR23	SS2R<4:0>
PWM Fault Input	FLT0	RPINR24	OCFAR<4:0>

Note 1: Unless otherwise noted, all inputs use the Schmitt Trigger input buffers.

12.0 TIMER0 MODULE

The Timer0 module incorporates the following features:

- Software selectable operation as a timer or counter in both 8-bit or 16-bit modes
- · Readable and writable registers
- Dedicated 8-bit, software programmable
 prescaler
- Selectable clock source (internal or external)
- · Edge select for external clock
- Interrupt-on-overflow

The T0CON register (Register 12-1) controls all aspects of the module's operation, including the prescale selection. It is both readable and writable.

Figure 12-1 provides a simplified block diagram of the Timer0 module in 8-bit mode. Figure 12-2 provides a simplified block diagram of the Timer0 module in 16-bit mode.

REGISTER 12-1: T0CON: TIMER0 CONTROL REGISTER (ACCESS FD5h)

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
TMR0ON	T08BIT	TOCS	T0SE	PSA	T0PS2	T0PS1	T0PS0
bit 7							bit 0

Legend:				
R = Readable bit W = Writable bit U = Unimplemented bit, re				d as '0'
-n = Value at	POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 7	TMR0ON: T	imer0 On/Off Control bit		
	1 = Enables	Timer0		
	0 = Stops Ti	mer0		
bit 6	TO8BIT: Tim	er0 8-Bit/16-Bit Control bit		
	1 = Timer0 i	s configured as an 8-bit timer/c	counter	
	0 = 1 imer 0 i	s configured as a 16-bit timer/c	counter	
bit 5	TOCS: Time	r0 Clock Source Select bit		
	1 = Transitio	on on TOCKI pin input edge		
DIT 4		rU Source Edge Select bit		
	\perp = Increme	nt on high-to-low transition on	TUCKI pin TUCKI pin	
bit 3		D Proscalor Assignment bit		
DIL 3	1 = Timor0 r	aroscalor is not assigned. Time	r0 clock input hypassas pros	alor
	1 = Timer0 0 = Timer0	prescaler is assigned. Timer0 c	clock input comes from presca	iler output.
bit 2-0	T0PS<2:0>:	Timer0 Prescaler Select bits		
	111 = 1:256	Prescale value		
	110 = 1:128	Prescale value		
	101 = 1:64	Prescale value		
	100 = 1:32	Prescale value		
	011 = 1.10 010 = 1.8	Prescale value		
	0.10 = 1.3 0.01 = 1.4	Prescale value		
	000 = 1:2	Prescale value		

NOTES:

18.5 PWM (Enhanced Mode)

The Enhanced PWM mode can generate a PWM signal on up to four different output pins with up to 10 bits of resolution. It can do this through four different PWM Output modes:

- Single PWM
- Half-Bridge PWM
- Full-Bridge PWM, Forward mode
- Full-Bridge PWM, Reverse mode

To select an Enhanced PWM mode, the PxM bits of the CCPxCON register must be set appropriately.

The PWM outputs are multiplexed with I/O pins and are designated: PxA, PxB, PxC and PxD. The polarity of the PWM pins is configurable and is selected by setting the CCPxM bits in the CCPxCON register appropriately.

Table 18-1 provides the pin assignments for each Enhanced PWM mode.

Figure 18-5 provides an example of a simplified block diagram of the Enhanced PWM module.

Note: To prevent the generation of an incomplete waveform when the PWM is first enabled, the ECCP module waits until the start of a new PWM period before generating a PWM signal.

FIGURE 18-5: EXAMPLE SIMPLIFIED BLOCK DIAGRAM OF THE ENHANCED PWM MODE

Note 1: The TRIS register value for each PWM output must be configured appropriately.

2: Any pin not used by an Enhanced PWM mode is available for alternate pin functions.

