

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	34
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	<u> </u>
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf45j11-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	Pin N	umber	Pin Buffer		
Pin Name	Africa Ad- Ad- Ad- Ad- Type AFN TQFP		Buffer Type	Description	
					PORTB is a bidirectional I/O port. PORTB can be software programmed for internal weak pull-ups on all inputs.
RB0/AN12/INT0/RP3 RB0 AN12 INT0 RP3	9	8	I/O I I I/O	DIG Analog ST DIG	Digital I/O. Analog input 12. External interrupt 0. Remappable peripheral pin 3.
RB1/AN10/PMBE/RTCC/RP4 RB1 AN10 PMBE RTCC RP4	10	9	I/O I O I/O	DIG Analog DIG DIG DIG	Digital I/O. Analog input 10. Parallel Master Port byte enable. Real Time Clock Calendar output. Remappable peripheral pin 4.
RB2/AN8/CTED1/PMA3/REFO/ RP5 RB2 AN8 CTED1 PMA3 REFO RP5	11	10	I/O I I O I/O	DIG Analog ST DIG DIG DIG	Digital I/O. Analog input 8. CTMU edge 1 input. Parallel Master Port address. Reference output clock. Remappable peripheral pin 5.
RB3/AN9/CTED2/PMA2/RP6 RB3 AN9 CTED2 PMA2 RP6	12	11	I/O I I O I/O	DIG Analog ST DIG DIG	Digital I/O. Analog input 9. CTMU edge 2 input. Parallel Master Port address. Remappable peripheral pin 6.
Legend:TTL = TTL compatible inputCMOS= CMOS compatible input or outputST = Schmitt Trigger input with CMOS levelsAnalog= Analog inputI = InputO= OutputP = PowerOD= Open-Drain (no P diode to VDD)DIG = Digital outputO= Open-Drain (no P diode to VDD)				Analog = Analog input D = Output	

TABLE 1-4: PIC18F4XJ11 PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: RA7 and RA6 will be disabled if OSC1 and OSC2 are used for the clock function.

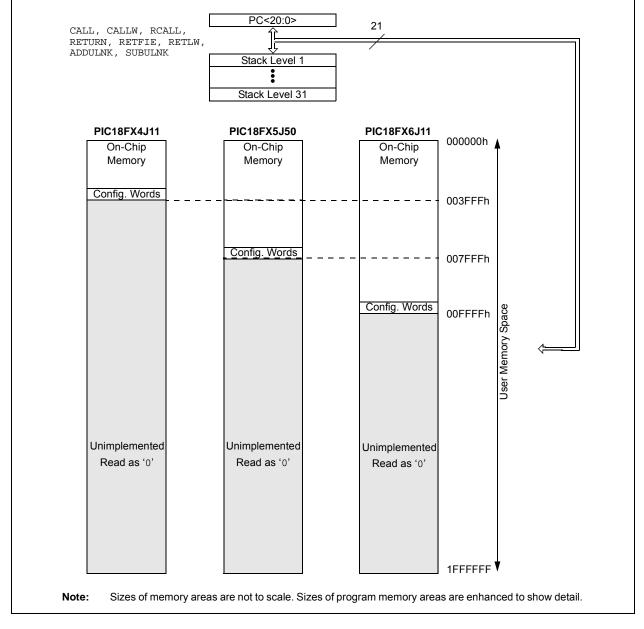
6.0 MEMORY ORGANIZATION

There are two types of memory in PIC18 Flash microcontrollers:

- Program Memory
- Data RAM

As Harvard architecture devices, the data and program memories use separate busses; this allows for concurrent access of the two memory spaces.

Section 7.0 "Flash Program Memory" provides additional information on the operation of the Flash program memory.


6.1 Program Memory Organization

PIC18 microcontrollers implement a 21-bit program counter, which is capable of addressing a 2-Mbyte program memory space. Accessing a location between the upper boundary of the physically implemented memory and the 2-Mbyte address returns all '0's (a NOP instruction).

The PIC18F46J11 family offers a range of on-chip Flash program memory sizes, from 16 Kbytes (up to 8,192 single-word instructions) to 64 Kbytes (32,768 single-word instructions).

Figure 6-1 provides the program memory maps for individual family devices.

6.1.4.4 Stack Full and Underflow Resets

Device Resets on stack overflow and stack underflow conditions are enabled by setting the STVREN bit in Configuration register 1L. When STVREN is set, a full or underflow condition sets the appropriate STKFUL or STKUNF bit and then causes a device Reset. When STVREN is cleared, a full or underflow condition sets the appropriate STKFUL or STKUNF bit, but does not cause a device Reset. The STKFUL or STKUNF bits are cleared by the user software or a POR.

6.1.5 FAST REGISTER STACK (FRS)

A Fast Register Stack (FRS) is provided for the STATUS, WREG and BSR registers to provide a "fast return" option for interrupts. This stack is only one level deep and is neither readable nor writable. It is loaded with the current value of the corresponding register when the processor vectors for an interrupt. All interrupt sources push values into the Stack registers. The values in the registers are then loaded back into the working registers if the RETFIE, FAST instruction is used to return from the interrupt.

If both low-priority and high-priority interrupts are enabled, the Stack registers cannot be used reliably to return from low-priority interrupts. If a high-priority interrupt occurs while servicing a low-priority interrupt, the Stack register values stored by the low-priority interrupt will be overwritten. In these cases, users must save the key registers in software during a low-priority interrupt.

If interrupt priority is not used, all interrupts may use the FRS for returns from interrupt. If no interrupts are used, the FRS can be used to restore the STATUS, WREG and BSR registers at the end of a subroutine call. To use the Fast Register Stack for a subroutine call, a CALL label, FAST instruction must be executed to save the STATUS, WREG and BSR registers to the Fast Register Stack. A RETURN, FAST instruction is then executed to restore these registers from the FRS.

Example 6-1 provides a source code example that uses the FRS during a subroutine call and return.

EXAMPLE 6-1: FAST REGISTER STACK CODE EXAMPLE

CALL SUB1, FAST	;STATUS, WREG, BSR ;SAVED IN FAST REGISTER ;STACK
SUB1 RETURN FAST	;RESTORE VALUES SAVED ;IN FAST REGISTER STACK

6.1.6 LOOK-UP TABLES IN PROGRAM MEMORY

There may be programming situations that require the creation of data structures or look-up tables in program memory. For PIC18 devices, look-up tables can be implemented in two ways:

- Computed GOTO
- Table Reads

6.1.6.1 Computed GOTO

A computed GOTO is accomplished by adding an offset to the PC. An example is shown in Example 6-2.

