

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	34
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf46j11t-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

EXAMPLE 4-1: ULTRA LOW-POWER WAKE-UP INITIALIZATION

```
//Configure a remappable output pin with interrupt capability
//for ULPWU function (RP21 => RD4/INT1 in this example)
RPOR21 = 13;// ULPWU function mapped to RP21/RD4
RPINR1 = 21;// INT1 mapped to RP21 (RD4)
//*********
//Charge the capacitor on RAO
TRISAbits.TRISA0 = 0;
LATAbits.LATA0 = 1;
for(i = 0; i < 10000; i++) Nop();</pre>
//Stop Charging the capacitor on RAO
TRISAbits.TRISA0 = 1;
//Enable the Ultra Low Power Wakeup module
//and allow capacitor discharge
WDTCONbits.ULPEN = 1;
WDTCONbits.ULPSINK = 1;
//For Sleep, Enable Interrupt for ULPW.
INTCON3bits.INT1IF = 0;
INTCON3bits.INT1IE = 1;
//**************
//Configure Sleep Mode
//*******************
//For Sleep
OSCCONbits.IDLEN = 0;
//For Deep Sleep
OSCCONDits.IDLEN = 0i// enable deep sleep
DSCONHbits.DSEN = 1;// Note: must be set just before executing Sleep();
/ / * * * * * * * * * * * * * * * *
//Enter Sleep Mode
/ / * * * * * * * * * * * * * * * *
Sleep();
  // for sleep, execution will resume here
  // for deep sleep, execution will restart at reset vector (use WDTCONbits.DS to detect)
```

10.7.6 PERIPHERAL PIN SELECT REGISTERS

The PIC18F46J11 family of devices implements a total of 37 registers for remappable peripheral configuration of 44-pin devices. The 28-pin devices have 31 registers for remappable peripheral configuration.

Note: Input and output register values can only be changed if PPS<IOLOCK> = 0. See Example 10-7 for a specific command sequence.

REGISTER 10-5: PPSCON: PERIPHERAL PIN SELECT INPUT REGISTER 0 (BANKED EFFh)⁽¹⁾

U-0			U-0	U-0	U-0	U-0	R/W-0		
_	—			—	—	_	IOLOCK		
bit 7									

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7-1 Unimplemented: Read as '0'

bit 0

IOLOCK: I/O Lock Enable bit

1 = I/O lock active, RPORx and RPINRx registers are write-protected
 0 = I/O lock not active, pin configurations can be changed

Note 1: Register values can only be changed if PPSCON<IOLOCK> = 0.

REGISTER 11-7: PMSTATH: PARALLEL PORT STATUS REGISTER HIGH BYTE (BANKED F55h)⁽¹⁾

R-0 R/W-0 U-0 U-0 R-0 R-0 R-0 R-0 IBF IBOV - - IB3F IB2F IB1F IB0F bit 7 IBF IBOV - - IB3F IB2F IB1F IB0F bit 7 IBer IBOV - - IB3F IB2F IB1F IB0F Legend: R Readable bit W = Writable bit U = Unimplemented bit, read as '0' -							•									
bit 7 bit Legend: W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 7 IBF: Input Buffer Full Status bit 1 = All writable input buffer registers are full 0 = Some or all of the writable input buffer registers are empty bit 6 IBOV: Input Buffer Overflow Status bit 1 = A write attempt to a full input byte register occurred (must be cleared in software) 0 = No overflow occurred bit 5-4 Unimplemented: Read as '0' bits 1 = Input Buffer x Status Full bits 1 = Input buffer contains data that has not been read (reading buffer will clear this bit) 1 = Input buffer contains data that has not been read (reading buffer will clear this bit)	R-0	R/W-0	U-0	U-0	R-0	R-0	R-0	R-0								
Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 7 IBF: Input Buffer Full Status bit 1 = All writable input buffer registers are full 0 = Some or all of the writable input buffer registers are empty bit 6 IBOV: Input Buffer Overflow Status bit 1 = A write attempt to a full input byte register occurred (must be cleared in software) 0 = No overflow occurred 0 = No overflow occurred bit 5-4 Unimplemented: Read as '0' bit 3-0 IB3F:IBOF: Input Buffer x Status Full bits 1 = Input buffer contains data that has not been read (reading buffer will clear this bit)	IBF	IBOV		_	IB3F	IB2F	IB1F	IB0F								
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 7 IBF: Input Buffer Full Status bit 1 = All writable input buffer registers are full 0 = Some or all of the writable input buffer registers are empty bit 6 IBOV: Input Buffer Overflow Status bit 1 = A write attempt to a full input byte register occurred (must be cleared in software) 0 = No overflow occurred 0 = No overflow occurred bit 5-4 Unimplemented: Read as '0' bit 3-0 IB3F:IBOF: Input Buffer x Status Full bits 1 = Input buffer contains data that has not been read (reading buffer will clear this bit)	bit 7	.7														
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 7 IBF: Input Buffer Full Status bit 1 = All writable input buffer registers are full 0 = Some or all of the writable input buffer registers are empty bit 6 IBOV: Input Buffer Overflow Status bit 1 = A write attempt to a full input byte register occurred (must be cleared in software) 0 = No overflow occurred 0 = No overflow occurred IB3F:IBOF: Input Buffer x Status Full bits 1 = Input buffer contains data that has not been read (reading buffer will clear this bit) 1																
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 7 IBF: Input Buffer Full Status bit 1 = All writable input buffer registers are full 0 = Some or all of the writable input buffer registers are empty bit 6 IBOV: Input Buffer Overflow Status bit 1 = A write attempt to a full input byte register occurred (must be cleared in software) 0 = No overflow occurred 0 = No overflow occurred bit 3-0 IB3F:IBOF: Input Buffer x Status Full bits 1 = Input buffer contains data that has not been read (reading buffer will clear this bit)	Legend:															
 bit 7 IBF: Input Buffer Full Status bit 1 = All writable input buffer registers are full 0 = Some or all of the writable input buffer registers are empty bit 6 IBOV: Input Buffer Overflow Status bit 1 = A write attempt to a full input byte register occurred (must be cleared in software) 0 = No overflow occurred bit 5-4 Unimplemented: Read as '0' bit 3-0 IB3F:IB0F: Input Buffer x Status Full bits 1 = Input buffer contains data that has not been read (reading buffer will clear this bit) 	R = Readab	le bit	W = Writable I	bit	U = Unimplem	nented bit, read	d as '0'									
 1 = All writable input buffer registers are full 0 = Some or all of the writable input buffer registers are empty bit 6 IBOV: Input Buffer Overflow Status bit 1 = A write attempt to a full input byte register occurred (must be cleared in software) 0 = No overflow occurred bit 5-4 Unimplemented: Read as '0' bit 3-0 IB3F:IB0F: Input Buffer x Status Full bits 1 = Input buffer contains data that has not been read (reading buffer will clear this bit) 	-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown								
1 = Input buffer contains data that has not been read (reading buffer will clear this bit)	bit 6 bit 5-4	 1 = All writab 0 = Some or IBOV: Input E 1 = A write a 0 = No overfi Unimplement 	le input buffer r all of the writab Buffer Overflow ttempt to a full i low occurred tted: Read as '0	egisters are fu le input buffer Status bit nput byte regis ,	registers are er		d in software)									
	dit 3-0	1 = Input buf	fer contains dat	a that has not	•	ding buffer will	clear this bit)									