REGISTER 18-4:	PSTRxCON: PULSE STEERING CONTROL ((ACCESS FBFh/FB9h)	(1)
----------------	---	--------------------	-----

R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1
CMPL1	CMPL0	—	STRSYNC	STRD	STRC	STRB	STRA
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value at F	POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7-6 CMPL<1:0>: Complementary Mode Output Assignment Steering Sync 1 = Modulated output pin toggles between PxA and PxB for each peri 0 = Complementary output assignment disabled: STRD:STRA bits us						its I I to determine S	Steering mode
bit 5	Unimplemen	ted: Read as	'0'				
bit 4	STRSYNC: Steering Sync bit						
	 1 = Output steering update occurs on next PWM period 0 = Output steering update occurs at the beginning of the instruction cycle boundary 						
bit 3	STRD: Steeri	ng Enable bit	D				
	 1 = PxD pin has the PWM waveform with polarity control from CCPxM<1:0> 0 = PxD pin is assigned to port pin 						
bit 2	STRC: Steeri	ng Enable bit	С				
	1 = PxC pin l 0 = PxC pin i	has the PWM s assigned to	waveform with _l port pin	polarity control	I from CCPxM<	1:0>	
bit 1	STRB: Steeri	ng Enable bit	В				
	1 = PxB pin l 0 = PxB pin i	has the PWM s assigned to	waveform with µ port pin	oolarity control	from CCPxM<	1:0>	
bit 0	STRA: Steeri	ng Enable bit .	A				
	1 = PxA pin I 0 = PxA pin i	has the PWM s assigned to	waveform with µ port pin	oolarity control	from CCPxM<	1:0>	
Note 1: The	PWM Steering	g mode is avai	lable only wher	the CCPxCO	N register bits,	CCPxM<3:2>	= 11 and

PxM<1:0> = 00.

NOTES:

19.3.1 REGISTERS

Each MSSP module has four registers for SPI mode operation. These are:

- MSSPx Control Register 1 (SSPxCON1)
- MSSPx Status Register (SSPxSTAT)
- Serial Receive/Transmit Buffer Register (SSPxBUF)
- MSSPx Shift Register (SSPxSR) Not directly accessible

SSPxCON1 and SSPxSTAT are the control and status registers in SPI mode operation. The SSPxCON1 register is readable and writable. The lower six bits of the SSPxSTAT are read-only. The upper two bits of the SSPxSTAT are read/write.

SSPxSR is the shift register used for shifting data in or out. SSPxBUF is the buffer register to which data bytes are written to or read from.

In receive operations, SSPxSR and SSPxBUF together create a double-buffered receiver. When SSPxSR receives a complete byte, it is transferred to SSPxBUF and the SSPxIF interrupt is set.

transmission, the SSPxBUF During is not double-buffered. A write to SSPxBUF will write to both SSPxBUF and SSPxSR.

Because the SSPxBUF register is dou-Note: ble-buffered, using read-modify-write instructions such as BCF, COMF, etc., will not work. Similarly, when debugging under an in-circuit debugger, performing actions that cause reads of SSPxBUF (mouse hovering, watch, etc.) can consume data that the application code was expecting to receive.

3h)
3h

R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0
SMP	CKE ⁽¹⁾	D/A	Р	S	R/W	UA	BF
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	SMP: Sample bit
	SPI Master mode:
	1 = Input data sampled at end of data output time
	0 = Input data sampled at middle of data output time
	SPI Slave mode:
	SMP must be cleared when SPI is used in Slave mode.
bit 6	CKE: SPI Clock Select bit ⁽¹⁾
	1 = Transmit occurs on transition from active to Idle clock state
	0 = Transmit occurs on transition from Idle to active clock state
bit 5	D/A: Data/Address bit
	Used in I ² C™ mode only.
bit 4	P: Stop bit
	Used in I ² C mode only; this bit is cleared when the MSSP module is disabled, SSPEN is cleared.
bit 3	S: Start bit
	Used in I ² C mode only.
bit 2	R/W: Read/Write Information bit
	Used in I ² C mode only.
bit 1	UA: Update Address bit
	Used in I ² C mode only.
bit 0	BF: Buffer Full Status bit
	1 = Receive complete, SSPxBUF is full
	0 = Receive not complete, SSPxBUF is empty
Note 1.	Polarity of clock state is set by the CKP bit (SSPyCON1< 4 >)

olarity of clock state is set by the CKP bit (SSPxCON1<4>).