A look-up table can be formed with an ADDWF PCL instruction and a group of RETLW nn instructions. The W register is loaded with an offset into the table before executing a call to that table. The first instruction of the called routine is the ADDWF PCL instruction. The next executed instruction will be one of the RETLW nn instructions that returns the value 'nn' to the calling function.

The offset value (in WREG) specifies the number of bytes that the PC should advance and should be multiples of 2 (LSb = 0).

In this method, only one byte may be stored in each instruction location; room on the return address stack is required.

EXAMPLE 6-2: COMPUTED GOTO USING AN OFFSET VALUE

	MOVF	OFFSET, W
	CALL	TABLE
ORG	nn00h	
TABLE	ADDWF	PCL
	RETLW	nnh
	RETLW	nnh
	RETLW	nnh

6.1.6.2 Table Reads

A better method of storing data in program memory allows two bytes to be stored in each instruction location.

Look-up table data may be stored two bytes per program word while programming. The Table Pointer (TBLPTR) specifies the byte address and the Table Latch (TABLAT) contains the data that is read from the program memory. Data is transferred from program memory one byte at a time.

Table read operation is discussed further inSection 7.1 "Table Reads and Table Writes".

7.5.2 FLASH PROGRAM MEMORY WRITE SEQUENCE (WORD PRORAMMING).

The PIC18F46J11 family of devices has a feature that allows programming a single word (two bytes). This feature is enabled when the WPROG bit is set. If the memory location is already erased, the following sequence is required to enable this feature:

- 1. Load the Table Pointer register with the address of the data to be written. (It must be an even address.)
- 2. Write the 2 bytes into the holding registers by performing table writes. (Do not post-increment on the second table write.)

- Set the WREN bit (EECON1<2>) to enable writes and the WPROG bit (EECON1<5>) to select Word Write mode.
- 4. Disable interrupts.
- 5. Write 55h to EECON2.
- 6. Write 0AAh to EECON2.
- 7. Set the WR bit; this will begin the write cycle.
- The CPU will stall for the duration of the write for TIW (see parameter D133A).
- 9. Re-enable interrupts.

EAAIVIFLE / 4.			
	MOVLW	CODE_ADDR_UPPER	; Load TBLPTR with the base address
	MOVWF	TBLPTRU	
	MOVLW	CODE_ADDR_HIGH	
	MOVWF	TBLPTRH	
	MOVLW	CODE_ADDR_LOW	; The table pointer must be loaded with an even address
	MOVWF	TBLPTRL	
	MOVLW	DATA0	; LSB of word to be written
	MOVWF	TABLAT	
	TBLWT*-		
	MOVLW	DATA1	; MSB of word to be written
	MOVWF	TABLAT	
	TBLWT*		; The last table write must not increment the table
			pointer! The table pointer needs to point to the
			MSB before starting the write operation.
PROGRAM_MEMORY			
	BSF	EECON1, WPROG	; enable single word write
	BSF	EECON1, WREN	; enable write to memory
	BCF	INTCON, GIE	; disable interrupts
	MOVLW	0x55	
Required	MOVWF	EECON2	; write 55h
Sequence	MOVLW	0xAA	
	MOVWF	EECON2	; write AAh
	BSF	EECON1, WR	; start program (CPU stall)
	BSF	INTCON, GIE	; re-enable interrupts
	BCF	EECON1, WPROG	; disable single word write
	BCF	EECON1, WREN	; disable write to memory

EXAMPLE 7-4: SINGLE-WORD WRITE TO FLASH PROGRAM MEMORY

9.1 INTCON Registers

The INTCON registers are readable and writable registers, which contain various enable, priority and flag bits.

Note: Interrupt flag bits are set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the Global Interrupt Enable bit. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt. This feature allows for software polling.

REGISTER 9-1: INTCON: INTERRUPT CONTROL REGISTER (ACCESS FF2h)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x
GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF ⁽¹⁾
bit 7							bit 0

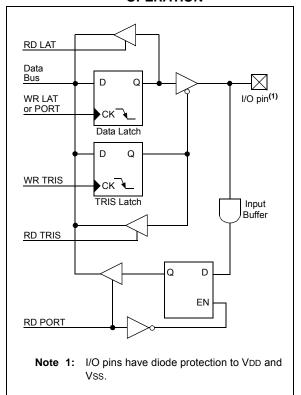
Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	GIE/GIEH: Global Interrupt Enable bit
	When IPEN = 0:
	1 = Enables all unmasked interrupts
	0 = Disables all interrupts
	When IPEN = 1:
	1 = Enables all high-priority interrupts
	0 = Disables all interrupts
bit 6	PEIE/GIEL: Peripheral Interrupt Enable bit
	When IPEN = 0:
	1 = Enables all unmasked peripheral interrupts
	0 = Disables all peripheral interrupts
	<u>When IPEN = 1 and GIEH = 1:</u> 1 = Enables all low-priority peripheral interrupts
	0 = Disables all low-priority peripheral interrupts
bit 5	TMR0IE: TMR0 Overflow Interrupt Enable bit
	1 = Enables the TMR0 overflow interrupt
	0 = Disables the TMR0 overflow interrupt
bit 4	INTOIE: INTO External Interrupt Enable bit
	1 = Enables the INT0 external interrupt
	0 = Disables the INTO external interrupt
bit 3	RBIE: RB Port Change Interrupt Enable bit
	1 = Enables the RB port change interrupt
	0 = Disables the RB port change interrupt
bit 2	TMR0IF: TMR0 Overflow Interrupt Flag bit
	1 = TMR0 register has overflowed (must be cleared in software)
	0 = TMR0 register did not overflow
bit 1	INTOIF: INTO External Interrupt Flag bit
	1 = The INTO external interrupt occurred (must be cleared in software)
	0 = The INT0 external interrupt did not occur
bit 0	RBIF: RB Port Change Interrupt Flag bit ⁽¹⁾
	1 = At least one of the RB<7:4> pins changed state (must be cleared in software)
	0 = None of the RB<7:4> pins have changed state
Note 1	A mismatch condition will continue to get this bit. Reading DODTR and waiting 1 Toy will and the mismatches

Note 1: A mismatch condition will continue to set this bit. Reading PORTB and waiting 1 TCY will end the mismatch condition and allow the bit to be cleared.

10.0 I/O PORTS

Depending on the device selected and features enabled, there are up to five ports available. Some pins of the I/O ports are multiplexed with an alternate function from the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.


Each port has three registers for its operation. These registers are:

- TRIS register (Data Direction register)
- PORT register (reads the levels on the pins of the device)
- LAT register (Data Latch)

The Data Latch (LAT register) is useful for read-modifywrite operations on the value that the I/O pins are driving.