Note 1: This register is only available in 44-pin devices.

REGISTER 11-8: PMSTATL: PARALLEL PORT STATUS REGISTER LOW BYTE (BANKED F54h)⁽¹⁾

R-1	R/W-0	U-0	U-0	R-1	R-1	R-1	R-1
OBE	OBUF	—	—	OB3E	OB2E	OB1E	OB0E
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	OBE: Output Buffer Empty Status bit 1 = All readable output buffer registers are empty
h # C	0 = Some or all of the readable output buffer registers are full
bit 6	OBUF: Output Buffer Underflow Status bit
	 1 = A read occurred from an empty output byte register (must be cleared in software) 0 = No underflow occurred
bit 5-4	Unimplemented: Read as '0'
bit 3-0	OB3E:OB0E: Output Buffer x Status Empty bits
	1 = Output buffer is empty (writing data to the buffer will clear this bit)
	0 = Output buffer contains data that has not been transmitted

Note 1: This register is only available in 44-pin devices.

12.3 Prescaler

An 8-bit counter is available as a prescaler for the Timer0 module. The prescaler is not directly readable or writable. Its value is set by the PSA and T0PS<2:0> bits (T0CON<3:0>), which determine the prescaler assignment and prescale ratio.

Clearing the PSA bit assigns the prescaler to the Timer0 module. When it is assigned, prescale values from 1:2 through 1:256 in power-of-2 increments are selectable.

When assigned to the Timer0 module, all instructions writing to the TMR0 register (e.g., CLRF TMR0, MOVWF TMR0, BSF TMR0, etc.) clear the prescaler count.

Note:	Writing to TMR0 when the prescaler is
	assigned to Timer0 will clear the prescaler
	count but will not change the prescaler
	assignment.

12.3.1 SWITCHING PRESCALER ASSIGNMENT

The prescaler assignment is fully under software control and can be changed "on-the-fly" during program execution.

12.4 Timer0 Interrupt

The TMR0 interrupt is generated when the TMR0 register overflows from FFh to 00h in 8-bit mode, or from FFFFh to 0000h in 16-bit mode. This overflow sets the TMR0IF flag bit. The interrupt can be masked by clearing the TMR0IE bit (INTCON<5>). Before re-enabling the interrupt, the TMR0IF bit must be cleared in software by the Interrupt Service Routine (ISR).

Since Timer0 is shut down in Sleep mode, the TMR0 interrupt cannot awaken the processor from Sleep.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:	
TMR0L	Timer0 Reg	ister Low By	te						91	
TMR0H	Timer0 Reg	ister High By	/te						91	
INTCON	NTCON GIE/GIEH PEIE/GIEL TMROIE INTOIE RBIE TMROIF INTOIF RBIF									
T0CON	ON TMROON T08BIT TOCS TOSE PSA T0PS2 T0PS1 T0PS0									

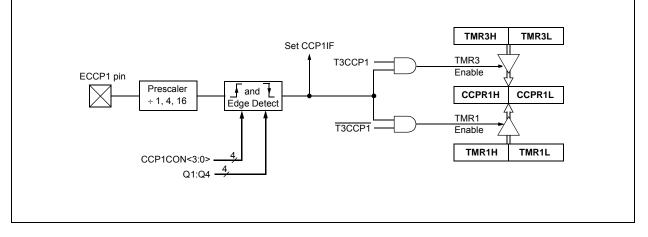
 TABLE 12-1:
 REGISTERS ASSOCIATED WITH TIMER0