NOTES:

PIC18F46J11 FAMILY

	R/W_0						R/M-0				
CSRC			SYNC		BRGH						
bit 7	17.0	IXEN	01110	OLINDO	DIXOIT		bit 0				
bit i							bit o				
Legend:											
R = Read	able bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'					
-n = Value	e at POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unkr	nown				
bit /	CSRC: Clo	ck Source Selec	t bit								
	Don't care.	<u>bus mode.</u>									
	<u>Synchronou</u>	us mode:									
	1 = Master 0 = Slave m	mode (clock ger ode (clock from	erated internal	lly from BRG)							
bit 6	TX9: 9-Bit 7	Fransmit Enable	bit)							
	1 = Selects	9-bit transmissio	on								
	0 = Selects	8-bit transmissio	on								
bit 5	TXEN: Trar	nsmit Enable bit ⁽	1)								
	1 = Transm 0 = Transm	nit is enabled and nit is disabled	d the TXx/CKx	pin is configure	ed as an output						
bit 4	SYNC: EUS	SART Mode Sele	ect bit								
	1 = Synchro	onous mode									
L H 0		ronous mode	-t h !t								
DIT 3	SENDB: Se	end Break Chara	cter dit								
	1 = Send S	Asynchronous mode: 1 = Send Sync Break on next transmission (cleared by hardware upon completion)									
	0 = Sync Bi	0 = Sync Break transmission completed									
	Synchronou	<u>us mode:</u>									
hit 2	Don't care.	h Roud Rate Sol	oot hit								
DIL Z	Asynchrone	n Bauu Rale Sei Sus mode:									
	1 = High sp	eed									
	0 = Low spe	eed									
	Synchronou	<u>us mode:</u> bio modo									
hit 1	TRMT. Tran	nis moue. Semit Shift Regis	tor Status hit								
	1 = TSR en	notv									
	0 = TSR ful	l									
bit 0	TX9D: 9 th b	oit of Transmit Da	ata								
	Can be add	lress/data bit or a	a parity bit.								
Note 1:	SREN/CREN o	verrides TXEN ir	n Sync mode.								

R/W-0	R/W-0	R/W-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1					
CON	COE	CPOL	EVPOL1	EVPOL0	CREF	CCH1	CCH0					
bit 7							bit					
l egend:												
R = Read	able bit	W = Writable	hit	U = Unimplem	nented hit rea	d as '0'						
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown					
bit 7	CON: Compa 1 = Compara	arator Enable b Itor is enabled	it									
hit 6	0 = Compara	itor is disabled	nable bit									
	1 = Compara 0 = Compara	itor output is printer output is int	esent on the Carrier only	xOUT pin (assię	gned in PPS m	nodule)						
bit 5	CPOL: Comp	CPOL: Comparator Output Polarity Select bit										
	1 = Compara 0 = Compara	 1 = Comparator output is inverted 0 = Comparator output is not inverted 										
bit 4-3	EVPOL<1:0>	EVPOL<1:0>: Interrupt Polarity Select bits										
	11 = Interrup 10 = Interrup 01 = Interrup 00 = Interrup	t generation on t generation on t generation on t generation is	any change o ly on high-to-lo ly on low-to-hiq disabled	f the output ⁽¹⁾ ow transition of t gh transition of t	the output the output							
bit 2	CREF: Comp	parator Referen	ce Select bit (r	non-inverting inp	out)							
	1 = Non-inve 0 = Non-inve	rting input conr rting input conr	ects to interna ects to CxINA	I CVREF voltage)							
bit 1-0	CCH<1:0>: (CCH<1:0>: Comparator Channel Select bits										
	11 = Invertir 10 = For CM 01 = Reserv	ng input of com /I1CON, invertii /ed	parator connec ng input of com	cts to Virv iparator connec	ts to C2INB pi	n; for CM2CON	l, reserved					
	00 = Invertir	ng input of com	parator connec	ts to CxINB pin	l							
Note 1:	The CMxIF is aut	omatically set a	any time this me	ode is selected	and must be c	leared by the ap	plication afte					

REGISTER 22-1: CMxCON: COMPARATOR CONTROL x REGISTER (ACCESS FD2h/FD1h)

the initial configuration.

25.9 Registers

There are three control registers for the CTMU:

- CTMUCONH
- CTMUCONL
- CTMUICON

The CTMUCONH and CTMUCONL registers (Register 25-1 and Register 25-2) contain control bits for configuring the CTMU module edge source selection, edge source polarity selection, edge sequencing, A/D trigger, analog circuit capacitor discharge and enables. The CTMUICON register (Register 25-3) has bits for selecting the current source range and current source trim.

