

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	34
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf45j11-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

R/W-0) R/W-1	R/W-1	R/W-0	R-1 ⁽¹⁾	U-1	R/W-0	R/W-0
IDLEN	I IRCF2	IRCF1	IRCF0	OSTS	—	SCS1	SCS0
bit 7							bit 0
Legend:							
-	able bit	W = Writable	bit	U = Unimple	mented bit		
R = Readable bit -n = Value at POR		'1' = Bit is set	:	ʻ0' = Bit is cle		x = Bit is unkr	nown
bit 7	IDLEN: Idle	Enable bit					
	1 = Device	enters Idle mod enters Sleep mo	••••••				
bit 6-4	IRCF<2:0>:	Internal Oscillat	or Frequency	Select bits ⁽⁴⁾			
	111 = 8 MH	z (INTOSC drive					
	110 = 4 MH						
	101 = 2 MH 100 = 1 MH						
	011 = 500 k	—					
	010 = 250 k						
	001 = 125 k				(2)		
		Iz (from either IN			ly) ⁽³⁾		
bit 3		llator Start-up Ti					
		or Start-up Time or Start-up Time					
bit 2	Unimpleme	nted: Read as '	1'				
bit 1-0	SCS<1:0>:	System Clock S	elect bits				
		aled internal clo	ck (INTRC/IN	TOSC derived)		
	10 = Reserv						
	01 = Timer1			and or output w	than EOSC -2	0> = 001 or 000	`
		y clock source (y clock source ()
Note 1:	Reset value is '0'	' when Two-Spe	ed Start-up is	enabled and '1	1' if disabled.		
2:	Default output fre	equency of INTC	SC on Reset	(4 MHz).			
3:	Source selected	by the INTSRC	bit (OSCTUN	E<7>).			
4:	When using INTO	OSC to drive the	4x PLL, sele	ct 8 MHz or 4 M	MHz only to av	oid operating the	e 4x PLL

REGISTER 3-2: OSCCON: OSCILLATOR CONTROL REGISTER (ACCESS FD3h)

4: When using INTOSC to drive the 4x PLL, select 8 MHz or 4 MHz only to avoid operating the 4x PLL outside of specification.

5.2 Master Clear (MCLR)

The Master Clear Reset (MCLR) pin provides a method for triggering a hard external Reset of the device. A Reset is generated by holding the pin low. PIC18 extended microcontroller devices have a noise filter in the MCLR Reset path, which detects and ignores small pulses.

The $\overline{\text{MCLR}}$ pin is not driven low by any internal Resets, including the WDT.

5.3 Power-on Reset (POR)

A POR condition is generated on-chip whenever VDD rises above a certain threshold. This allows the device to start in the initialized state when VDD is adequate for operation.

To take advantage of the POR circuitry, tie the $\overline{\text{MCLR}}$ pin through a resistor (1 k Ω to 10 k Ω) to VDD. This will eliminate external RC components usually needed to create a POR delay.

When the device starts normal operation (i.e., exits the Reset condition), device operating parameters (voltage, frequency, temperature, etc.) must be met to ensure operation. If these conditions are not met, the device must be held in Reset until the operating conditions are met.

POR events are captured by the $\overrightarrow{\text{POR}}$ bit (RCON<1>). The state of the bit is set to '0' whenever a Power-on Reset occurs; it does not change for any other Reset event. $\overrightarrow{\text{POR}}$ is not reset to '1' by any hardware event. To capture multiple events, the user manually resets the bit to '1' in software following any POR.

5.4 Brown-out Reset (BOR)

"F" devices incorporate two types of BOR circuits: one which monitors VDDCORE and one which monitors VDD. Only one BOR circuit can be active at a time. When in normal Run mode, Idle or normal Sleep modes, the BOR circuit that monitors VDDCORE is active and will cause the device to be held in BOR if VDDCORE drops below VBOR (parameter D005). Once VDDCORE rises back above VBOR, the device will be held in Reset until the expiration of the Power-up Timer, with period, TPWRT (parameter 33).

During Deep Sleep operation, the on-chip core voltage regulator is disabled and VDDCORE is allowed to drop to ground levels. If the Deep Sleep BOR circuit is enabled by the DSBOREN Configuration bit (CONFIG3L<2> = 1), it will monitor VDD. If VDD drops below the VDSBOR threshold, the device will be held in a Reset state similar to POR. All registers will be set back to their POR Reset values and the contents of the DSGPR0 and DSGPR1 holding registers will be lost.

Additionally, if any I/O pins had been configured as outputs during Deep Sleep, these pins will be tri-stated and the device will no longer be held in Deep Sleep. Once the VDD voltage recovers back above the VDSBOR threshold, and once the core voltage regulator achieves a VDDCORE voltage above VBOR, the device will begin executing code again normally, but the DS bit in the WDTCON register will not be set. The device behavior will be similar to hard cycling all power to the device.

On "LF" devices, the VDDCORE BOR circuit is always disabled because the internal core voltage regulator is disabled. Instead of monitoring VDDCORE, PIC18LF devices in this family can use the VDD BOR circuit to monitor VDD excursions below the VDSBOR threshold. The VDD BOR circuit can be disabled by setting the DSBOREN bit = 0.

The VDD BOR circuit is enabled when DSBOREN = 1 on "LF" devices, or on "F" devices while in Deep Sleep with DSBOREN = 1. When enabled, the VDD BOR circuit is extremely low power (typ. 40 nA) during normal operation above ~2.3V on VDD. If VDD drops below this DSBOR arming level when the VDD BOR circuit is enabled, the device may begin to consume additional current (typ. 50 μ A) as internal features of the circuit power up. The higher current is necessary to achieve more accurate sensing of the VDD level. However, the device will not enter Reset until VDD falls below the VDSBOR threshold.

5.4.1 DETECTING BOR

The BOR bit always resets to '0' on any VDDCORE, BOR or POR event. This makes it difficult to determine if a Brown-out Reset event has occurred just by reading the state of BOR alone. A more reliable method is to simultaneously check the state of both POR and BOR. This assumes that the POR bit is reset to '1' in software immediately after any Power-on Reset event. If BOR is '0' while POR is '1', it can be reliably assumed that a Brown-out Reset event has occurred.

If the voltage regulator is disabled (LF devices), the VDDCORE BOR functionality is disabled. In this case, the BOR bit cannot be used to determine a Brown-out Reset event. The BOR bit is still cleared by a Power-on Reset event.

5.5 Configuration Mismatch (CM)

The Configuration Mismatch (CM) Reset is designed to detect, and attempt to recover from, random memory corrupting events. These include Electrostatic Discharge (ESD) events, which can cause widespread single bit changes throughout the device and result in catastrophic failure.

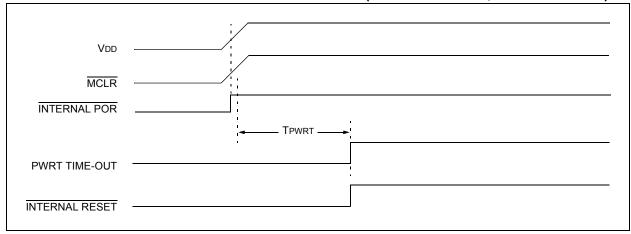
In PIC18FXXJ Flash devices, the device Configuration registers (located in the configuration memory space) are continuously monitored during operation by comparing their values to complimentary shadow registers. If a mismatch is detected between the two sets of registers, a CM Reset automatically occurs. These events are captured by the CM bit (RCON<5>). The state of the bit is set to '0' whenever a CM event occurs; it does not change for any other Reset event.

A CM Reset behaves similarly to a MCLR, RESET instruction, WDT time-out or Stack Event Resets. As with all hard and power Reset events, the device Configuration Words are reloaded from the Flash Configuration Words in program memory as the device restarts.