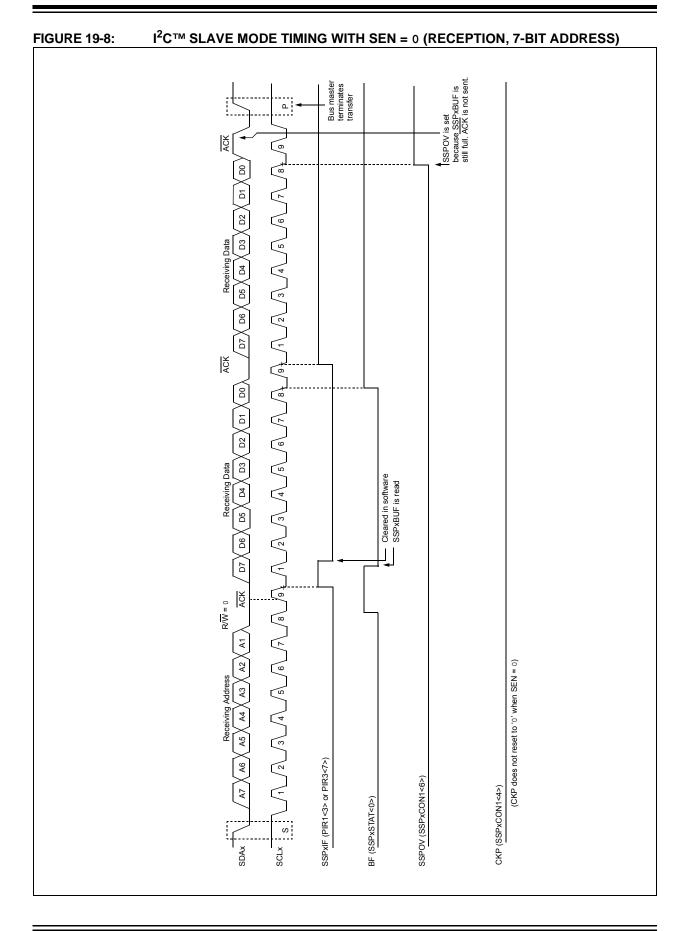
Legend: — = unimplemented, read as '0'. Shaded cells are not used by Timer0.

REGISTER 17-4: ALRMCFG: ALARM CONFIGURATION REGISTER (ACCESS F91h)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
ALRMEN	CHIME	AMASK3	AMASK2	AMASK1	AMASK0	ALRMPTR1	ALRMPTR0				
bit 7	·	ł					bit 0				
Legend:											
R = Readabl	e bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown				
L:1 7		lawa Enable bit									
bit 7		larm Enable bit	doutomotical	ly offer an eler	n overtweene	or ADDT 27:05					
		enabled (cleare	automatical	iy alter an alarr	n event whenev	/el ARP1<7.0>	- 0000 0000				
	0 = Alarm is	,									
bit 6	CHIME: Chir	me Enable bit									
	1 = Chime is	s enabled; ALRI	MRPT<7:0> b	its are allowed	to roll over from	m 00h to FFh					
	0 = Chime is	s disabled; ALR	MRPT<7:0> b	its stop once tl	ney reach 00h						
bit 5-2	AMASK<3:0	>: Alarm Mask	Configuration	bits							
	0000 = Every half second										
	0001 = Every second										
	0010 = Every 10 seconds 0011 = Every minute										
	0011 = Every minute 0100 = Every 10 minutes										
	0101 = Eve										
	0110 = Ond	•									
	0111 = Ond	ce a week									
	1000 = Onc				a a th						
		ce a year (excep served – do not i		ured for Februa	ary 29", once e	every four years	6)				
		served – do not i									
bit 1-0		1:0>: Alarm Val		indow Pointer	hits						
		e corresponding	-			AI RMVAI H ar	d ALRMVALL				
		e ALRMPTR<1:									
	ʻ00'.				, ,						
	<u>ALRMVALH</u>	<u><15:8>:</u>									
	00 = ALRMMIN										
	01 = ALRMWD										
	10 = ALRMMNTH 11 = Unimplemented										
	-										
	<u>ALRMVALL<</u> 00 = ALRMS										
	01 = ALRMH										
	10 = ALRME										

18.2.4 ECCP PRESCALER


There are four prescaler settings in Capture mode; they are specified as part of the operating mode selected by the mode select bits (CCPxM<3:0>). Whenever the ECCP module is turned off, or Capture mode is disabled, the prescaler counter is cleared. This means that any Reset will clear the prescaler counter.


Switching from one capture prescaler to another may generate an interrupt. Also, the prescaler counter will not be cleared; therefore, the first capture may be from a non-zero prescaler. Example 18-1 provides the recommended method for switching between capture prescalers. This example also clears the prescaler counter and will not generate the "false" interrupt.