REGISTER 25-1: CTMUCONH: CTMU CONTROL REGISTER HIGH (ACCESS FB3h)

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
CTMUEN	—	CTMUSIDL	TGEN	EDGEN	EDGSEQEN	IDISSEN	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	CTMUEN: CTMU Enable bit
	1 = Module is enabled
	0 = Module is disabled
bit 6	Unimplemented: Read as '0'
bit 5	CTMUSIDL: Stop in Idle Mode bit
	1 = Discontinue module operation when device enters Idle mode0 = Continue module operation in Idle mode
bit 4	TGEN: Time Generation Enable bit
	1 = Enables edge delay generation
	0 = Disables edge delay generation
bit 3	EDGEN: Edge Enable bit
	1 = Edges are not blocked
	0 = Edges are blocked
bit 2	EDGSEQEN: Edge Sequence Enable bit
	1 = Edge 1 event must occur before Edge 2 event can occur
	0 = No edge sequence is needed
bit 1	IDISSEN: Analog Current Source Control bit
	1 = Analog current source output is grounded
	0 = Analog current source output is not grounded
bit 0	Reserved: Write as '0'

REGISTER 25-2:	CTMUCONL:	: CTMU CONTROL	REGISTER LOW	(ACCESS FB2h)
----------------	-----------	----------------	---------------------	---------------

						-	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x	R/W-x
EDG2POL	EDG2SEL1	EDG2SEL0	EDG1POL	EDG1SEL1	EDG1SEL0	EDG2STAT	EDG1STAT
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 7	EDG2POL: E	dge 2 Polarity	Select bit				
	1 = Edge 2 p	rogrammed for	a positive edg	je response			
	0 = Edge 2 p	rogrammed for	a negative ed	ge response			
bit 6-5	EDG2SEL<1:	0>: Edge 2 So	urce Select bit	S			
	11 = CTED1	pin					
	10 = CIED2	pin Special Event 1	Trigger				
	00 = ECCP2	Special Event 1	Trigger				
bit 4	EDG1POL: E	dge 1 Polarity	Select bit				
	1 = Edge 1 p	rogrammed for	a positive edg	je response			
	0 = Edge 1 p	rogrammed for	a negative ed	ge response			
bit 3-2	EDG1SEL<1:	0>: Edge 1 So	urce Select bit	S			
	11 = CTED1	pin					
	10 = CIED2	pin Special Event 1	Trigger				
	00 = ECCP2	Special Event 1	Trigger				
bit 1	EDG2STAT: E	Edge 2 Status b	it				
1 = Edge 2 event has occurred							
	0 = Edge 2 e	vent has not oc	curred				
bit 0	EDG1STAT: E	Edge 1 Status b	it				
	1 = Edge 1 e	vent has occur	red				
	0 = Edge 1 e	vent has not oc	curred				

TABLE 26-1:MAPPING OF THE FLASH CONFIGURATION WORDS TO THE CONFIGURATION
REGISTERS

Configuration Register (Volatile)	Configuration Register Address	Flash Configuration Byte Address			
CONFIG1L	300000h	XXXF8h			
CONFIG1H	300001h	XXXF9h			
CONFIG2L	300002h	XXXFAh			
CONFIG2H	300003h	XXXFBh			
CONFIG3L	300004h	XXXFCh			
CONFIG3H	300005h	XXXFDh			
CONFIG4L	300006h	XXXFEh			
CONFIG4H	300007h	XXXFFh			