5.6 Power-up Timer (PWRT)

PIC18F46J11 family devices incorporate an on-chip PWRT to help regulate the POR process. The PWRT is always enabled. The main function is to ensure that the device voltage is stable before code is executed.

The Power-up Timer (PWRT) of the PIC18F46J11 family devices is a 5-bit counter which uses the INTRC source as the clock input. This yields an approximate time interval of $32 \times 32 \ \mu s = 1 \ ms$. While the PWRT is counting, the device is held in Reset.


The power-up time delay depends on the INTRC clock and will vary from chip-to-chip due to temperature and process variation. See DC parameter 33 (TPWRT) for details.

5.6.1 TIME-OUT SEQUENCE

The PWRT time-out is invoked after the POR pulse has cleared. The total time-out will vary based on the status of the PWRT. Figure 5-2, Figure 5-3, Figure 5-4 and Figure 5-5 all depict time-out sequences on power-up with the PWRT.

Since the time-outs occur from the POR pulse, if $\overline{\text{MCLR}}$ is kept low long enough, the PWRT will expire. Bringing $\overline{\text{MCLR}}$ high will begin execution immediately if a clock source is available (Figure 5-4). This is useful for testing purposes, or to synchronize more than one PIC18FXXXX device operating in parallel.

FIGURE 5-2: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD, VDD RISE < TPWRT)

TABLE 5-2:	TABLE 5-2: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)									
Register	Applicabl	Applicable Devices Power-on Reset, Wake From Deep Sleep		MCLR Resets WDT Reset RESET Instruction Stack Resets CM Resets	Wake-up via WDT or Interrupt					
RPINR8	PIC18F2XJ11	PIC18F4XJ11	1 1111	1 1111	u uuuu					
RPINR7	PIC18F2XJ11	PIC18F4XJ11	1 1111	1 1111	u uuuu					
RPINR6	PIC18F2XJ11	PIC18F4XJ11	1 1111	1 1111	u uuuu					
RPINR4	PIC18F2XJ11	PIC18F4XJ11	1 1111	1 1111	u uuuu					
RPINR3	PIC18F2XJ11	PIC18F4XJ11	1 1111	1 1111	u uuuu					
RPINR2	PIC18F2XJ11	PIC18F4XJ11	1 1111	1 1111	u uuuu					
RPINR1	PIC18F2XJ11	PIC18F4XJ11	1 1111	1 1111	u uuuu					
RPOR24	—	PIC18F4XJ11	0 0000	0 0000	u uuuu					
RPOR23	—	PIC18F4XJ11	0 0000	0 0000	u uuuu					
RPOR22	—	PIC18F4XJ11	0 0000	0 0000	u uuuu					
RPOR21	—	PIC18F4XJ11	0 0000	0 0000	u uuuu					
RPOR20	_	PIC18F4XJ11	0 0000	0 0000	u uuuu					
RPOR19		PIC18F4XJ11	0 0000	0 0000	u uuuu					
RPOR18	PIC18F2XJ11	PIC18F4XJ11	0 0000	0 0000	u uuuu					
RPOR17	PIC18F2XJ11	PIC18F4XJ11	0 0000	0 0000	u uuuu					
RPOR16	PIC18F2XJ11	PIC18F4XJ11	0 0000	0 0000	u uuuu					
RPOR15	PIC18F2XJ11	PIC18F4XJ11	0 0000	0 0000	u uuuu					
RPOR14	PIC18F2XJ11	PIC18F4XJ11	0 0000	0 0000	u uuuu					
RPOR13	PIC18F2XJ11	PIC18F4XJ11	0 0000	0 0000	u uuuu					
RPOR12	PIC18F2XJ11	PIC18F4XJ11	0 0000	0 0000	u uuuu					
RPOR11	PIC18F2XJ11	PIC18F4XJ11	0 0000	0 0000	u uuuu					
RPOR10	PIC18F2XJ11	PIC18F4XJ11	0 0000	0 0000	u uuuu					
RPOR9	PIC18F2XJ11	PIC18F4XJ11	0 0000	0 0000	u uuuu					
RPOR8	PIC18F2XJ11	PIC18F4XJ11	0 0000	0 0000	u uuuu					
RPOR7	PIC18F2XJ11	PIC18F4XJ11	0 0000	0 0000	u uuuu					
RPOR6	PIC18F2XJ11	PIC18F4XJ11	0 0000	0 0000	u uuuu					
RPOR5	PIC18F2XJ11	PIC18F4XJ11	0 0000	0 0000	u uuuu					
RPOR4	PIC18F2XJ11	PIC18F4XJ11	0 0000	0 0000	u uuuu					
RPOR3	PIC18F2XJ11	PIC18F4XJ11	0 0000	0 0000	u uuuu					
RPOR2	PIC18F2XJ11	PIC18F4XJ11	0 0000	0 0000	u uuuu					
RPOR1	PIC18F2XJ11	PIC18F4XJ11	0 0000	0 0000	u uuuu					
RPOR0	PIC18F2XJ11	PIC18F4XJ11	0 0000	0 0000	u uuuu					

TABLE 5-2: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition.

Note 1: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

- **2:** When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).
- 3: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).
- 4: See Table 5-1 for Reset value for specific condition.
- 5: Not implemented for PIC18F2XJ11 devices.
- 6: Not implemented on "LF" devices.

6.4 Data Addressing Modes

Note:	The execution of some instructions in the
	core PIC18 instruction set is changed
	when the PIC18 extended instruction set is
	enabled. See Section 6.6 "Data Memory
	and the Extended Instruction Set" for
	more information.

While the program memory can be addressed in only one way, through the PC, information in the data memory space can be addressed in several ways. For most instructions, the addressing mode is fixed. Other instructions may use up to three modes, depending on which operands are used and whether or not the extended instruction set is enabled.

The addressing modes are:

- Inherent
- Literal
- Direct
- Indirect

An additional addressing mode, Indexed Literal Offset, is available when the extended instruction set is enabled (XINST Configuration bit = 1). Its operation is discussed in more detail in **Section 6.6.1 "Indexed Addressing with Literal Offset**".

6.4.1 INHERENT AND LITERAL ADDRESSING

Many PIC18 control instructions do not need any argument at all; they either perform an operation that globally affects the device, or they operate implicitly on one register. This addressing mode is known as Inherent Addressing. Examples include SLEEP, RESET and DAW.

Other instructions work in a similar way, but require an additional explicit argument in the opcode. This is known as Literal Addressing mode, because they require some literal value as an argument. Examples include ADDLW and MOVLW, which respectively, add or move a literal value to the W register. Other examples include CALL and GOTO, which include a 20-bit program memory address.

6.4.2 DIRECT ADDRESSING

Direct Addressing specifies all or part of the source and/or destination address of the operation within the opcode itself. The options are specified by the arguments accompanying the instruction.

In the core PIC18 instruction set, bit-oriented and byte-oriented instructions use some version of Direct Addressing by default. All of these instructions include some 8-bit Literal Address as their LSB. This address specifies either a register address in one of the banks of data RAM (Section 6.3.3 "General Purpose

Register File"), or a location in the Access Bank (Section 6.3.2 "Access Bank") as the data source for the instruction.

The Access RAM bit, 'a', determines how the address is interpreted. When 'a' is '1', the contents of the BSR (Section 6.3.1 "Bank Select Register") are used with the address to determine the complete 12-bit address of the register. When 'a' is '0', the address is interpreted as being a register in the Access Bank. Addressing that uses the Access RAM is sometimes also known as Direct Forced Addressing mode.

A few instructions, such as MOVFF, include the entire 12-bit address (either source or destination) in their opcodes. In these cases, the BSR is ignored entirely.