Figure 10-1 displays a simplified model of a generic I/O port, without the interfaces to other peripherals.

FIGURE 10-1: GENERIC I/O PORT OPERATION

10.1 I/O Port Pin Capabilities

When developing an application, the capabilities of the port pins must be considered. Outputs on some pins have higher output drive strength than others. Similarly, some pins can tolerate higher than VDD input levels.

10.1.1 PIN OUTPUT DRIVE

The output pin drive strengths vary for groups of pins intended to meet the needs for a variety of applications. PORTB and PORTC are designed to drive higher loads, such as LEDs. All other ports are designed for small loads, typically indication only. Table 10-1 summarizes the output capabilities. Refer to **Section 29.0 "Electrical Characteristics"** for more details.

TABLE 10-1: OUTPUT DRIVE LEVELS

Port	Drive	Description
PORTA (except RA6)		
PORTD	Minimum	Intended for indication.
PORTE		
PORTB		
PORTC	High	Suitable for direct LED drive levels.
PORTA<6>		

10.1.2 INPUT PINS AND VOLTAGE CONSIDERATIONS

The voltage tolerance of pins used as device inputs is dependent on the pin's input function. Pins that are used as digital only inputs are able to handle DC voltages up to 5.5V; a level typical for digital logic circuits. In contrast, pins that also have analog input functions of any kind can only tolerate voltages up to VDD. Voltage excursions beyond VDD on these pins should be avoided. Table 10-2 summarizes the input capabilities. Refer to **Section 29.0 "Electrical Characteristics"** for more details.

TABLE 10-2: INPUT VOLTAGE LEVELS

Port or Pin	Tolerated Input	Description
PORTA<7:0>		
PORTB<3:0>	Voo	Only VDD input levels tolerated.
PORTC<2:0>	VDD	
PORTE<2:0>		
PORTB<7:4>		Tolerates input levels
PORTC<7:3>	5.5V	above VDD, useful for
PORTD<7:0>		most standard logic.

IADLE 10-3.						
Pin	Function	TRIS Setting	I/O	I/O Type	Description	
RB4/PMA1/	RB4	0	0	DIG	LATB<4> data output; not affected by analog input.	
KBI0/RP7		1	I	TTL	PORTB<4> data input; weak pull-up when RBPU bit is cleared. Disabled when analog input enabled. ⁽¹⁾	
	PMA1 ⁽³⁾	0	0	DIG	Parallel Master Port address.	
		1	Ι	ST/TTL	Parallel Slave Port address input.	
	KBI0	1	Ι	TTL	Interrupt-on-change pin.	
	RP7	1	Ι	ST	Remappable peripheral pin 7 input.	
		0	0	DIG	Remappable peripheral pin 7 output.	
RB5/PMA0/	RB5	0	0	DIG	LATB<5> data output.	
KBI1/RP8		1	Ι	TTL	PORTB<5> data input; weak pull-up when RBPU bit is cleared.	
	PMA0 ⁽³⁾	0	0	DIG	Parallel Master Port address.	
		1	Ι	ST/TTL	Parallel Slave Port address input.	
	KBI1	1	Ι	TTL	Interrupt-on-change pin.	
	RP8	1	Ι	ST	Remappable peripheral pin 8 input.	
		0	0	DIG	Remappable peripheral pin 8 output.	
RB6/KBI2/	RB6	0	0	DIG	LATB<6> data output.	
PGC/RP9		1	Ι	TTL	PORTB<6> data input; weak pull-up when RBPU bit is cleared.	
	KBI2	1	Ι	TTL	Interrupt-on-change pin.	
	PGC	x	Ι	ST	Serial execution (ICSP™) clock input for ICSP and ICD operation. ⁽²⁾	
	RP9	1	Ι	ST	Remappable peripheral pin 9 input.	
		0	0	DIG	Remappable peripheral pin 9 output.	
RB7/KBI3/	RB7	0	0	DIG	LATB<7> data output.	
PGD/RP10		1	Ι	TTL	PORTB<7> data input; weak pull-up when RBPU bit is cleared.	
	KBI3	1	I	TTL	Interrupt-on-change pin.	
	PGD	x	0	DIG	Serial execution data output for ICSP and ICD operation. ⁽²⁾	
		x	I	ST	Serial execution data input for ICSP and ICD operation. ⁽²⁾	
	RP10	1	Ι	ST	Remappable peripheral pin 10 input.	
		0	0	ST	Remappable peripheral pin 10 output.	

Legend: DIG = Digital level output; TTL = TTL input buffer; ST = Schmitt Trigger input buffer; ANA = Analog level input/output; x = Don't care (TRIS bit does not affect port direction or is overridden for this option)

Note 1: Pins are configured as analog inputs by default on POR. Using these pins for digital inputs requires setting the appropriate bits in ANCON1 first.

2: All other pin functions are disabled when ICSP[™] or ICD are enabled.

3: This bit is not available on 28-pin devices.

Pin	Function	TRIS Setting	I/O	I/O Type	Description
RD6/PMD6/	RD6	1	Ι	ST	PORTD<6> data input.
RP23		0	0	DIG	LATD<6> data output.
	PMD6	1	I	ST/TTL	Parallel Master Port data in.
		0	0	DIG	Parallel Master Port data out.
RP23		1	I	ST	Remappable peripheral pin 23 input.
		0	0	DIG	Remappable peripheral pin 23 output.
RD7/PMD7/	RD7	1	I	ST	PORTD<7> data input.
RP24		0	0	DIG	LATD<7> data output.
	PMD7	1	Ι	ST/TTL	Parallel Master Port data in.
		0	0	DIG	Parallel Master Port data out.
	RP24	1	Ι	ST	Remappable peripheral pin 24 input.
		0	0	DIG	Remappable peripheral pin 24 output.

TABLE 10-9: PORTD I/O SUMMARY (CONTINUED)

Legend: DIG = Digital level output; TTL = TTL input buffer; ST = Schmitt Trigger input buffer; $I^2C/SMB = I^2C/SMB$ us input buffer; x = Don't care (TRIS bit does not affect port direction or is overridden for this option).

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
PORTD ⁽¹⁾	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	93
LATD ⁽¹⁾	LATD7	LATD6	LATD5	LATD4	LATD3	LATD2	LATD1	LATD0	92
TRISD ⁽¹⁾	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	92

Legend: — = unimplemented, read as '0'. Shaded cells are not used by PORTD.

Note 1: These registers are not available in 28-pin devices.