TABLE 26-2: CONFIGURATION BITS AND DEVICE IDs

File	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default/ Unprog. Value ⁽¹⁾
300000h	CONFIG1L	DEBUG	XINST	STVREN	_	_	_	_	WDTEN	1111
300001h	CONFIG1H	(2)	(2)	(2)	(2)		CP0	_	_	1111 -1
300002h	CONFIG2L	IESO	FCMEN	—	LPT1OSC	T1DIG	FOSC2	FOSC1	FOSC0	11-1 1111
300003h	CONFIG2H	(2)	(2)	_(2)	(2)	WDTPS3	WDTPS2	WDTPS1	WDTPS0	1111 1111
300004h	CONFIG3L	DSWDTPS3	DSWDTPS2	DSWDTPS1	DSWDTPS0	DSWDTEN	DSBOREN	RTCOSC	DSWDTOSC	1111 1111
300005h	CONFIG3H	(2)	(2)	(2)	(2)	MSSPMSK	_	_	IOL1WAY	1111 11
300006h	CONFIG4L	WPCFG	WPEND	WPFP5	WPFP4	WPFP3	WPFP2	WPFP1	WPFP0	1111 1111
300007h	CONFIG4H	(2)	(2)	(2)	(2)	_	_	_	WPDIS	11111
3FFFFEh	DEVID1	DEV2	DEV1	DEV0	REV4	REV3	REV2	REV1	REV0	xxx0 0000 (3)
3FFFFFh	DEVID2	DEV10	DEV9	DEV8	DEV7	DEV6	DEV5	DEV4	DEV3	0100 00xx ⁽³⁾

Legend: x = unknown, u = unchanged, - = unimplemented. Shaded cells are unimplemented, read as '0'.

Note 1: Values reflect the unprogrammed state as received from the factory and following Power-on Resets. In all other Reset states, the configuration bytes maintain their previously programmed states.

2: The value of these bits in program memory should always be programmed to '1'. This ensures that the location is executed as a NOP if it is accidentally executed.

3: See Register 26-9 and Register 26-10 for DEVID values. These registers are read-only and cannot be programmed by the user.

PIC18F46J11 FAMILY

REGISTER 26-4: CONFIG2H: CONFIGURATION REGISTER 2 HIGH (BYTE ADDRESS 300003h)

WDTPS3 WDTPS2 WDTPS1								01
	WDIP50	WDTPS1	WDTPS2	WDTPS3	—	—	—	—
bit 7	bit 0							bit 7

R = Readable bit WO =	= Write-Once bit l	U = Unimplemented bit, read	as '0'
-n = Value at Reset '1' =	Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-4 **Unimplemented:** Program the corresponding Flash Configuration bit to '1'

DIL 7-4	Unimplemented: Program the corresponding Flash Conligui
bit 3-0	WDTPS<3:0>: Watchdog Timer Postscale Select bits
	1111 = 1:32,768
	1110 = 1:16,384
	1101 = 1:8,192
	1100 = 1:4,096
	1011 = 1:2,048
	1010 = 1:1,024
	1001 = 1:512
	1000 = 1:256
	0111 = 1:128
	0110 = 1:64
	0101 = 1:32
	0100 = 1:16
	0011 = 1:8
	0010 = 1:4
	0001 = 1 :2
	0000 = 1:1

27.1.1 STANDARD INSTRUCTION SET

ADDLW	ADD Litera	al to W		ADDWF	ADD W to	f				
Syntax:	ADDLW	k		Syntax:	ADDWF	f {,d {,a}}				
Operands:	$0 \leq k \leq 255$		Operands:	$0 \leq f \leq 255$						
Operation:	$(W) + k \rightarrow V$	W			d ∈ [0,1]					
Status Affected:	N, OV, C, D)C, Z		Operation	$a \in [0,1]$	$a \in [0, 1]$				
Encoding:	0000	1111 kkł	k kkkk	Operation:	$(VV) + (f) \rightarrow$					
Description:	The contents of W are added to the			Status Affected:	N, OV, C, L	JC, Z				
	8-bit literal ' W.	k' and the resu	ult is placed in	Encoding: Description:	Add W to r	egister 'f'. If 'd'	is '0', the			
Words:	1			result is sto	ored in W. If 'd'	is '1', the				
Cycles:	1				(default).	ored back in re	gister T			
Q Cycle Activity:					If 'a' is '0' t	he Access Bar	nk is selected			
Q1	Q2	Q3	Q4		If 'a' is '1', t	he BSR is use	d to select the			
Decode	Read	Process	Write to		GPR bank	(default).				
Example:ADDLW 0×15 Before InstructionW=W=10hAfter InstructionW=W=25h		DLW 0x15		Words:	set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 27.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.					
				Cycles:	1					
				Q Cycle Activity:						
				Q1	Q2	Q3	Q4			
				Decode	Read register 'f'	Process Data	Write to destination			
				Example:	ADDWF	REG, 0, 0				
				Before Instru W REG After Instruc W REG	uction = 17h = 0C2h tion = 0D9h = 0C2h					
Note: All P	IC18 instructi	ons may tak	e an optiona	l label argument precedi	na the instruct	ion mnemoni	ic for use in			

tions may take an optional label argument preceding the instruction mnemonic for use in symbolic addressing. If a label is used, the instruction format then becomes: {label} instruction argument(s).