The destination of the operation's results is determined by the destination bit, 'd'. When 'd' is '1', the results are stored back in the source register, overwriting its original contents. When 'd' is '0', the results are stored in the W register. Instructions without the 'd' argument have a destination that is implicit in the instruction; their destination is either the target register being operated on or the W register.

6.4.3 INDIRECT ADDRESSING

Indirect Addressing allows the user to access a location in data memory without giving a fixed address in the instruction. This is done by using File Select Registers (FSRs) as pointers to the locations to be read or written to. Since the FSRs are themselves located in RAM as SFRs, they can also be directly manipulated under program control. This makes FSRs very useful in implementing data structures such as tables and arrays in data memory.

The registers for Indirect Addressing are also implemented with Indirect File Operands (INDFs) that permit automatic manipulation of the pointer value with auto-incrementing, auto-decrementing or offsetting with another value. This allows for efficient code using loops, such as the example of clearing an entire RAM bank in Example 6-5. It also enables users to perform Indexed Addressing and other Stack Pointer operations for program memory in data memory.

EXAMPLE 6-5: HOW TO CLEAR RAM (BANK 1) USING INDIRECT ADDRESSING

	LFSR	FSR0, 0x100	; (
NEXT	CLRF	POSTINC0	;	Clear INDF
			;	register then
			;	inc pointer
	BTFSS	FSROH, 1	;	All done with
			;	Bank1?
	BRA	NEXT	;	NO, clear next
CONTINU	E		;	YES, continue

Example 8-3 provides the instruction sequence for a 16×16 unsigned multiplication. Equation 8-1 provides the algorithm that is used. The 32-bit result is stored in four registers (RES<3:0>).

EQUATION 8-1: 16 x 16 UNSIGNED MULTIPLICATION ALGORITHM

RES3:RES0	=	ARG1H:ARG1L · ARG2H:ARG2L
	=	$(ARG1H \cdot ARG2H \cdot 2^{16}) +$
		$(ARG1H \cdot ARG2L \cdot 2^8) +$
		$(ARG1L \cdot ARG2H \cdot 2^8) +$
		(ARG1L · ARG2L)
1		

EXAMPLE 8-3:

16 x 16 UNSIGNED MULTIPLY ROUTINE

MOVF	ARG1L, W	
MULWF	ARG2L	; ARG1L * ARG2L->
		; PRODH:PRODL
MOVFF	PRODH, RES1	;
MOVFF	PRODL, RESO	;
MOVF	ARG1H, W	
MULWF	ARG2H	; ARG1H * ARG2H->
		; PRODH:PRODL
MOVFF	PRODH, RES3	;
MOVFF	PRODL, RES2	;
MOVF	ARG1L, W	
MULWF	ARG2H	; ARG1L * ARG2H->
		; PRODH:PRODL
MOVF	PRODL, W	;
ADDWF	RES1, F	; Add cross
MOVF	PRODH, W	; products
ADDWFC	RES2, F	;
CLRF	WREG	;
ADDWFC	RES3, F	;
MOVF	ARG1H, W	;
MULWF	ARG2L	; ARG1H * ARG2L->
		; PRODH:PRODL
MOVF	PRODL, W	;
ADDWF	RES1, F	; Add cross
MOVF	PRODH, W	; products
ADDWFC	RES2, F	;
CLRF	WREG	;
ADDWFC	RES3, F	;

Example 8-4 provides the sequence to do a 16 x 16 signed multiply. Equation 8-2 provides the algorithm used. The 32-bit result is stored in four registers (RES<3:0>). To account for the sign bits of the arguments, the MSb for each argument pair is tested and the appropriate subtractions are done.

EQUATION 8-2: 16 x 16 SIGNED MULTIPLICATION ALGORITHM

RES3:RES0	=	$\begin{array}{l} ARG1H:ARG1L \cdot ARG2H:ARG2L \\ (ARG1H \cdot ARG2H \cdot 2^{16}) + \\ (ARG1H \cdot ARG2L \cdot 2^8) + \\ (ARG1L \cdot ARG2H \cdot 2^8) + \\ (ARG1L \cdot ARG2L) + \\ (-1 \cdot ARG2H < 7 > \cdot ARG1H:ARG1L \cdot 2^{16}) + \\ (-1 \cdot ARG1H < 7 > \cdot ARG2H:ARG2L \cdot 2^{16}) \end{array}$

EXAMPLE 8-4:

16 x 16 SIGNED MULTIPLY ROUTINE

				_	
	MOVF	ARG1L,	W		
	MULWF	ARG2L		;	ARG1L * ARG2L ->
					PRODH:PRODL
	MOVFF	PRODH,	DEG1	;	1100011 1110000
		,			
	MOVFF	PRODL,	RESU	;	
	MOVF				
	MULWF	ARG2H			ARG1H * ARG2H ->
				;	PRODH:PRODL
	MOVFF	PRODH,	RES3	;	
	MOVFF	PRODL,	RES2	;	
	MOVF	ARG1L,	W		
	MULWF	ARG2H		;	ARG1L * ARG2H ->
					PRODH: PRODL
	MOVF	PRODL,		;	
		RES1, I			Add cross
	MOVF	PRODH,			products
	ADDWFC				produces
			-	;	
	CLRF	WREG	_	;	
	ADDWFC	RES3, I	-	;	
	MOVF	ARG1H,	W	;	
	MULWF	ARG2L		;	ARG1H * ARG2L ->
				;	PRODH:PRODL
	MOVF	PRODL,	W	;	
	ADDWF	RES1, H	7	;	Add cross
	MOVF	PRODH,		;	products
	ADDWFC	RES2, I		;	-
		WREG		;	
	ADDWFC	RES3.	7	;	
	BTFSS	ARG2H	7	;	ARG2H:ARG2L neg?
	BRA	SIGN_A			no, check ARG1
		ARG1L,			no, check Aksi
			VV	;	
	SUBWF	RES2	1.7	;	
		ARG1H,	W	;	
	SUBWFB	RES3			
SIG	N_ARG1		_		
	BTFSS				ARG1H:ARG1L neg?
	BRA	CONT_CO	ODE	;	no, done
	MOVF	ARG2L,	W	;	
	SUBWF	RES2		;	
	MOVF	ARG2H,	W	;	
	SUBWFB	RES3			
CON	T_CODE				
	:				

REGISTER 10-33: RPOR12: PERIPHERAL PIN SELECT OUTPUT REGISTER 12 (BANKED ED2h)

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—		RP12R4	RP12R3	RP12R2	RP12R1	RP12R0
bit 7							bit 0

Legend:	R/\overline{W} = Readable, Writable if IOLOCK = 0					
R = Readable bit	W = Writable bit U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown				

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP12R<4:0>:** Peripheral Output Function is Assigned to RP12 Output Pin bits (see Table 10-14 for peripheral function numbers)

REGISTER 10-34: RPOR13: PERIPHERAL PIN SELECT OUTPUT REGISTER 13 (BANKED ED3h)

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	RP13R4	RP13R3	RP13R2	RP13R1	RP13R0
bit 7							bit 0

Legend:	R/W = Readable, Writable if IOLOCK = 0				
R = Readable bit	W = Writable bit U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP13R<4:0>:** Peripheral Output Function is Assigned to RP13 Output Pin bits (see Table 10-14 for peripheral function numbers)

REGISTER 10-35: RPOR14: PERIPHERAL PIN SELECT OUTPUT REGISTER 14 (BANKED ED4h)

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	RP14R4	RP14R3	RP14R2	RP14R1	RP14R0
bit 7							bit 0

Legend:	R/W = Readable, Writ	R/\overline{W} = Readable, Writable if IOLOCK = 0				
R = Readable bit	W = Writable bit	U = Unimplemented bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP14R<4:0>:** Peripheral Output Function is Assigned to RP14 Output Pin bits (see Table 10-14 for peripheral function numbers)