EXAMPLE 18-1: CHANGING BETWEEN CAPTURE PRESCALERS

			Turn CCP module off Load WREG with the
		;	new prescaler mode
		;	value and CCP ON
MOVWF	CCP1CON	;	Load CCP1CON with
		;	this value

		SYNC = 0, BRGH = 0, BRG16 = 0													
BAUD	Fosc = 40.000 MHz			Fosc = 20.000 MHz			Fosc = 10.000 MHz			Fos	Fosc = 8.000 MHz				
RATE (K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)			
0.3	_									_	_	_			
1.2	—	—	—	1.221	1.73	255	1.202	0.16	129	1.201	-0.16	103			
2.4	2.441	1.73	255	2.404	0.16	129	2.404	0.16	64	2.403	-0.16	51			
9.6	9.615	0.16	64	9.766	1.73	31	9.766	1.73	15	9.615	-0.16	12			
19.2	19.531	1.73	31	19.531	1.73	15	19.531	1.73	7	_	_	_			
57.6	56.818	-1.36	10	62.500	8.51	4	52.083	-9.58	2	—	_	_			
115.2	125.000	8.51	4	104.167	-9.58	2	78.125	-32.18	1	—	_	_			

TABLE 20-3: BAUD RATES FOR ASYNCHRONOUS MODES

		SYNC = 0, BRGH = 0, BRG16 = 0							
BAUD RATE	Fosc = 4.000 MHz			Fosc = 2.000 MHz			Fosc = 1.000 MHz		
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)
0.3	0.300	0.16	207	0.300	-0.16	103	0.300	-0.16	51
1.2	1.202	0.16	51	1.201	-0.16	25	1.201	-0.16	12
2.4	2.404	0.16	25	2.403	-0.16	12	—	_	_
9.6	8.929	-6.99	6	—	_	_	—	_	_
19.2	20.833	8.51	2	—	_	_	—	_	_
57.6	62.500	8.51	0	—	_	_	—	_	_
115.2	62.500	-45.75	0	_	_	—	_		—

		SYNC = 0, BRGH = 1, BRG16 = 0										
BAUD RATE	Fosc = 40.000 MHz Fosc = 20.000 MH) MHz	Fosc = 10.000 MHz			Fosc = 8.000 MHz				
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)
0.3		_	_	_	_	_			_	_	_	_
1.2	—	—	—	—	—	—	—	—	—	—	—	—
2.4	—	_	_	—	_	_	2.441	1.73	255	2.403	-0.16	207
9.6	9.766	1.73	255	9.615	0.16	129	9.615	0.16	64	9615.	-0.16	51
19.2	19.231	0.16	129	19.231	0.16	64	19.531	1.73	31	19.230	-0.16	25
57.6	58.140	0.94	42	56.818	-1.36	21	56.818	-1.36	10	55.555	3.55	8
115.2	113.636	-1.36	21	113.636	-1.36	10	125.000	8.51	4	—	_	_

		SYNC = 0, BRGH = 1, BRG16 = 0							
BAUD RATE	Fosc = 4.000 MHz			Fosc = 2.000 MHz			Fosc = 1.000 MHz		
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)
0.3	_		_	_		_	0.300	-0.16	207
1.2	1.202	0.16	207	1.201	-0.16	103	1.201	-0.16	51
2.4	2.404	0.16	103	2.403	-0.16	51	2.403	-0.16	25
9.6	9.615	0.16	25	9.615	-0.16	12	_	_	_
19.2	19.231	0.16	12	_	_	_	_	_	_
57.6	62.500	8.51	3	—	_	_	—	_	_
115.2	125.000	8.51	1	_	_	_	_	_	_

© 2011 Microchip Technology Inc.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x	R/W-x
EDG2POL	EDG2SEL1	EDG2SEL0	EDG1POL	EDG1SEL1	EDG1SEL0	EDG2STAT	EDG1STAT
bit 7	•	•		•	•	•	bit C
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown
bit 7	EDG2POL: E	dge 2 Polarity	Select bit				
	 1 = Edge 2 programmed for a positive edge response 0 = Edge 2 programmed for a negative edge response 						
bit 6-5	EDG2SEL<1:0>: Edge 2 Source Select bits 11 = CTED1 pin 10 = CTED2 pin 01 = ECCP1 Special Event Trigger 00 = ECCP2 Special Event Trigger						
bit 4	1 = Edge 1 p	dge 1 Polarity rogrammed for rogrammed for	a positive edg				
bit 3-2	EDG1SEL<1:0>: Edge 1 Source Select bits 11 = CTED1 pin 10 = CTED2 pin 01 = ECCP1 Special Event Trigger 00 = ECCP2 Special Event Trigger						
bit 1	EDG2STAT: Edge 2 Status bit 1 = Edge 2 event has occurred 0 = Edge 2 event has not occurred						
bit 0	 0 = Edge 2 event has not occurred EDG1STAT: Edge 1 Status bit 1 = Edge 1 event has occurred 0 = Edge 1 event has not occurred 						

REGISTER 26-2: CONFIG1H: CONFIGURATION REGISTER 1 HIGH (BYTE ADDRESS 300001h)

U-1	U-1	U-1	U-1	U-0	R/WO-1	U-0	U-0
—	—	—	—	—	CP0	—	—
bit 7				•			bit 0
Legend:							

R = Readable bit	WO = Write-Once bit	U = Unimplemented bit, read	d as '0'
-n = Value at Reset	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-4	Unimplemented: Program the corresponding Flash Configuration bit to '1'
	omplemented. I regram the conceptionality hash configuration bit to 1

bit 3	Unimplemented: Maintain as '0'
-------	--------------------------------

```
bit 2 CP0: Code Protection bit
```

- 1 = Program memory is not code-protected
- 0 = Program memory is code-protected
- bit 1-0 Unimplemented: Maintain as '0'

26.7 In-Circuit Serial Programming (ICSP)

PIC18F46J11 family microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data and three other lines for power, ground and the programming voltage. This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

26.8 In-Circuit Debugger

When the $\overline{\text{DEBUG}}$ Configuration bit is programmed to a '0', the In-Circuit Debugger functionality is enabled. This function allows simple debugging functions when used with MPLAB[®] IDE. When the microcontroller has this feature enabled, some resources are not available for general use.