REGISTER 10-24:	: RPOR3: PERIPHERAL PIN SELECT OUTPUT REC	GISTER 3 (BANKED EC9h)
-----------------	---	------------------------

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	—	RP3R4	RP3R3	RP3R2	RP3R1	RP3R0
bit 7							bit 0
Legend: R/\overline{W} = Readable, Writable if IOLOCK = 0							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set		ł	'0' = Bit is clea	ared	x = Bit is unkr	nown	

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP3R<4:0>:** Peripheral Output Function is Assigned to RP3 Output Pin bits (see Table 10-14 for peripheral function numbers)

REGISTER 10-25: RPOR4: PERIPHERAL PIN SELECT OUTPUT REGISTER 4 (BANKED ECAh)

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_		RP4R4	RP4R3	RP4R2	RP4R1	RP4R0
bit 7							bit 0

Legend:	R/\overline{W} = Readable, Writable if IOLOCK = 0				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP4R<4:0>:** Peripheral Output Function is Assigned to RP4 Output Pin bits (see Table 10-14 for peripheral function numbers)

REGISTER 10-26: RPOR5: PERIPHERAL PIN SELECT OUTPUT REGISTER 5 (BANKED ECBh)

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	RP5R4	RP5R3	RP5R2	RP5R1	RP5R0
bit 7							bit 0

Legend:	R/\overline{W} = Readable, Writable if IOLOCK = 0				
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP5R<4:0>:** Peripheral Output Function is Assigned to RP5 Output Pin bits (see Table 10-14 for peripheral function numbers)

14.0 TIMER2 MODULE

The Timer2 module incorporates the following features:

- 8-bit Timer and Period registers (TMR2 and PR2, respectively)
- Readable and writable (both registers)
- Software programmable prescaler (1:1, 1:4 and 1:16)
- Software programmable postscaler (1:1 through 1:16)
- Interrupt on TMR2 to PR2 match
- Optional use as the shift clock for the MSSP modules

The module is controlled through the T2CON register (Register 14-1) which enables or disables the timer and configures the prescaler and postscaler. Timer2 can be shut off by clearing control bit, TMR2ON (T2CON<2>), to minimize power consumption.

A simplified block diagram of the module is shown in Figure 14-1.

14.1 Timer2 Operation

In normal operation, TMR2 is incremented from 00h on each clock (Fosc/4). A 4-bit counter/prescaler on the clock input gives direct input, divide-by-4 and divide-by-16 prescale options. These are selected by the prescaler control bits, T2CKPS<1:0> (T2CON<1:0>). The value of TMR2 is compared to that of the Period register, PR2, on each clock cycle. When the two values match, the comparator generates a match signal as the timer output. This signal also resets the value of TMR2 to 00h on the next cycle and drives the output counter/postscaler (see Section 14.2 "Timer2 Interrupt").

The TMR2 and PR2 registers are both directly readable and writable. The TMR2 register is cleared on any device Reset, while the PR2 register initializes at FFh. Both the prescaler and postscaler counters are cleared on the following events:

- a write to the TMR2 register
- a write to the T2CON register
- any device Reset (Power-on Reset (POR), MCLR Reset, Watchdog Timer Reset (WDTR) or Brown-out Reset (BOR))

TMR2 is not cleared when T2CON is written.

REGISTER 14-1: T2CON: TIMER2 CONTROL REGISTER (ACCESS FCAh)

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	T2OUTPS3	T2OUTPS2	T2OUTPS1	T2OUTPS0	TMR2ON	T2CKPS1	T2CKPS0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	Unimplemented: Read as '0'
bit 6-3	T2OUTPS<3:0>: Timer2 Output Postscale Select bits
	0000 = 1:1 Postscale
	0001 = 1:2 Postscale
	•
	•
	•
	1111 = 1:16 Postscale
bit 2	TMR2ON: Timer2 On bit
	1 = Timer2 is on
	0 = Timer2 is off
bit 1-0	T2CKPS<1:0>: Timer2 Clock Prescale Select bits
	00 = Prescaler is 1
	01 = Prescaler is 4
	1x = Prescaler is 16

REGISTER 17-4: ALRMCFG: ALARM CONFIGURATION REGISTER (ACCESS F91h)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ALRMEN	CHIME	AMASK3	AMASK2	AMASK1	AMASK0	ALRMPTR1	ALRMPTR0
bit 7	•	ł					bit 0
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown
L:1 7		lawa Enable bit					
bit 7		larm Enable bit	doutomotical	ly offer an elern	n overtweene	or ADDT 27:05	
		enabled (cleare	automatical	iy alter an alarr	n event whenev	/el ARP1<7.0>	- 0000 0000
	0 = Alarm is	,					
bit 6	CHIME: Chir	me Enable bit					
	1 = Chime is	s enabled; ALRI	MRPT<7:0> b	its are allowed	to roll over from	m 00h to FFh	
	0 = Chime is	s disabled; ALR	MRPT<7:0> b	its stop once tl	ney reach 00h		
bit 5-2	AMASK<3:0	>: Alarm Mask	Configuration	bits			
		ry half second					
	0001 = Eve						
	0010 = Eve 0011 = Eve	ry 10 seconds					
		ery 10 minutes					
	0101 = Eve						
	0110 = Ond	•					
	0111 = Ond	ce a week					
	1000 = Onc				e e th		
		ce a year (excep served – do not i		ured for Februa	ary 29", once e	every four years	6)
		served – do not i					
bit 1-0		1:0>: Alarm Val		indow Pointer	hits		
		e corresponding	-			AI RMVAI H ar	d ALRMVALL
		e ALRMPTR<1:					
	ʻ00'.				, ,		
	<u>ALRMVALH</u>	<u><15:8>:</u>					
	00 = ALRM						
	01 = ALRMV						
	10 = ALRMN 11 = Unimpl						
	-						
	<u>ALRMVALL<</u> 00 = ALRMS						
	01 = ALRMH						
	10 = ALRME						

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SSCON1	SSCON0	TXINC	RXINC	DUPLEX1	DUPLEX0	DLYINTEN	DMAEN
bit 7		•					bit
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
-n = Value at F	POR	'1' = Bit is set	t	'0' = Bit is cle	ared	x = Bit is unkn	iown
bit 7-6	$11 = \frac{\text{SSDMA}}{\text{SSDMA}}$ $01 = \frac{\text{SSDMA}}{\text{SSDMA}}$	is asserted for is asserted for is asserted for	the duration the duration the duration	of 2 bytes; DLY of 1 byte; DLYI	INTEN is alway INTEN is alway NTEN is alway	ys reset low	nable
bit 5	TXINC: Trans Allows the tra 1 = The trans	smit Address Ir Insmit address Imit address is	to increment Enal to increment to to be increme	ole bit as the transfer inted from the i	progresses.	XADDR<11:0>	
bit 4	Allows the recei	ved address is	to increment a to be increme	is the transfer pented from the	-	RXADDR<11:0> 11:0>	
bit 3-2	10 = SPI DM 01 = DMA op	A operates in F erates in Half-	Full-Duplex mo Duplex mode,	ing Mode Seleo ode, data is sim data is transm data is receive	ultaneously tra itted only	nsmitted and re	ceived
bit 1	DLYINTEN: DEnables the i elapsed from 1 = The intern	Delay Interrupt nterrupt to be the latest com	Enable bit invoked after pleted transfe , SSCON<1:0	the number of	SCK cycles sp	ecified in DLYC	YC<2:0> ha
bit 0	DMAEN: DM This bit is set	A Operation St by the users' the DMA opera session	art/Stop bit software to st	art the DMA op eted or aborted		eset back to zer	o by the DM