REGISTER 10-39: RPOR18: PERIPHERAL PIN SELECT OUTPUT REGISTER 18 (BANKED ED8h)

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	RP18R4	RP18R3	RP18R2	RP18R1	RP18R0
bit 7							bit 0

Legend:	R/W = Readable, Writable if IOLOCK = 0				
R = Readable bit	W = Writable bit U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP18R<4:0>:** Peripheral Output Function is Assigned to RP18 Output Pin bits (see Table 10-14 for peripheral function numbers)

REGISTER 10-40: RPOR19: PERIPHERAL PIN SELECT OUTPUT REGISTER 19 (BANKED ED9h)⁽¹⁾

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—		RP19R4	RP19R3	RP19R2	RP19R1	RP19R0
bit 7							bit 0

Legend:	R/\overline{W} = Readable, Writable if IOLOCK = 0				
R = Readable bit	W = Writable bit U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP19R<4:0>:** Peripheral Output Function is Assigned to RP19 Output Pin bits (see Table 10-14 for peripheral function numbers)

Note 1: RP19 pins are not available on 28-pin devices.

REGISTER 10-41: RPOR20: PERIPHERAL PIN SELECT OUTPUT REGISTER 20 (BANKED EDAh)⁽¹⁾

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	RP20R4	RP20R3	RP20R2	RP20R1	RP20R0
bit 7							bit 0

Legend:	R/W = Readable, Wri	R/\overline{W} = Readable, Writable if IOLOCK = 0				
R = Readable bit	W = Writable bit	Vritable bit U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP20R<4:0>:** Peripheral Output Function is Assigned to RP20 Output Pin bits (see Table 10-14 for peripheral function numbers)

Note 1: RP20 pins are not available on 28-pin devices.

15.6 Timer3 Interrupt

The TMR3 register pair (TMR3H:TMR3L) increments from 0000h to FFFFh and overflows to 0000h. The Timer3 interrupt, if enabled, is generated on overflow and is latched in interrupt flag bit, TMR3IF (PIR2<1>). This interrupt can be enabled or disabled by setting or clearing the Timer3 Interrupt Enable bit, TMR3IE (PIE2<1>).

15.7 Resetting Timer3 Using the ECCP Special Event Trigger

If ECCP1 or ECCP2 is configured to use Timer3 and to generate a Special Event Trigger in Compare mode (CCPxM<3:0> = 1011), this signal will reset Timer3.

The trigger from ECCP2 will also start an A/D conversion if the A/D module is enabled (see **Section 18.3.4** "**Special Event Trigger**" for more information).

The module must be configured as either a timer or synchronous counter to take advantage of this feature. When used this way, the CCPRxH:CCPRxL register pair effectively becomes a Period register for Timer3.

If Timer3 is running in Asynchronous Counter mode, the Reset operation may not work.

In the event that a write to Timer3 coincides with a Special Event Trigger from an ECCP module, the write will take precedence.

Note: The Special Event Triggers from the ECCPx module will not set the TMR3IF interrupt flag bit (PIR1<0>).

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	90
PIR2	OSCFIF	CM2IF	CM1IF	_	BCL1IF	LVDIF	TMR3IF	CCP2IF	92
PIE2	OSCFIE	CM2IE	CM1IE	_	BCL1IE	LVDIE	TMR3IE	CCP2IE	92
IPR2	OSCFIP	CM2IP	CM1IP	_	BCL1IP	LVDIP	TMR3IP	CCP2IP	92
TMR3L	Timer3 Reg	gister Low B	/te						93
TMR3H	Timer3 Reg	gister High B	yte						93
T1CON	TMR1CS1	TMR1CS0	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	RD16	TMR10N	91
T3CON	TMR3CS1	TMR3CS0	T3CKPS1	T3CKPS0	_	T3SYNC	RD16	TMR3ON	93
T3GCON	TMR3GE	T3GPOL	T3GTM	T3GSPM	T3GGO/ T3DONE	T3GVAL	T3GSS1	T3GSS0	92
TCLKCON	—	—	—	T1RUN	—	_	T3CCP2	T3CCP1	94
PIR3	SSP2IF	BCL2IF	RC2IF	TX2IF	TMR4IF	CTMUIF	TMR3GIF	RTCCIF	92
PIE3	SSP2IE	BCL2IE	RC2IE	TX2IE	TMR4IE	CTMUIE	TMR3GIE	RTCCIE	92
IPR3	SSP2IP	BCL2IP	RC2IP	TX2IP	TMR4IP	CTMUIP	TMR3GIP	RTCCIP	92

TABLE 15-3: REGISTERS ASSOCIATED WITH TIMER3 AS A TIMER/COUNTER

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the Timer3 module.

REGISTER 17-11: HOURS: HOURS VALUE REGISTER (ACCESS F98h, PTR 01b)⁽¹⁾

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	HRTEN1	HRTEN0	HRONE3	HRONE2	HRONE1	HRONE0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6	Unimplemented: Read as '0'
bit 5-4	HRTEN<1:0>: Binary Coded Decimal Value of Hour's Tens Digit bits Contains a value from 0 to 2.
bit 3-0	HRONE<3:0>: Binary Coded Decimal Value of Hour's Ones Digit bits Contains a value from 0 to 9.

Note 1: A write to this register is only allowed when RTCWREN = 1.

REGISTER 17-12: MINUTES: MINUTES VALUE REGISTER (ACCESS F99h, PTR 00b)

U-0	R/W-x						
—	MINTEN2	MINTEN1	MINTEN0	MINONE3	MINONE2	MINONE1	MINONE0
bit 7							bit 0

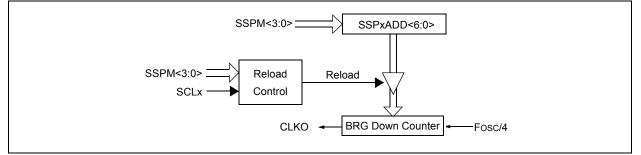
Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	Unimplemented: Read as '0'
bit 6-4	MINTEN<2:0>: Binary Coded Decimal Value of Minute's Tens Digit bits Contains a value from 0 to 5.
bit 3-0	MINONE<3:0>: Binary Coded Decimal Value of Minute's Ones Digit bits Contains a value from 0 to 9.

REGISTER 17-13: SECONDS: SECONDS VALUE REGISTER (ACCESS F98h, PTR 00b)

U-0	R/W-x						
—	SECTEN2	SECTEN1	SECTEN0	SECONE3	SECONE2	SECONE1	SECONE0
bit 7							bit 0

Legend:					
R = Reada	ble bit	W = Writable bit	U = Unimplemented bit,	read as '0'	
-n = Value at POR		'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	
bit 7	Unimple	mented: Read as '0'			
bit 6-4	SECTEN<2:0>: Binary Coded Decimal Value of Second's Tens Digit bits Contains a value from 0 to 5.				


bit 3-0 SECONE<3:0>: Binary Coded Decimal Value of Second's Ones Digit bits Contains a value from 0 to 9.

19.5.7.1 Baud Rate and Module Interdependence

Because MSSP1 and MSSP2 are independent, they can operate simultaneously in I^2C Master mode at different baud rates. This is done by using different BRG reload values for each module.

Because this mode derives its basic clock source from the system clock, any changes to the clock will affect both modules in the same proportion. It may be possible to change one or both baud rates back to a previous value by changing the BRG reload value.