Table 26-4 lists the resources required by the background debugger.

I/O pins:	RB6, RB7
Stack:	TOSx registers reserved

27.0 INSTRUCTION SET SUMMARY

The PIC18F46J11 family of devices incorporates the standard set of 75 PIC18 core instructions, and an extended set of eight new instructions for the optimization of code that is recursive or that utilizes a software stack. The extended set is discussed later in this section.

27.1 Standard Instruction Set

The standard PIC18 instruction set adds many enhancements to the previous PIC[®] MCU instruction sets, while maintaining an easy migration from these PIC MCU instruction sets. Most instructions are a single program memory word (16 bits), but there are four instructions that require two program memory locations.

Each single-word instruction is a 16-bit word divided into an opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction.

The instruction set is highly orthogonal and is grouped into four basic categories:

- Byte-oriented operations
- Bit-oriented operations
- Literal operations
- Control operations

The PIC18 instruction set summary in Table 27-2 lists the **byte-oriented**, **bit-oriented**, **literal** and **control** operations.

Table 27-1 provides the opcode field descriptions.

Most Byte-oriented instructions have three operands:

- 1. The file register (specified by 'f')
- 2. The destination of the result (specified by 'd')
- 3. The accessed memory (specified by 'a')

The file register designator, 'f', specifies which file register is to be used by the instruction. The destination designator, 'd', specifies where the result of the operation is to be placed. If 'd' is '0', the result is placed in the WREG register. If 'd' is '1', the result is placed in the file register specified in the instruction.

All **Bit-oriented** instructions have three operands:

- 1. The file register (specified by 'f')
- 2. The bit in the file register (specified by 'b')
- 3. The accessed memory (specified by 'a')

The bit field designator 'b' selects the number of the bit affected by the operation, while the file register designator, 'f', represents the number of the file in which the bit is located.

The **Literal** instructions may use some of the following operands:

- A literal value to be loaded into a file register (specified by 'k')
- The desired FSR register to load the literal value into (specified by 'f')
- No operand required (specified by '—')

The **Control** instructions may use some of the following operands:

- A program memory address (specified by 'n')
- The mode of the CALL or RETURN instructions (specified by 's')
- The mode of the table read and table write instructions (specified by 'm')
- No operand required (specified by '---')

All instructions are a single word, except for four double-word instructions. These instructions were made double-word to contain the required information in 32 bits. In the second word, the 4 MSbs are '1's. If this second word is executed as an instruction (by itself), it will execute as a NOP.

All single-word instructions are executed in a single instruction cycle, unless a conditional test is true or the Program Counter (PC) is changed as a result of the instruction. In these cases, the execution takes two instruction cycles with the additional instruction cycle(s) executed as a NOP.

The double-word instructions execute in two instruction cycles.

One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 μ s. If a conditional test is true, or the program counter is changed as a result of an instruction, the instruction execution time is 2 μ s. Two-word branch instructions (if true) would take 3 μ s.

Figure 27-1 provides the general formats that the instructions can have. All examples use the convention 'nnh' to represent a hexadecimal number.

The instruction set summary, provided in Table 27-2, lists the standard instructions recognized by the Microchip MPASM[™] Assembler.

Section 27.1.1 "Standard Instruction Set" provides a description of each instruction.