REGISTER 19-3: DMACON1: DMA CONTROL REGISTER 1 (ACCESS F88h)

20.0 ENHANCED UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (EUSART)

The Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART) module is one of two serial I/O modules. (Generically, the EUSART is also known as a Serial Communications Interface or SCI.) The EUSART can be configured as a full-duplex asynchronous system that can communicate with peripheral devices, such as CRT terminals and personal computers. It can also be configured as a half-duplex synchronous system that can communicate with peripheral devices, such as A/D or D/A integrated circuits, serial EEPROMs and so on.

The Enhanced USART module implements additional features, including automatic baud rate detection and calibration, automatic wake-up on Sync Break reception and 12-bit Break character transmit. These make it ideally suited for use in Local Interconnect Network bus (LIN/J2602 bus) systems.

All members of the PIC18F46J11 family are equipped with two independent EUSART modules, referred to as EUSART1 and EUSART2. They can be configured in the following modes:

- Asynchronous (full-duplex) with:
 - Auto-wake-up on character reception
 - Auto-baud calibration
 - 12-bit Break character transmission
- Synchronous Master (half-duplex) with selectable clock polarity
- Synchronous Slave (half-duplex) with selectable clock polarity

The pins of EUSART1 and EUSART2 are multiplexed with the functions of PORTC (RC6/PMA5/TX1/CK1/RP17 and RC7/PMA4/RX1/DT1/RP18) and remapped (RPn1/TX2/CK2 and RPn2/RX2/DT2), respectively. In order to configure these pins as an EUSART:

- For EUSART1:
 - SPEN bit (RCSTA1<7>) must be set (= 1)
 - TRISC<7> bit must be set (= 1)
 - TRISC<6> bit must be cleared (= 0) for Asynchronous and Synchronous Master modes
 - TRISC<6> bit must be set (= 1) for Synchronous Slave mode
- For EUSART2:
 - SPEN bit (RCSTA2<7>) must be set (= 1)
 - TRIS bit for RPn2/RX2/DT2 = 1
 - TRIS bit for RPn1/TX2/CK2 = 0 for Asynchronous and Synchronous Master modes
 - TRISC<6> bit must be set (= 1) for Synchronous Slave mode

Note: The EUSART control will automatically reconfigure the pin from input to output as needed.

The TXx/CKx I/O pins have an optional open-drain output capability. By default, when this pin is used by the EUSART as an output, it will function as a standard push-pull CMOS output. The TXx/CKx I/O pins' open-drain, output feature can be enabled by setting the corresponding UxOD bit in the ODCON2 register. For more details, see **Section 19.3.3 "Open-Drain Output Option"**.

The operation of each Enhanced USART module is controlled through three registers:

- Transmit Status and Control (TXSTAx)
- Receive Status and Control (RCSTAx)
- Baud Rate Control (BAUDCONx)

These are covered in detail in Register 20-1, Register 20-2 and Register 20-3, respectively.

Note: Throughout this section, references to register and bit names that may be associated with a specific EUSART module are referred to generically by the use of 'x' in place of the specific module number. Thus, "RCSTAx" might refer to the Receive Status register for either EUSART1 or EUSART2.

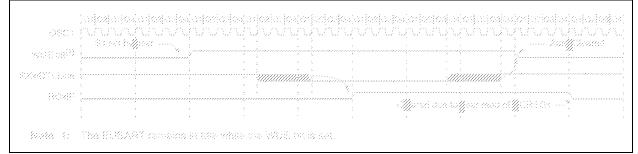
PIC18F46J11 FAMILY

The WUE bit is automatically cleared once a low-to-high transition is observed on the RXx line following the wake-up event. At this point, the EUSART module is in Idle mode and returns to normal operation. This signals to the user that the Sync Break event is over.

20.2.4.1 Special Considerations Using Auto-Wake-up

Since auto-wake-up functions by sensing rising edge transitions on RXx/DTx, information with any state changes before the Stop bit may signal a false End-Of-Character (EOC) and cause data or framing errors. To work properly, therefore, the initial character in the transmission must be all '0's. This can be 00h (8 bits) for standard RS-232 devices or 000h (12 bits) for LIN/J2602 bus.

Oscillator start-up time must also be considered, especially in applications using oscillators with longer start-up intervals (i.e., HS or HSPLL mode). The Sync Break (or Wake-up Signal) character must be of sufficient length and be followed by a sufficient interval to allow enough time for the selected oscillator to start and provide proper initialization of the EUSART.


20.2.4.2 Special Considerations Using the WUE Bit

The timing of WUE and RCxIF events may cause some confusion when it comes to determining the validity of received data. As noted, setting the WUE bit places the EUSART in an Idle mode. The wake-up event causes a receive interrupt by setting the RCxIF bit. The WUE bit is cleared after this when a rising edge is seen on RXx/DTx. The interrupt condition is then cleared by reading the RCREGx register. Ordinarily, the data in RCREGx will be dummy data and should be discarded.

The fact that the WUE bit has been cleared (or is still set) and the RCxIF flag is set should not be used as an indicator of the integrity of the data in RCREGx. Users should consider implementing a parallel method in firmware to verify received data integrity.

To assure that no actual data is lost, check the RCIDL bit to verify that a receive operation is not in process. If a receive operation is not occurring, the WUE bit may then be set just prior to entering the Sleep mode.

FIGURE 20-8: AUTO-WAKE-UP BIT (WUE) TIMINGS DURING NORMAL OPERATION

FIGURE 20-9: AUTO-WAKE-UP BIT (WUE) TIMINGS DURING SLEEP

	soli svenski Hodel		· · · · · · · · · · · · · · · · · · ·				
exe: înfreden verden en e	985,855 (58 ³²⁾	sigye tas titt 	· · · · · · · · · · · · · · · · · · ·	 	···· ··· ··· ·· ·· ·· ·· ·· ·· ·· ·· ··		

More still if the water-up event requires long coolising water-up time, the supporter of the Vitili set over the test the second or there is a second or the second or the presence of C device.