FIGURE 19-19: BAUD RATE GENERATOR BLOCK DIAGRAM

TABLE 19-3: I²C[™] CLOCK RATE w/BRG

Fosc	FCY	Fcy * 2	BRG Value	FscL (2 Rollovers of BRG)
40 MHz	10 MHz	20 MHz	18h	400 kHz ⁽¹⁾
40 MHz	10 MHz	20 MHz	1Fh	312.5 kHz
40 MHz	10 MHz	20 MHz	63h	100 kHz
16 MHz	4 MHz	8 MHz	09h	400 kHz ⁽¹⁾
16 MHz	4 MHz	8 MHz	0Ch	308 kHz
16 MHz	4 MHz	8 MHz	27h	100 kHz
4 MHz	1 MHz	2 MHz	02h	333 kHz ⁽¹⁾
4 MHz	1 MHz	2 MHz	09h	100 kHz
16 MHz	4 MHz	8 MHz	03h	1 MHz ⁽¹⁾

Note 1: The I²C interface does not conform to the 400 kHz I²C specification (which applies to rates greater than 100 kHz) in all details, but may be used with care where higher rates are required by the application.

The ANCON0 and ANCON1 registers are used to configure the operation of the I/O pin associated with each analog channel. Setting any one of the PCFG bits configures the corresponding pin to operate as a digital only I/O. Clearing a bit configures the pin to operate as an analog input for either the A/D Converter or the comparator module; all digital peripherals are disabled and digital inputs read as '0'. As a rule, I/O pins that are multiplexed with analog inputs default to analog operation on device Resets.

In order to correctly perform A/D conversions on the VBG band gap reference (ADCON0<5:2> = 1111), the reference circuit must be powered on first. The VBGEN bit in the ANCON1 register allows the firmware to manually

request that the band gap reference circuit should be enabled. For best accuracy, firmware should allow a settling time of at least 10 ms prior to performing the first acquisition on this channel after enabling the band gap reference.

The reference circuit may already have been turned on if some other hardware module (such as comparators or HLVD) has already requested it. In this case, the initial turn-on settling time may have already elapsed and firmware does not need to wait as long before measuring VBG. Once the acquisition is complete, firmware may clear the VBGEN bit, which will save a small amount of power if no other modules are still requesting the VBG reference.

REGISTER 21-3:	ANCON0: A/D PORT CONFIGURATION REGISTER 2 (BANKED F48h)
----------------	---

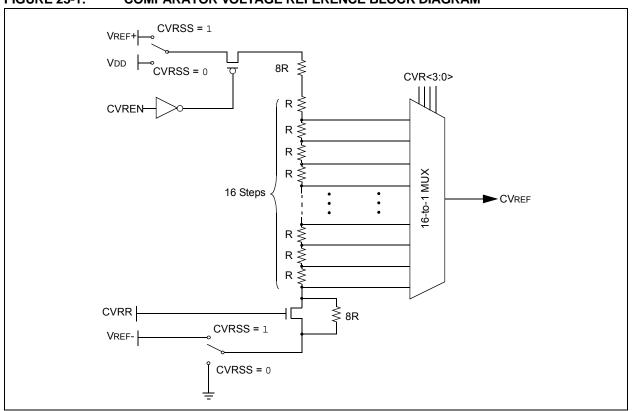
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PCFG7 ⁽¹⁾	PCFG6 ⁽¹⁾	PCFG5 ⁽¹⁾	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0
bit 7							bit 0
Legend:							
R = Readable bit W = Writable		W = Writable I	hit	U = Unimplem	nented bit read	as '0'	

-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
R = Readable bit	vv = vvritable bit	U = Unimplemented bit, read	as '0'

bit 7-0 **PCFG<7:0>:** Analog Port Configuration bits (AN<7:0>) 1 = Pin configured as a digital port 0 = Pin configured as an analog channel – digital input disabled and reads '0'

Note 1: These bits are not implemented on 28-pin devices.

REGISTER 21-4: ANCON1: A/D PORT CONFIGURATION REGISTER 1 (BANKED F49h)

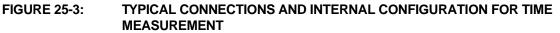

R/W-0	r	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
VBGEN	—	—	PCFG12	PCFG11	PCFG10	PCFG9	PCFG8
bit 7 bit 0							

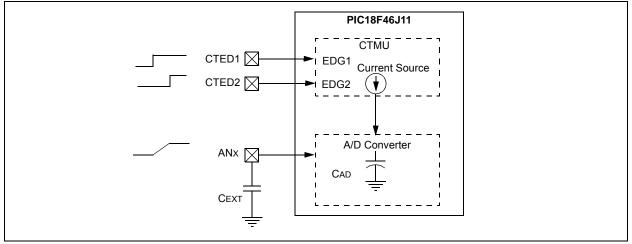
Legend:	r = Reserved			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7	VBGEN: 1.2V Band Gap Reference Enable bit 1 = 1.2V band gap reference is powered on 0 = 1.2V band gap reference is turned off to save power (if no other modules are requesting it)
bit 6	Reserved: Always maintain as '0' for lowest power consumption
bit 5	Unimplemented: Read as '0'
bit 4-0	PCFG<12:8>: Analog Port Configuration bits (AN<12:8>)
	 1 = Pin configured as a digital port 0 = Pin configured as an analog channel – digital input disabled and reads '0'

23.0 COMPARATOR VOLTAGE REFERENCE MODULE

The comparator voltage reference is a 16-tap resistor ladder network that provides a selectable reference voltage. Although its primary purpose is to provide a reference for the analog comparators, it may also be used independently of them. Figure 23-1 provides a block diagram of the module. The resistor ladder is segmented to provide two ranges of CVREF values and has a power-down function to conserve power when the reference is not being used. The module's supply reference can be provided from either device VDD/VSS or an external voltage reference.


FIGURE 23-1: COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM


25.5 Measuring Time with the CTMU Module

Time can be precisely measured after the ratio (C/I) is measured from the current and capacitance calibration step by following these steps:

- 1. Initialize the A/D Converter and the CTMU.
- 2. Set EDG1STAT.
- 3. Set EDG2STAT.
- 4. Perform an A/D conversion.
- 5. Calculate the time between edges as T = (C/I) * V, where *I* is calculated in the current calibration step (Section 25.3.1 "Current Source Calibration"), *C* is calculated in the capacitance calibration step (Section 25.3.2 "Capacitance Calibration") and *V* is measured by performing the A/D conversion.

It is assumed that the time measured is small enough that the capacitance, CAD + CEXT, provides a valid voltage to the A/D Converter. For the smallest time measurement, always set the A/D Channel Select register (AD1CHS) to an unused A/D channel; the corresponding pin for which is not connected to any circuit board trace. This minimizes added stray capacitance, keeping the total circuit capacitance close to that of the A/D Converter itself (4-5 pF). To measure longer time intervals, an external capacitor may be connected to an A/D channel and this channel selected when making a time measurement.

DEC	FSZ	Decrement	Decrement f, Skip if 0						
Synta	ax:	DECFSZ f	⁻ {,d {,a}}						
Oper	ands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \\ a \in [0,1] \end{array}$	d ∈ [0,1]						
Oper	ation:	()	$(f) - 1 \rightarrow dest,$ skip if result = 0						
Statu	s Affected:	None							
Enco	ding:	0010	11da ffi	ff ffff					
Desc	ription:	decremente placed in W	The contents of register 'f' are decremented. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f' (default).						
		which is alro and a NOP i	is '0', the nex eady fetched i s executed ins le instruction.						
			ne BSR is use	nk is selected. d to select the					
		set is enabl in Indexed I mode when Section 27 Bit-Oriente	If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 27.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.						
Word	ls:	1	1						
Cycle	es:	•	rcles if skip an 2-word instru						
QC	ycle Activity:								
	Q1	Q2	Q3	Q4					
	Decode	Read register 'f'	Process Data	Write to destination					
lf sk	ip:	Tegister	Data	destination					
	, Q1	Q2	Q3	Q4					
	No	No	No	No					
	operation	operation	operation	operation					
lf sk	-	d by 2-word in:		.					
	Q1	Q2	Q3	Q4					
	No operation	No operation	No operation	No operation					
	No	No	No	No					
	operation	operation	operation	operation					
<u>Example:</u>		HERE CONTINUE	DECFSZ CNT, 1, 1 GOTO LOOP						
	Before Instruc PC	tion = Address	on						
	After Instructio CNT If CNT	= CNT – 1 = 0;							
	PC If CNT	 = Address ≠ 0; 	G (CONTINUE	:)					
	PC	= Address	6 (HERE + 2	?)					