TABLE 27-2 :	PIC18F46J11 FAMILY INSTRUCTION SET

Mnemonic, Operands		Description	16-Bit Instruction Word		Status	Natas			
		Description	Cycles	MSb			LSb	Affected	Notes
BYTE-ORIE	BYTE-ORIENTED OPERATIONS								
ADDWF	f, d, a	Add WREG and f	1	0010	01da	ffff	ffff	C, DC, Z, OV, N	1, 2
ADDWFC	f, d, a	Add WREG and Carry bit to f	1	0010	00da	ffff	ffff	C, DC, Z, OV, N	1, 2
ANDWF	f, d, a	AND WREG with f	1	0001	01da	ffff	ffff	Z, N	1,2
CLRF	f, a	Clear f	1	0110	101a	ffff	ffff	Z	2
COMF	f, d, a	Complement f	1	0001	11da	ffff	ffff	Z, N	1, 2
CPFSEQ	f, a	Compare f with WREG, Skip =	1 (2 or 3)	0110	001a	ffff	ffff	None	4
CPFSGT	f, a	Compare f with WREG, Skip >	1 (2 or 3)	0110	010a	ffff	ffff	None	4
CPFSLT	f, a	Compare f with WREG, Skip <	1 (2 or 3)	0110	000a	ffff	ffff	None	1, 2
DECF	f, d, a	Decrement f	1	0000	01da	ffff	ffff	C, DC, Z, OV, N	1, 2, 3, 4
DECFSZ	f, d, a	Decrement f, Skip if 0	1 (2 or 3)	0010	11da	ffff	ffff	None	1, 2, 3, 4
DCFSNZ	f, d, a	Decrement f, Skip if Not 0	1 (2 or 3)	0100	11da	ffff	ffff	None	1, 2
INCF	f, d, a	Increment f	1	0010	10da	ffff	ffff	C, DC, Z, OV, N	1, 2, 3, 4
INCFSZ	f, d, a	Increment f, Skip if 0	1 (2 or 3)	0011	11da	ffff	ffff	None	4
INFSNZ	f, d, a	Increment f, Skip if Not 0	1 (2 or 3)	0100	10da	ffff	ffff	None	1, 2
IORWF	f, d, a	Inclusive OR WREG with f	1	0001	00da	ffff	ffff	Z, N	1, 2
MOVF	f, d, a	Move f	1	0101	00da	ffff	ffff	Z, N	1
MOVFF	f _s , f _d	Move f _s (source) to 1st word	2	1100	ffff	ffff	ffff	None	
		f _d (destination) 2nd word		1111	ffff	ffff	ffff		
MOVWF	f, a	Move WREG to f	1	0110	111a	ffff	ffff	None	
MULWF	f, a	Multiply WREG with f	1	0000	001a	ffff	ffff	None	1, 2
NEGF	f, a	Negate f	1	0110	110a	ffff	ffff	C, DC, Z, OV, N	
RLCF	f, d, a	Rotate Left f through Carry	1	0011	01da	ffff	ffff	C, Z, N	1, 2
RLNCF	f, d, a	Rotate Left f (No Carry)	1	0100	01da	ffff	ffff	Z, N	
RRCF	f, d, a	Rotate Right f through Carry	1	0011	00da	ffff	ffff	C, Z, N	
RRNCF	f, d, a	Rotate Right f (No Carry)	1	0100	00da	ffff	ffff	Z, N	
SETF	f, a	Set f	1	0110	100a	ffff	ffff	None	1, 2
SUBFWB	f, d, a	Subtract f from WREG with Borrow	1	0101	01da	ffff	ffff	C, DC, Z, OV, N	
SUBWF	f, d, a	Subtract WREG from f	1	0101	11da	ffff	ffff	C, DC, Z, OV, N	1, 2
SUBWFB	f, d, a	Subtract WREG from f with	1	0101	10da	ffff	ffff	C, DC, Z, OV, N	
		Borrow							
SWAPF	f, d, a	Swap Nibbles in f	1	0011	10da	ffff	ffff	None	4
TSTFSZ	f, a	Test f, Skip if 0	1 (2 or 3)	0110	011a	ffff	ffff	None	1, 2
XORWF	f, d, a	Exclusive OR WREG with f	1	0001	10da	ffff	ffff	Z, N	

Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned.

3: If the Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

4: Some instructions are two-word instructions. The second word of these instructions will be executed as a NOP unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all program memory locations have a valid instruction.

BNO	v	Branch if N	Branch if Not Overflow				
Synta	ax:	BNOV n	BNOV n				
Oper	ands:	$-128 \le n \le 1$	27				
Oper	ation:	if Overflow (PC) + 2 + 2	,				
Statu	s Affected:	None					
Enco	ding:	1110	0101	nnnn	nnnn		
Desc	ription:	If the Overfiprogram with		0', then t	the		
		added to th have incren instruction, PC + 2 + 2r	The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a two-cycle instruction.				
Word	ls:	1	1				
Cycle	es:	1(2)					
Q C If Ju	ycle Activity:						
	Q1	Q2	Q3		Q4		
	Decode	Read literal 'n'	Proces: Data	s V	Vrite to PC		
	No operation	No operation	No operatio	n op	No peration		
lf No	o Jump:						
	Q1	Q2	Q3		Q4		
	Decode	Read literal 'n'	Proces: Data	-	No peration		
Example: HERE BNOV Jump Before Instruction							
PC = address (HERE) After Instruction If Overflow = 0; PC = address (Jump) If Overflow = 1; PC = address (HERE + 2)							

BNZ		Branch if N	Branch if Not Zero				
Synta	ax:	BNZ n	BNZ n				
Oper	ands:	-128 ≤ n ≤ ′	127				
Oper	ation:	if Zero bit is (PC) + 2 + 2	,				
Statu	s Affected:	None					
Enco	ding:	1110	0001 nn	nn nnnn			
Desc	ription:	If the Zero I will branch.	bit is '0', then	the program			
		added to th have incren instruction, PC + 2 + 2r	The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a two-cycle instruction.				
Word	ls:	1	1				
Cycle	es:	1(2)	1(2)				
Q C If Ju	ycle Activity: mp:						
	Q1	Q2	Q3	Q4			
	Decode	Read literal 'n'	Process Data	Write to PC			
	No	No	No	No			
	operation	operation	operation	operation			
lf No	o Jump:			_			
	Q1	Q2	Q3	Q4			
	Decode	Read literal 'n'	Process Data	No operation			
Exan	nple:	HERE	BNZ Jump)			
	Before Instruc	tion	-				
			-l				

PC	=	address (HERE)
After Instruction		
If Zero	=	0:
PC	=	address (Jump)
If Zero	=	1;
PC	=	address (HERE + 2)

RCA	LL	Relative Ca	Relative Call			
Synta	ax:	RCALL n				
Oper	ands:	-1024 ≤ n ≤	1023			
Oper	ation:	(PC) + 2 → (PC) + 2 + 2	-	;		
Statu	s Affected:	None				
Enco	ding:	1101	1nnn	nnn	n	nnnn
Description: Subroutine call with a jump up to ' from the current location. First, ret address (PC + 2) is pushed onto t stack. Then, add the 2's complem number '2n' to the PC. Since the F will have incremented to fetch the instruction, the new address will b PC + 2 + 2n. This instruction is a two-cycle instruction.					t, return nto the blement the PC the next vill be	
Word	ls:	1				
Cycle	es:	2				
QC	ycle Activity:					
	Q1	Q2	Q3	3		Q4
	Decode	Read literal 'n' PUSH PC to stack	Proce Data		Wri	te to PC
	No operation	No operation	No operat		ор	No eration