2: The EUSART commune in the while the VEUE at a set.

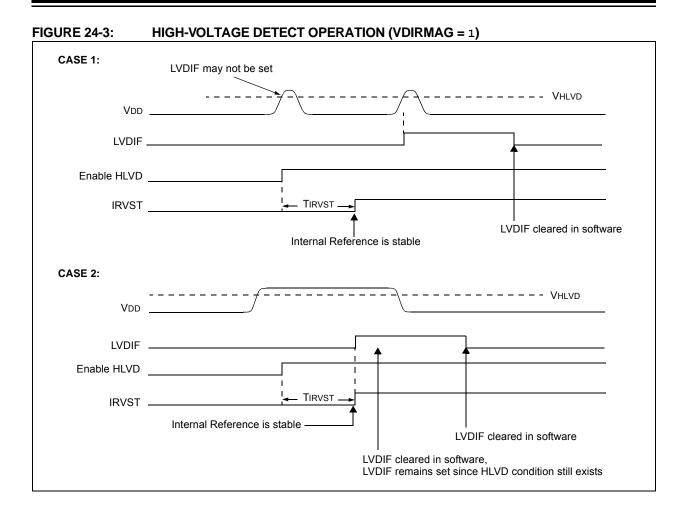

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:
GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	69
PMPIF ⁽¹⁾	ADIF	RC1IF	TX1IF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	72
PMPIE ⁽¹⁾	ADIE	RC1IE	TX1IE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	72
PMPIP ⁽¹⁾	ADIP	RC1IP	TX1IP	SSP1IP	CCP1IP	TMR2IP	TMR1IP	72
OSCFIF	CM2IF	CM1IF	—	BCL1IF	LVDIF	TMR3IF	CCP2IF	72
OSCFIE	CM2IE	CM1IE	_	BCL1IE	LVDIE	TMR3IE	CCP2IE	72
OSCFIP	CM2IP	CM1IP	_	BCL1IP	LVDIP	TMR3IP	CCP2IP	72
A/D Result	t Register Hi	gh Byte						70
A/D Result	t Register Lo	w Byte						70
VCFG1	VCFG0	CHS3	CHS3	CHS1	CHS0	GO/DONE	ADON	70
PCFG7 ⁽¹⁾	PCFG6 ⁽¹⁾	PCFG5 ⁽¹⁾	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0	74
ADFM	ADCAL	ACQT2	ACQT1	ACQT0	ADCS2	ADCS1	ADCS0	70
VBGEN	<mark>۲</mark> (2)	_	PCFG12	PCFG11	PCFG10	PCFG9	PCFG8	74
PxM1	PxM0	DCxB1	DCxB0	CCPxM3	CCPxM2	CCPxM1	CCPxM0	71
RA7	RA6	RA5	_	RA3	RA2	RA1	RA0	72
TRISA7	TRISA6	TRISA5	_	TRISA3	TRISA2	TRISA1	TRISA0	72
	GIE/GIEH PMPIF ⁽¹⁾ PMPIE ⁽¹⁾ OSCFIF OSCFIF OSCFIP A/D Resul A/D Resul VCFG1 PCFG7 ⁽¹⁾ ADFM VBGEN PxM1 RA7	GIE/GIEHPEIE/GIELPMPIF(1)ADIFPMPIE(1)ADIEPMPIP(1)ADIPOSCFIFCM2IFOSCFIECM2IEOSCFIECM2IEOSCFIPCM2IPA/D Result Register HiA/D Result Register LCVCFG1VCFG0PCFG7(1)PCFG6(1)ADFMADCALVBGENr ⁽²⁾ PxM1PxM0RA7RA6	GIE/GIEH PEIE/GIEL TMR0IE PMPIF ⁽¹⁾ ADIF RC1IF PMPIE ⁽¹⁾ ADIE RC1IE PMPIE ⁽¹⁾ ADIE RC1IF PMPIE ⁽¹⁾ ADIE RC1IF PMPIE ⁽¹⁾ ADIE RC1IF OSCFIF CM2IF CM1IF OSCFIE CM2IE CM1IF OSCFIP CM2IP CM1IF A/D Result Register Hutter Byte A/D Result Register LUT Byte VCFG1 VCFG0 CHS3 PCFG7 ⁽¹⁾ PCFG6 ⁽¹⁾ PCFG5 ⁽¹⁾ ADFM ADCAL ACQT2 VBGEN r ⁽²⁾ — PXM1 PXM0 DCxB1 RA7 RA6 RA5	GIE/GIEH PEIE/GIEL TMR0IE INT0IE PMPIF ⁽¹⁾ ADIF RC1IF TX1IF PMPIE ⁽¹⁾ ADIE RC1IE TX1IE PMPIE ⁽¹⁾ ADIE RC1IE TX1IF PMPIE ⁽¹⁾ ADIE RC1IE TX1IF PMPIE ⁽¹⁾ ADIE RC1IP TX1IP OSCFIF CM2IF CM1IF OSCFIE CM2IE CM1IE OSCFIF CM2IP CM1IP OSCFIF CM2IP CM1IE OSCFIF CM2IP CM1IP OSCFIF CM2IP CM1IP ADResultRegisterLUT VCFG1 VCFG0 CHS3 CHS3 PCFG7 ⁽¹⁾ PCFG6 ⁽¹⁾ PCFG5 ⁽¹⁾ PCFG4 ADFM ADCAL ACQT2 ACQT1 VBGEN r ⁽²⁾ PCFG12 PXM1 PXM0 DCXB1 DCXB0	GIE/GIEHPEIE/GIELTMROIEINTOIERBIEPMPIF(1)ADIFRC1IFTX1IFSSP1IFPMPIE(1)ADIERC1IETX1IESSP1IEPMPIP(1)ADIPRC1IPTX1IPSSP1IPOSCFIFCM2IFCM1IF—BCL1IFOSCFIECM2IECM1IE—BCL1IFOSCFIPCM2IPCM1IP—BCL1IPOSCFIPCM2IPCM1IP—BCL1IPAD Result Register Hubter-BCL1IPA/D Result Register LubterStressonCHS3CHS3VCFG1VCFG0CHS3CHS3CHS1PCFG7(1)PCFG6(1)PCFG5(1)PCFG4PCFG3ADFMADCALACQT2ACQT1ACQT0VBGENr ⁽²⁾ —PCFG12PCFG11PXM1PXM0DCxB1DCxB0CCPxM3RA7RA6RA5—RA3	GIE/GIEHPEIE/GIELTMROIEINTOIERBIETMROIFPMPIF(1)ADIFRC1IFTX1IFSSP1IFCCP1IFPMPIE(1)ADIERC1IETX1IESSP1IECCP1IEPMPIP(1)ADIERC1IPTX1IPSSP1IECCP1IPOSCFIFCM2IFCM1IF—BCL1IFLVDIFOSCFIECM2IECM1IE—BCL1IELVDIEOSCFIFCM2IPCM1IP—BCL1IPLVDIFOSCFIFCM2IPCM1IP—BCL1IPLVDIFOSCFIFCM2IPCM1IP—BCL1IPLVDIFOSCFIFCM2IPCM1IP—BCL1IPLVDIFOSCFIFCM2IPCM1IP—BCL1IPLVDIFVSCFIFCM2IPCM1IP—BCL1IPLVDIFVCFG1PCFG1PCFG1PCFG1PCFG1PCFG2VCFG1VCFG0CHS3CHS3CHS3CHS1CHS0PCFG7(1)PCFG6(1)PCFG5(1)PCFG4PCFG3PCFG2ADFMADCALACQT2ACQT1ACQT0ADCS2VBGENr(2)—PCFG12PCFG11PCFG10PXM1PXM0DCXB1DCXB0CCPXM3CCPXM2RA7RA6RA5—RA3RA2	GIE/GIEHPEIE/GIELTMROIEINTOIERBIETMROIFINTOIFPMPIF(1)ADIFRC1IFTX1IFSSP1IFCCP1IFTMR2IFPMPIE(1)ADIERC1IETX1IESSP1IECCP1IETMR2IEPMPIP(1)ADIPRC1IPTX1IPSSP1IPCCP1IPTMR2IFOSCFIFCM2IFCM1IF—BCL1IFLVDIFTMR3IFOSCFIFCM2IECM1IE—BCL1IELVDIFTMR3IFOSCFIPCM2IPCM1IP—BCL1IPLVDIPTMR3IFOSCFIPCM2IPCM1IP—BCL1IPLVDIPTMR3IFOSCFIPCM2IPCM1IP—BCL1IPLVDIPTMR3IFOSCFIPCM2IPCM1PPBCL1IPLVDIPTMR3IFOSCFIPCM2IPCM1PPBCL1IPLVDIPTMR3IFOSCFIPCM2IPCM1PPBCL1IPLVDIPTMR3IFOSCFIPCM2IPCM1PPBCL1IPLVDIPTMR3IFOSCFIPCM2IPCM1PPBCL1IPLVDIPTMR3IFOSCFIPCM2IPCM1PPBCL1IPLVDIPTMR3IFOSCFIPCM2IPCM1PPBCL1IPLVDIPTMR3IFOSCFIPCM2IPCM1PPPBCL1IPLVDIPTMR3IFADRSUTRESTERSTMESTMESTMESTMESTMESTMESTMEVEFG1VEFG0CHS3CHS3CHS3CHS3	GIE/GIEHPEIE/GIELTMROIEINTOIERBIETMROIFINTOIFRBIFPMPIF(1)ADIFRC1IFTX1IFSSP1IFCCP1IFTMR2IFTMR1IFPMPIE(1)ADIERC1IETX1IESSP1IECCP1IETMR2IETMR1IEPMPIP(1)ADIPRC1IPTX1IPSSP1IPCCP1IPTMR2IPTMR1IPOSCFIFCM2IFCM1IFBCL1IFLVDIFTMR3IFCCP2IFOSCFIECM2IECM1IEBCL1IELVDIFTMR3IECCP2IEOSCFIFCM2IPCM1IPBCL1IPLVDIPTMR3IPCCP2IFOSCFIFCM2IPCM1IPBCL1IPLVDIPTMR3IFCCP2IFOSCFIFCM2IPCM1IPBCL1IPLVDIPTMR3IFCCP2IPA/D ResutFegister LibretBCL1IPLVDIPTMR3IFCCP2IPA/D ResutFegister LibretBCL1IPLVDIPTMR3IFCCP2IPA/D ResutFegister LibretBCL1IPLVDIPTMR3IFCCP2IPA/D ResutFegister LibretBCL1IPLVDIPTMR3IFCCP2IPA/D ResutFegister LibretBCL1IPLVDIPTMR3IFCCP2IPA/D ResutFegister LibretBCL1IPLVDIPTMR3IFCCP2IPVCFG1VCFG0CHS3CHS3CHS3CHS1ADOSADOSPCFG1 ¹¹ PCFG6 ¹¹ PCFG6 ¹¹ PCF