DCFSNZ	Decrement	Decrement f, Skip if not 0					
Syntax:	DCFSNZ	f {,d {,a}}					
Operands:	$0 \leq f \leq 255$	$0 \leq f \leq 255$					
	d ∈ [0,1] a ∈ [0,1]						
Operation:	(f) – $1 \rightarrow de$ skip if resul						
Status Affected:	None						
Encoding:	0100	11da f	fff	ffff			
Description:	The conten decremente placed in W	The contents of register 'f' are decremented. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f' (default).					
	If the result instruction discarded a instead, ma instruction.	which is alreaded and a NOP is	eady fe s execu	tched is ted			
	lf 'a' is '0', t If 'a' is '1', t GPR bank	he BSR is u					
	set is enabl in Indexed mode wher Section 27 Bit-Oriente	If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 27.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.					
Words:	1						
Cycles:							
Q Cycle Activity:							
Q1	Q2	Q3		Q4			
Decode	Read register 'f'	Process Data		/rite to stination			
lf skip:		Data	uct	Sunation			
Q1	Q2	Q3		Q4			
No	No	No		No			
operation	operation	operation	ор	eration			
If skip and followed	d by 2-word in	struction:					
Q1	Q2	Q3		Q4			
No	No	No		No			
operation	operation	operation	ор	eration			
No operation	No operation	No operation		No eration			
Example:	HERE I ZERO NZERO		EMP,				
Before Instruc TEMP After Instructic	=	?					
TEMP If TEMP PC If TEMP PC	 = = = = =	TEMP – 0; Address 0; Address	(ZERC				

29.2 DC Characteristics: Power-Down and Supply Current PIC18F46J11 Family (Industrial)

PIC18LFXXJ11 Family				rating (perature		(unless otherwise s $C \le TA \le +85^{\circ}C$ for inc			
PIC18FXXJ11 Family			Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial						
Param No.	Device	Тур	Max	Units	Conditions				
	Power-Down Current (IPD)	⁽¹⁾ – Sle	ep mod	е					
	PIC18LFXXJ11	0.011	1.4	μΑ	-40°C				
		0.054	1.4	μΑ	+25°C	VDD = 2.0V,			
		0.51	6	μΑ	+60°C	VDDCORE = 2.0V			
		2.0	10.2	μΑ	+85°C				
	PIC18LFXXJ11	0.029	1.5	μΑ	-40°C		Sleep mode,		
		0.11	1.5	μΑ	+25°C	VDD = 2.5V,			
		0.63	8	μA	+60°C	VDDCORE = 2.5V			
		2.30	12.6	μΑ	+85°C	REGSLF VDD = 2.15V,			
	PIC18FXXJ11	2.5	6	μA	-40°C		REGSLP = 1		
		3.1	6	μΑ	+25°C				
		3.9	8	μA	+60°C	VDDCORE = 10 μF Capacitor			
		5.6	16	μΑ	+85°C	p			
	PIC18FXXJ11	4.1	7	μA	-40°C				
		3.3	7	μA	+25°C	VDD = 3.3V, VDDCORE = 10 μF			
		4.1	10	μA	+60°C	Capacitor			
		6.0	19	μA	+85°C	•			
	Power-Down Current (IPD)	⁽¹⁾ – De	ep Slee	p mode					
	PIC18FXXJ11	1	25	nA	-40°C				
		13	100	nA	+25°C	VDD = 2.15V, VDDCORE = 10 μF			
		108	250	nA	+60°C	Capacitor			
		428	1000	nA	+85°C		Deep Sleep mode		
	PIC18FXXJ11	3	50	nA	-40°C				
		28	150	nA	+25°C	VDD = 3.3V, VDDCORE = 10 μF			
		170	389	nA	+60°C	Capacitor			
		588	2000	nA	+85°C				

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that add delta current disabled (such as WDT, Timer1 oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption. All features that add delta current are disabled (WDT, etc.). The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD/Vss;

MCLR = VDD; WDT disabled unless otherwise specified.

3: Low-Power Timer1 with standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.

TABLE 29-5: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS

Operating Conditions: -40°C < TA < +85°C (unless otherwise stated)							
Param No.	Sym Characteristics Min Typ Max Units Comments						
	Vrgout	Regulator Output Voltage	2.35	2.5	2.7	V	Regulator enabled, VDD = 3.0V
	Cefc	External Filter Capacitor Value ⁽¹⁾	5.4	10	18	μF	ESR < 3Ω recommended ESR < 5Ω required

Note 1: CEFC applies for PIC18F devices in the family. For PIC18LF devices in the family, there is no specific minimum or maximum capacitance for VDDCORE, although proper supply rail bypassing should still be used.

TABLE 29-6: ULPWU SPECIFICATIONS

DCCHARACTERISTICS				•	•		(unless otherwise stated) TA \leq +85°C for industrial
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
D100	IULP	Ultra Low-Power Wake-up Current	_	60	_	nA	Net of I/O leakage and current sink at 1.6V on pin, VDD = 3.3V See Application Note AN879, "Using the Microchip Ultra Low-Power Wake-up Module" (DS00879)

† Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

Param No.	Symbol	Characteristic	Min	Тур	Мах	Units	Conditions
A01	NR	Resolution	—		10	bit	$\Delta VREF \ge 3.0V$
A03	EIL	Integral Linearity Error	—	_	<±1	LSb	$\Delta VREF \ge 3.0V$
A04	Edl	Differential Linearity Error	—	_	<±1	LSb	$\Delta VREF \ge 3.0V$
A06	EOFF	Offset Error	—	_	<±3	LSb	$\Delta VREF \ge 3.0V$
A07	Egn	Gain Error	—	_	<±3.5	LSb	$\Delta VREF \ge 3.0V$
A10		Monotonicity	Gi	Guaranteed ⁽¹⁾			$VSS \leq VAIN \leq VREF$
A20	$\Delta VREF$	Reference Voltage Range (VREFH – VREFL)	2.0 3			V V	$\begin{array}{l} VDD < 3.0V \\ VDD \geq 3.0V \end{array}$
A21	Vrefh	Reference Voltage High	VREFL	_	VDD + 0.3V	V	
A22	Vrefl	Reference Voltage Low	Vss – 0.3V	_	VREFH	V	
A25	VAIN	Analog Input Voltage	VREFL	_	VREFH	V	
A30	ZAIN	Recommended Impedance of Analog Voltage Source	—		2.5	kΩ	
A50	IREF	VREF Input Current ⁽²⁾		_	5 150	μΑ μΑ	During VAIN acquisition. During A/D conversion cycle.

TABLE 29-30: A/D CONVERTER CHARACTERISTICS: PIC18F46J11 FAMILY (INDUSTRIAL)

Note 1: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.

2: VREFH current is from RA3/AN3/VREF+/C1INB pin or VDD, whichever is selected as the VREFH source. VREFL current is from RA2/AN2/VREF-/CVREF/C2INB pin or VSS, whichever is selected as the VREFL source.