Example: HERE RCALL Jump

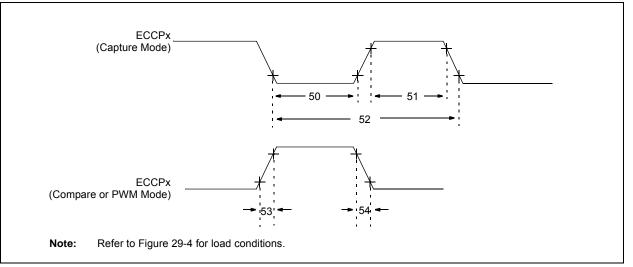
Before Instruction

PC = Address (HERE) After Instruction PC = Address (Jump) TOS = Address (HERE + 2)

RESET		Reset					
Syntax:		RESET					
Operands:		None					
Operation:			Reset all registers and flags that are affected by a MCLR Reset.				
Status Affecte	ed:	All					
Encoding:		0000	0000	111	1	1111	
Description:			This instruction provides a way to execute a MCLR Reset in software.				
Words:		1					
Cycles:		1					
Q Cycle Acti	vity:						
Q1	l	Q2	Q	3		Q4	
Deco	de	Start reset	No opera	, 	ор	No eration	
Example:		RESET					

Instru	uctior	1

After Instruction	
Registers =	Reset Value
Flags* =	Reset Value


TSTF	sz	Test f, Skip	Test f, Skip if 0			
Synta	ax:	TSTFSZ f {	,a}			
Oper	ands:	0 ≤ f ≤ 255 a ∈ [0,1]	-			
Oper	ation:	skip if f = 0				
Statu	s Affected:	None				
Enco	ding:	0110	011a fff	f ffff		
Desc	ription:	during the c is discarded	e next instructi current instruct d and a NOP is a two-cycle in	tion execution executed,		
			he Access Bar he BSR is use (default).			
		set is enabl in Indexed I mode when Section 27 Bit-Oriente	nd the extende ed, this instruct Literal Offset A lever $f \le 95$ (51 .2.3 "Byte-Ori ed Instruction set Mode" for	ction operates addressing =h). See iented and s in Indexed		
Word	s:	1				
Cycles: 1(2) Note: 3 cycles if skip and followed by a 2-word instruction.						
QC	ycle Activity:	00	00	04		
1	Q1 Decode	Q2 Read	Q3 Process	Q4 No		
	Debbuc	register 'f'	Data	operation		
lf sk	ip:	-				
i	Q1	Q2	Q3	Q4		
	No	No	No	No		
lf ek	operation	operation	operation	operation		
11 51	Q1	Q2	Q3	Q4		
	No	No	No	No		
	operation	operation	operation	operation		
	No operation	No operation	No operation	No operation		
<u>Exan</u>	nple:	HERE 7 NZERO 3 ZERO 3	:	', 1		
	Before Instruc PC	= Ad	dress (HERE)		
After Instruction If CNT = 00h, PC = Address (ZERO) If CNT \neq 00h, PC = Address (NZERO)						

XORLW		Exclusive	Exclusive OR Literal with W				
Syntax:		XORLW	k				
Operands	S:	$0 \le k \le 25$	5				
Operation	า:	(W) .XOR	$k \to W$				
Status Af	fected:	N, Z					
Encoding	:	0000	1010	kkk	ck	kkkk	
Descriptio	on:	The conte the 8-bit li in W.			••••		
Words:		1					
Cycles:		1					
Q Cycle	Activity:						
	Q1	Q2	Q3	Q3		Q4	
D	ecode	Read literal 'k'	Proce Data		V	/rite to W	
Example:	<u>.</u>	XORLW	0xAF				
	ore Instruc W r Instructic W	= B5h					

CAL	LW	Subroutine	Subroutine Call using WREG				
Synta	ax:	CALLW					
Oper	ands:	None					
Oper	ation:	(W) → PCL (PCLATH) -	$(PC + 2) \rightarrow TOS,$ $(W) \rightarrow PCL,$ $(PCLATH) \rightarrow PCH,$ $(PCLATU) \rightarrow PCU$				
Statu	is Affected:	None					
Enco	oding:	0000	0000 000	1 0100			
Description First, the return address (PC + 2) is pushed onto the return stack. Next, th contents of W are written to PCL; the existing value is discarded. Then, the contents of PCLATH and PCLATU ar latched into PCH and PCU, respec- tively. The second cycle is executed a NOP instruction while the new next instruction is fetched.							
			Unlike CALL, there is no option to update W, STATUS or BSR.				
Word	ls:	1	1				
Cycle	es:	2					
QC	ycle Activity:						
	Q1	Q2	Q3	Q4			
	Decode	Read WREG	Push PC to stack	No operation			
	No	No	No	No			
	operation	operation	operation	operation			
Example:HERECALLWBefore InstructionPC=PCLATH=10hPCLATU=00hW=06hAfter InstructionPC=PCLATH=1006hTOS=address (HERE + 2)PCLATH=10hPCLATU=00hW=06h							