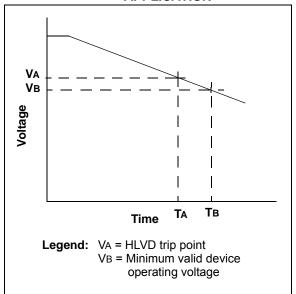
TABLE 21-2: SUMMARY OF A/D REGISTERS

Legend: — = unimplemented, read as '0'. Shaded cells are not used for A/D conversion.

Note 1: These bits are only available on 44-pin devices.

2: Reserved. Always maintain as '0' for minimum power consumption.

24.5 Applications


In many applications, it is desirable to have the ability to detect a drop below, or rise above, a particular threshold. For general battery applications, Figure 24-4 provides a possible voltage curve.

Over time, the device voltage decreases. When the device voltage reaches voltage, VA, the HLVD logic generates an interrupt at time, TA. The interrupt could cause the execution of an ISR, which would allow the application to perform "housekeeping tasks" and perform a controlled shutdown before the device voltage exits the valid operating range at TB.

The HLVD, thus, would give the application a time window, represented by the difference between TA and TB, to safely exit.

TYPICAL HIGH/ LOW-VOLTAGE DETECT APPLICATION

26.7 In-Circuit Serial Programming (ICSP)

PIC18F46J11 family microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data and three other lines for power, ground and the programming voltage. This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

26.8 In-Circuit Debugger

When the $\overline{\text{DEBUG}}$ Configuration bit is programmed to a '0', the In-Circuit Debugger functionality is enabled. This function allows simple debugging functions when used with MPLAB[®] IDE. When the microcontroller has this feature enabled, some resources are not available for general use.

Table 26-4 lists the resources required by the background debugger.