27.2 Extended Instruction Set

In addition to the standard 75 instructions of the PIC18 instruction set, the PIC18F46J11 family of devices also provides an optional extension to the core CPU functionality. The added features include eight additional instructions that augment Indirect and Indexed Addressing operations and the implementation of Indexed Literal Offset Addressing for many of the standard PIC18 instructions.

The additional features of the extended instruction set are enabled by default on unprogrammed devices. Users must properly set or clear the XINST Configuration bit during programming to enable or disable these features.

The instructions in the extended set can all be classified as literal operations, which either manipulate the File Select Registers (FSR), or use them for Indexed Addressing. Two of the instructions, ADDFSR and SUBFSR, each have an additional special instantiation for using FSR2. These versions (ADDULNK and SUBULNK) allow for automatic return after execution.

The extended instructions are specifically implemented to optimize re-entrant program code (that is, code that is recursive or that uses a software stack) written in high-level languages, particularly C. Among other things, they allow users working in high-level languages to perform certain operations on data structures more efficiently. These include:

- Dynamic allocation and deallocation of software stack space when entering and leaving subroutines
- Function Pointer invocation
- Software Stack Pointer manipulation
- Manipulation of variables located in a software stack

A summary of the instructions in the extended instruction set is provided in Table 27-3. Detailed descriptions are provided in **Section 27.2.2 "Extended Instruction Set"**. The opcode field descriptions in Table 27-1 (page 414) apply to both the standard and extended PIC18 instruction sets.

Note: The instruction set extension and the Indexed Literal Offset Addressing mode were designed for optimizing applications written in C; the user may likely never use these instructions directly in assembler. The syntax for these commands is provided as a reference for users who may be reviewing code that has been generated by a compiler.

27.2.1 EXTENDED INSTRUCTION SYNTAX

Most of the extended instructions use indexed arguments, using one of the FSRs and some offset to specify a source or destination register. When an argument for an instruction serves as part of Indexed Addressing, it is enclosed in square brackets ("[]"). This is done to indicate that the argument is used as an index or offset. The MPASM[™] Assembler will flag an error if it determines that an index or offset value is not bracketed.

When the extended instruction set is enabled, brackets are also used to indicate index arguments in byte-oriented and bit-oriented instructions. This is in addition to other changes in their syntax. For more details, see Section 27.2.3.1 "Extended Instruction Syntax with Standard PIC18 Commands".

Note: In the past, square brackets have been used to denote optional arguments in the PIC18 and earlier instruction sets. In this text and going forward, optional arguments are denoted by braces ("{ }").

Mnemonic,		Description	Cyclos	16-Bit Instruction Word				Status
Opera	nds	Description	MSb				LSb	Affected
ADDFSR	f, k	Add Literal to FSR	1	1110	1000	ffkk	kkkk	None
ADDULNK	k	Add Literal to FSR2 and Return	2	1110	1000	11kk	kkkk	None
CALLW		Call Subroutine using WREG	2	0000	0000	0001	0100	None
MOVSF	z _s , f _d	Move z _s (source) to 1st word	2	1110	1011	0zzz	ZZZZ	None
		f _d (destination) 2nd word		1111	ffff	ffff	ffff	—
MOVSS	z _s , z _d	Move z _s (source) to 1st word	2	1110	1011	lzzz	ZZZZ	None
		z _d (destination) 2nd word		1111	xxxx	XZZZ	ZZZZ	—
PUSHL	k	Store Literal at FSR2,	1	1110	1010	kkkk	kkkk	None
		Decrement FSR2						—
SUBFSR	f, k	Subtract Literal from FSR	1	1110	1001	ffkk	kkkk	None
SUBULNK	k	Subtract Literal from FSR2 and	2	1110	1001	11kk	kkkk	None
		Return						

TABLE 27-3: EXTENSIONS TO THE PIC18 INSTRUCTION SET

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support
- Development Systems Information Line

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support