NEGF	
NOP	
Opcode Field Descriptions	
POP	
PUSH	
RCALL	
RESET	
RETFIE	
RETLW	
RETURN	
RLCF	
RLNCF	
RRCF	
RRNCF	
SETF	
SETF (Indexed Literal Offset Mode)	
SLEEP	
Standard Instructions	
SUBFWB	
SUBLW	449
SUBWF	
SUBWFB	450
SWAPF	450
TBLRD	451
TBLWT	452
TSTFSZ	453
XORLW	453
XORWF	454
INTCON	117
INTCON Registers	117
Inter-Integrated Circuit. See I ² C.	
Internal Oscillator	
Frequency Drift. See INTOSC Frequency Drift.	
Internal Oscillator Block	40
Internal Oscillator Block	
Internal Oscillator Block Adjustment	41
Internal Oscillator Block	41
Internal Oscillator Block Adjustment OSCTUNE Register Internal RC Oscillator	41 41
Internal Oscillator Block Adjustment OSCTUNE Register Internal RC Oscillator Use with WDT	41 41 405
Internal Oscillator Block Adjustment OSCTUNE Register Internal RC Oscillator	41 41 405 483
Internal Oscillator Block	41 41 405 483 533
Internal Oscillator Block	41 41 405 483 533 395
Internal Oscillator Block	41 405 483 533 395 355
Internal Oscillator Block	41 405 483 395 355 249
Internal Oscillator Block	41 405 483 533 395 355 249 251
Internal Oscillator Block	41 405 483 533 395 355 249 251 138
Internal Oscillator Block Adjustment OSCTUNE Register Internal RC Oscillator Use with WDT Internal Voltage Reference Specifications Internet Address Interrupt Sources A/D Conversion Complete Capture Complete (ECCP) Compare Complete (ECCP) Interrupt-on-Change (RB7:RB4) TMR0 Overflow	41 41 405 483 533 395 355 249 251 138 199
Internal Oscillator Block Adjustment OSCTUNE Register Internal RC Oscillator Use with WDT Internal Voltage Reference Specifications Internet Address Interrupt Sources A/D Conversion Complete Capture Complete (ECCP) Compare Complete (ECCP) Interrupt-on-Change (RB7:RB4) TMR0 Overflow TMR1 Overflow	41 41 405 483 395 355 249 251 138 199 207
Internal Oscillator Block Adjustment OSCTUNE Register Internal RC Oscillator Use with WDT Internal Voltage Reference Specifications Internet Address A/D Conversion Complete Capture Complete (ECCP) Compare Complete (ECCP) Interrupt-on-Change (RB7:RB4) TMR0 Overflow TMR1 Overflow TMR3 Overflow	
Internal Oscillator Block Adjustment OSCTUNE Register Internal RC Oscillator Use with WDT Internal Voltage Reference Specifications Internet Address A/D Conversion Complete Capture Complete (ECCP) Compare Complete (ECCP) Interrupt-on-Change (RB7:RB4) TMR0 Overflow TMR1 Overflow TMR3 Overflow TMR3 Overflow 2 TMR4 to PR4 Match	
Internal Oscillator Block Adjustment OSCTUNE Register Internal RC Oscillator Use with WDT Internal Voltage Reference Specifications Internet Address Interrupt Sources A/D Conversion Complete Capture Complete (ECCP) Compare Complete (ECCP) Interrupt-on-Change (RB7:RB4) TMR0 Overflow TMR1 Overflow TMR1 Overflow TMR3 Overflow 2 TMR4 to PR4 Match TMR4 to PR4 Match (PWM)	
Internal Oscillator Block Adjustment OSCTUNE Register Internal RC Oscillator Use with WDT Internal Voltage Reference Specifications Internet Address A/D Conversion Complete Capture Complete (ECCP) Compare Complete (ECCP) Interrupt-on-Change (RB7:RB4) TMR0 Overflow TMR1 Overflow TMR1 Overflow TMR3 Overflow TMR3 Overflow TMR4 to PR4 Match TMR4 to PR4 Match (PWM)	
Internal Oscillator Block Adjustment OSCTUNE Register Internal RC Oscillator Use with WDT Internal Voltage Reference Specifications Internet Address A/D Conversion Complete Capture Complete (ECCP) Compare Complete (ECCP) Interrupt-on-Change (RB7:RB4) TMR0 Overflow TMR1 Overflow TMR1 Overflow TMR3 Overflow TMR3 Overflow TMR4 to PR4 Match TMR4 to PR4 Match (PWM) Interrupts Control Bits	
Internal Oscillator Block Adjustment OSCTUNE Register Internal RC Oscillator Use with WDT Internal Voltage Reference Specifications Internet Address A/D Conversion Complete Capture Complete (ECCP) Compare Complete (ECCP) Interrupt-on-Change (RB7:RB4) TMR0 Overflow TMR1 Overflow TMR1 Overflow TMR3 Overflow TMR3 Overflow TMR4 to PR4 Match TMR4 to PR4 Match (PWM) Interrupts Control Bits Control Bits Control Registers. See INTCON Registers.	
Internal Oscillator Block Adjustment OSCTUNE Register Internal RC Oscillator Use with WDT Internal Voltage Reference Specifications Internet Address A/D Conversion Complete Capture Complete (ECCP) Compare Complete (ECCP) Compare Complete (ECCP) Interrupt-on-Change (RB7:RB4) TMR0 Overflow TMR1 Overflow TMR1 Overflow TMR3 Overflow TMR3 Overflow TMR4 to PR4 Match TMR4 to PR4 Match (PWM) Interrupts Control Bits Control Bits Control Registers. See INTCON Registers. During, Context Saving	
Internal Oscillator Block Adjustment OSCTUNE Register Internal RC Oscillator Use with WDT Internal Voltage Reference Specifications Internet Address Interrupt Sources A/D Conversion Complete Capture Complete (ECCP) Compare Complete (ECCP) Interrupt-on-Change (RB7:RB4) TMR0 Overflow TMR1 Overflow TMR1 Overflow TMR3 Overflow TMR3 Overflow TMR4 to PR4 Match TMR4 to PR4 Match TMR4 to PR4 Match (PWM) Interrupts Control Bits Control Bits Control Bits Control Registers. See INTCON Registers. During, Context Saving INTx Pin	
Internal Oscillator Block Adjustment OSCTUNE Register Internal RC Oscillator Use with WDT Internal Voltage Reference Specifications Internet Address A/D Conversion Complete Capture Complete (ECCP) Compare Complete (ECCP) Compare Complete (ECCP) Interrupt-on-Change (RB7:RB4) TMR0 Overflow TMR1 Overflow TMR1 Overflow TMR3 Overflow TMR3 Overflow TMR4 to PR4 Match TMR4 to PR4 Match (PWM) Interrupts Control Bits Control Bits Control Registers. See INTCON Registers. During, Context Saving INTx Pin PORTB, Interrupt-on-Change	
Internal Oscillator Block Adjustment OSCTUNE Register Internal RC Oscillator Use with WDT Internal Voltage Reference Specifications Internet Address Interrupt Sources A/D Conversion Complete Capture Complete (ECCP) Compare Complete (ECCP) Interrupt-on-Change (RB7:RB4) TMR0 Overflow TMR1 Overflow TMR1 Overflow TMR3 Overflow TMR3 Overflow TMR4 to PR4 Match TMR4 to PR4 Match TMR4 to PR4 Match (PWM) Interrupts Control Bits Control Bits Control Bits Control Registers. See INTCON Registers. During, Context Saving INTx Pin PORTB, Interrupt-on-Change RCON Register	
Internal Oscillator Block Adjustment OSCTUNE Register Internal RC Oscillator Use with WDT Internal Voltage Reference Specifications Internet Address Interrupt Sources A/D Conversion Complete Capture Complete (ECCP) Compare Complete (ECCP) Interrupt-on-Change (RB7:RB4) TMR0 Overflow TMR1 Overflow TMR1 Overflow TMR1 Overflow TMR3 Overflow TMR4 to PR4 Match TMR4 to PR4 Match TMR4 to PR4 Match (PWM) Interrupts Control Bits Control Bits Control Registers. <i>See</i> INTCON Registers. During, Context Saving INTx Pin PORTB, Interrupt-on-Change RCON Register TMR0	
Internal Oscillator Block Adjustment OSCTUNE Register Internal RC Oscillator Use with WDT Internal Voltage Reference Specifications Internet Address Interrupt Sources A/D Conversion Complete Capture Complete (ECCP) Compare Complete (ECCP) Interrupt-on-Change (RB7:RB4) TMR0 Overflow TMR1 Overflow TMR1 Overflow TMR3 Overflow TMR3 Overflow TMR4 to PR4 Match TMR4 to PR4 Match (PWM) Interrupts Control Bits Control Bits Control Bits Control Registers. <i>See</i> INTCON Registers. During, Context Saving INTx Pin PORTB, Interrupt-on-Change RCON Register TMR0	41
Internal Oscillator Block Adjustment OSCTUNE Register Internal RC Oscillator Use with WDT Internal Voltage Reference Specifications Internet Address Interrupt Sources A/D Conversion Complete Capture Complete (ECCP) Compare Complete (ECCP) Compare Complete (ECCP) Interrupt-on-Change (RB7:RB4) TMR0 Overflow TMR1 Overflow TMR1 Overflow TMR3 Overflow TMR3 Overflow TMR4 to PR4 Match TMR4 to PR4 Match (PWM) Interrupts Control Bits Control Bits Control Bits Control Registers. <i>See</i> INTCON Registers. During, Context Saving INTx Pin PORTB, Interrupt-on-Change RCON Register TMR0 Interrupts, Flag Bits Interrupts, Flag Bits Interrupt-on-Change (RB7:RB4) Flag (RBIF Bit)	41
Internal Oscillator Block Adjustment OSCTUNE Register Internal RC Oscillator Use with WDT Internal Voltage Reference Specifications Internet Address A/D Conversion Complete Capture Complete (ECCP) Compare Complete (ECCP) Compare Complete (ECCP) Interrupt-on-Change (RB7:RB4) TMR0 Overflow TMR1 Overflow TMR3 Overflow TMR3 Overflow TMR4 to PR4 Match TMR4 to PR4 Match TMR4 to PR4 Match (PWM) Interrupts Control Bits Control Bits Control Bits Control Registers. See INTCON Registers. During, Context Saving INTx Pin PORTB, Interrupt-on-Change RCON Register TMR0 Interrupts, Flag Bits Interrupts, Flag Bits Interrupts, Flag Bits Interrupt-on-Change (RB7:RB4) Flag (RBIF Bit) INTOSC Frequency Drift	41
Internal Oscillator Block Adjustment OSCTUNE Register Internal RC Oscillator Use with WDT Internal Voltage Reference Specifications Internet Address Interrupt Sources A/D Conversion Complete Capture Complete (ECCP) Compare Complete (ECCP) Compare Complete (ECCP) Interrupt-on-Change (RB7:RB4) TMR0 Overflow TMR1 Overflow TMR1 Overflow TMR3 Overflow TMR3 Overflow TMR4 to PR4 Match TMR4 to PR4 Match (PWM) Interrupts Control Bits Control Bits Control Bits Control Registers. <i>See</i> INTCON Registers. During, Context Saving INTx Pin PORTB, Interrupt-on-Change RCON Register TMR0 Interrupts, Flag Bits Interrupts, Flag Bits Interrupt-on-Change (RB7:RB4) Flag (RBIF Bit) INTOSC Frequency Drift INTOSC, INTRC. <i>See</i> Internal Oscillator Block.	41 41 41 41 41 41 41 41 41 41 41 41 41
Internal Oscillator Block Adjustment OSCTUNE Register Internal RC Oscillator Use with WDT Internal Voltage Reference Specifications Internet Address A/D Conversion Complete Capture Complete (ECCP) Compare Complete (ECCP) Compare Complete (ECCP) Interrupt-on-Change (RB7:RB4) TMR0 Overflow TMR1 Overflow TMR3 Overflow TMR3 Overflow TMR4 to PR4 Match TMR4 to PR4 Match TMR4 to PR4 Match (PWM) Interrupts Control Bits Control Bits Control Bits Control Registers. See INTCON Registers. During, Context Saving INTx Pin PORTB, Interrupt-on-Change RCON Register TMR0 Interrupts, Flag Bits Interrupts, Flag Bits Interrupts, Flag Bits Interrupt-on-Change (RB7:RB4) Flag (RBIF Bit) INTOSC Frequency Drift	41 41 41 41 41 41 41 433 395 355 249 251 138 199 207 225 115 130 130 130 130 130 130 130 41 436