I/O pins:	RB6, RB7
Stack:	TOSx registers reserved

PIC18F46J11 FAMILY

Mnem	onic,	Description	0	16-	Bit Instr	uction W	Vord	Status	Nerre
Opera	ands	Description	Cycles	MSb			LSb	Affected	Notes
BIT-ORIEN	TED OPE	RATIONS							
BCF	f, b, a	Bit Clear f	1	1001	bbba	ffff	ffff	None	1, 2
BSF	f, b, a	Bit Set f	1	1000	bbba	ffff	ffff	None	1, 2
BTFSC	f, b, a	Bit Test f, Skip if Clear	1 (2 or 3)	1011	bbba	ffff	ffff	None	3, 4
BTFSS	f, b, a	Bit Test f, Skip if Set	1 (2 or 3)	1010	bbba	ffff	ffff	None	3, 4
BTG	f, b, a	Bit Toggle f	1	0111	bbba	ffff	ffff	None	1, 2
CONTROL	OPERAT	IONS							
BC	n	Branch if Carry	1 (2)	1110	0010	nnnn	nnnn	None	
BN	n	Branch if Negative	1 (2)	1110	0110	nnnn	nnnn	None	
BNC	n	Branch if Not Carry	1 (2)	1110	0011	nnnn	nnnn	None	
BNN	n	Branch if Not Negative	1 (2)	1110	0111	nnnn	nnnn	None	
BNOV	n	Branch if Not Overflow	1 (2)	1110	0101	nnnn	nnnn	None	
BNZ	n	Branch if Not Zero	1 (2)	1110	0001	nnnn	nnnn	None	
BOV	n	Branch if Overflow	1 (2)	1110	0100	nnnn	nnnn	None	
BRA	n	Branch Unconditionally	2	1101	0nnn	nnnn	nnnn	None	
BZ	n	Branch if Zero	1 (2)	1110	0000	nnnn	nnnn	None	
CALL	n, s	Call Subroutine 1st word	2	1110	110s	kkkk	kkkk	None	
		2nd word		1111	kkkk	kkkk	kkkk		
CLRWDT	_	Clear Watchdog Timer	1	0000	0000	0000	0100	TO, PD	
DAW	_	Decimal Adjust WREG	1	0000	0000	0000	0111	С	
GOTO	n	Go to Address 1st word	2	1110	1111	kkkk	kkkk	None	
		2nd word		1111	kkkk	kkkk	kkkk		
NOP	_	No Operation	1	0000	0000	0000	0000	None	
NOP	—	No Operation	1	1111	xxxx	xxxx	xxxx	None	4
POP	—	Pop Top of Return Stack (TOS)	1	0000	0000	0000	0110	None	
PUSH	_	Push Top of Return Stack (TOS)	1	0000	0000	0000	0101	None	
RCALL	n	Relative Call	2	1101	1nnn	nnnn	nnnn	None	
RESET		Software Device Reset	1	0000	0000	1111	1111	All	
RETFIE	S	Return from Interrupt Enable	2	0000	0000	0001	000s	GIE/GIEH, PEIE/GIEL	
RETLW	k	Return with Literal in WREG	2	0000	1100	kkkk	kkkk	None	
RETURN	S	Return from Subroutine	2	0000	0000	0001	001s	None	
SLEEP	—	Go into Standby mode	1	0000	0000	0000	0011	TO, PD	

TABLE 27-2: PIC18F46J11 FAMILY INSTRUCTION SET (CONTINUED)

Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned.

3: If the Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

4: Some instructions are two-word instructions. The second word of these instructions will be executed as a NOP unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all program memory locations have a valid instruction.

TABLE 29-5: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS

Operati	Operating Conditions: -40°C < TA < +85°C (unless otherwise stated)										
Param No.	Sym	Characteristics	Min	Тур	Max	Units	Comments				
	Vrgout	Regulator Output Voltage	2.35	2.5	2.7	V	Regulator enabled, VDD = 3.0V				
	Cefc	External Filter Capacitor Value ⁽¹⁾	5.4	10	18	μF	ESR < 3Ω recommended ESR < 5Ω required				

Note 1: CEFC applies for PIC18F devices in the family. For PIC18LF devices in the family, there is no specific minimum or maximum capacitance for VDDCORE, although proper supply rail bypassing should still be used.

TABLE 29-6: ULPWU SPECIFICATIONS

DC CH/	ARACT	ERISTICS		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial					
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions		
D100	IULP	Ultra Low-Power Wake-up Current	_	60	_	nA	Net of I/O leakage and current sink at 1.6V on pin, VDD = 3.3V See Application Note AN879, "Using the Microchip Ultra Low-Power Wake-up Module" (DS00879)		

† Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

Param. No.	Symbol	Charac	teristic	Min	Max	Units	Conditions
100	Тнідн	Clock High Time	100 kHz mode	2(Tosc)(BRG + 1)	_	ms	
			400 kHz mode	2(Tosc)(BRG + 1)	_	ms	
101	TLOW	Clock Low Time	100 kHz mode	2(Tosc)(BRG + 1)	_	ms	
			400 kHz mode	2(Tosc)(BRG + 1)	_	ms	
102	TR	SDAx and SCLx	100 kHz mode	—	1000	ns	CB is specified to be
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF
103	TF	SDAx and SCLx	100 kHz mode	—	300	ns	CB is specified to be
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF
90	TSU:STA	Start Condition	100 kHz mode	2(Tosc)(BRG + 1)	_	ms	Only relevant for
		Setup Time	400 kHz mode	2(Tosc)(BRG + 1)	_	ms	Repeated Start condition
91	THD:STA	Start Condition	100 kHz mode	2(Tosc)(BRG + 1)	_	ms	After this period, the first
		Hold Time	400 kHz mode	2(Tosc)(BRG + 1)	_	ms	clock pulse is generated
106	THD:DAT	Data Input	100 kHz mode	0	_	ns	
		Hold Time	400 kHz mode	0	0.9	ms	
107	TSU:DAT	Data Input	100 kHz mode	250	_	ns	(Note 1)
		Setup Time	400 kHz mode	100	_	ns	
92	Tsu:sto	Stop Condition	100 kHz mode	2(Tosc)(BRG + 1)	_	ms	
		Setup Time	400 kHz mode	2(Tosc)(BRG + 1)	—	ms	
109	ΤΑΑ	Output Valid	100 kHz mode	—	3500	ns	
		from Clock	400 kHz mode	—	1000	ns	
110	TBUF	Bus Free Time	100 kHz mode	4.7	_	ms	Time the bus must be
			400 kHz mode	1.3		ms	free before a new transmission can start
D102	Св	Bus Capacitive Loading		_	400	pF	

TABLE 29-27: MSSPx I²C[™] BUS DATA REQUIREMENTS

Note 1: A Fast mode I²C bus device can be used in a Standard mode I²C bus system, but parameter #107 ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCLx signal. If such a device does stretch the LOW period of the SCLx signal, it must output the next data bit to the SDAx line, parameter #102 + parameter #107 = 1000 + 250 = 1250 ns (for 100 kHz mode), before the SCLx line is released.