L

E
LFSR
Low-Power Modes 47
Clock Transitions and Status Indicators 48
Deep Sleep Mode 54
and RTCC Peripheral 56
Brown-out Reset (DSBOR) 56
Preparing for 55
Registers 58
Typical Sequence 57
Wake-up Sources 56
Watchdog Timer (DSWDT) 56
Exiting Idle and Sleep Modes 54
By Interrupt 54
By Reset 54
By WDT Time-out54
Without an Oscillator Start-up Delay 54
Idle Modes 52
PRI_IDLE52
RC_IDLE 54
SEC_IDLE 52
Multiple Sleep Commands 48
Run Modes 48
PRI_RUN 48
RC_RUN 50
SEC_RUN 48
Sleep Mode 51
Summary (table) 48
Ultra Low-Power Wake-up 61

Μ

Master Clear (MCLR)	65
Master Synchronous Serial Port (MSSP). See MSSP.	
Memory Organization	
Data Memory	84
Program Memory	
Return Address Stack	
Memory Programming Requirements	482
Microchip Internet Web Site	533
MOVF	437
MOVFF	438
MOVLB	438
MOVLW	439
MOVSF	457
MOVSS	458
MOVWF	
MPLAB ASM30 Assembler, Linker, Librarian	464
MPLAB ICD 2 In-Circuit Debugger	
MPLAB ICE 2000 High-Performance Universal In-Circ	
Emulator	
MPLAB Integrated Development Environment Softwa	
MPLAB PM3 Device Programmer	
MPLAB REAL ICE In-Circuit Emulator System	
MPLINK Object Linker/MPLIB Object Librarian	464
MSSP	
ACK Pulse2	96, 299
I ² C Mode. See I ² C Mode.	
Module Overview	
SPI Master/Slave Connection	
TMR4 Output for Clock Shift	
MULLW	
MULWF	440
Ν	
NEGF	441

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO. Device	X /XX XXX Temperature Package Pattern Range	 Examples: a) PIC18F46J11-I/PT 301 = Industrial temp., TQFP package, QTP pattern #301. b) PIC18F46J11T-I/PT = Tape and reel, Industrial temp., TQFP package.
Device ⁽¹⁾	PIC18F24J11 PIC18F25J11 PIC18F26J11 PIC18F44J11 PIC18F45J11 PIC18LF24J11 PIC18LF25J11 PIC18LF25J11 PIC18LF26J11 PIC18LF44J11 PIC18LF45J11 PIC18LF46J11	
Temperature Range	I = -40° C to $+85^{\circ}$ C (Industrial)	Note 1: F = Standard Voltage Range LF = Extended Voltage Range 2: T = In tape and reel
Package	SP = Skinny PDIP SS = SSOP SO = SOIC ML = QFN PT = TQFP (Thin Quad Flatpack)	
Pattern	QTP, SQTP, Code or Special Requirements (blank otherwise)	