ΜΟΥ	SF	Move Inde	xed to f				
Synta	ax:	MOVSF [2	z _s], f _d				
Oper	ands:	$0 \le z_s \le 12$	7				
		$0 \le f_d \le 408$	95				
Oper	ation:	((FSR2) + 2	$(z_s) \rightarrow f_d$				
Statu	s Affected:	None					
1st w	oding: vord (source) word (destin.)	1110 1111	1011 ffff	0zz fff	ь		
Desc	ription:	moved to d actual addr determined offset 'z _s ', i of FSR2. T tion registe eral 'f _d ' in tl addresses 4096-byte of The MOVSF PCL, TOSU destination If the result an Indirect	The contents of the source register are moved to destination register 'f _d '. The actual address of the source register is determined by adding the 7-bit literal offset ' z_s ', in the first word, to the value of FSR2. The address of the destina- tion register is specified by the 12-bit lit- eral 'f _d ' in the second word. Both addresses can be anywhere in the 4096-byte data space (000h to FFFh). The MOVSF instruction cannot use the PCL, TOSU, TOSH or TOSL as the destination register. If the resultant source address points to an Indirect Addressing register, the				
			value returned will be 00h.				
Word		2					
Cycle	es:	2					
QC	ycle Activity:				_		
	Q1	Q2	Q3		Q4		
	Decode	Determine source addr	Detern source		Read source reg		
	Decode	No operation No dummy read	No operat		Write register 'f' (dest)		
Example: MOVSF [0x05], REG2							
Before Instruction FSR2 = $80h$ Contents of $85h$ = $33h$ REG2 = $11h$ After Instruction FSR2 = $80h$ Contents of $85h$ = $33h$ REG2 = $33h$							

FIGURE 29-9: ENHANCED CAPTURE/COMPARE/PWM TIMINGS

TABLE 29-16: ENHANCED CAPTURE/COMPARE/PWM REQUIREMENTS

Param No.	Symbol	Character	istic	Min	Max	Units	Conditions
50	TccL	ECCPx Input Low Time	No prescaler	0.5 TCY + 20		ns	
			With prescaler	10	_	ns	
51	ТссН	ECCPx Input High Time	No prescaler	0.5 Tcy + 20	_	ns	
			With prescaler	10	_	ns	
52	TCCP	ECCPx Input Period		<u>3 Tcy + 40</u> N	_	ns	N = prescale value (1, 4 or 16)
53	TccR	ECCPx Output Fall Time		—	25	ns	
54	TCCF	ECCPx Output Fall Time		—	25	ns	

NOTES:

PIE1 (Peripheral Interrupt Enable 1)	
PIE2 (Peripheral Interrupt Enable 2)	124
PIE3 (Peripheral Interrupt Enable 3)	125
PIR1 (Peripheral Interrupt Request (Flag) 1)	
PIR2 (Peripheral Interrupt Request (Flag) 2)	
PIR3 (Peripheral Interrupt Request (Flag) 3)	
PMADDRH (Parallel Port Address High Byte)	
PMADDRL (Parallel Port Address Low Byte)	
PMCONH (Parallel Port Control High Byte)	172
PMCONL (Parallel Port Control Low Byte)	173
PMEH (Parallel Port Enable High Byte)	
PMEL (Parallel Port Enable Low Byte)	
PMMODEH (Parallel Port Mode High Byte)	
PMMODEL (Parallel Port Mode Low Byte)	
PMSTATH (Parallel Port Status High Byte)	1//
PMSTATL (Parallel Port Status Low Byte)	
PPSCON (Peripheral Pin Select Input 0)	
PSTRxCON (Pulse Steering Control)	
RCON (Reset Control)	
RCSTAx (Receive Status and Control)	
REF0CON (Reference Oscillator Control) Reserved	
RPINR1 (Peripheral Pin Select Input 1)	
RPINR12 (Peripheral Pin Select liput 1)	
RPINR12 (Peripheral Pin Select Input 12)	
RPINR16 (Peripheral Pin Select Input 15)	
RPINR17 (Peripheral Pin Select Input 17)	
RPINR2 (Peripheral Pin Select Input 2)	156
RPINR21 (Peripheral Pin Select Input 2)	
RPINR22 (Peripheral Pin Select Input 27)	
RPINR23 (Peripheral Pin Select Input 23)	
RPINR24 (Peripheral Pin Select Input 24)	
RPINR3 (Peripheral Pin Select Input 3)	
RPINR4 (Peripheral Pin Select Input 4)	157
RPINR6 (Peripheral Pin Select Input 6)	
RPINR7 (Peripheral Pin Select Input 7)	157
RPINR8 (Peripheral Pin Select Input 8)	158
RPOR0 (Peripheral Pin Select Output 0)	161
RPOR1 (Peripheral Pin Select Output 1)	161
RPOR10 (Peripheral Pin Select Output 10)	164
RPOR11 (Peripheral Pin Select Output 11)	164
RPOR12 (Peripheral Pin Select Output 12)	165
RPOR13 (Peripheral Pin Select Output 13)	165
RPOR14 (Peripheral Pin Select Output 14)	165
RPOR15 (Peripheral Pin Select Output 15)	166
RPOR16 (Peripheral Pin Select Output 16)	166
RPOR17 (Peripheral Pin Select Output 17)	
RPOR18 (Peripheral Pin Select Output 18)	167
RPOR19 (Peripheral Pin Select Output 19)	
RPOR2 (Peripheral Pin Select Output 2)	
RPOR20 (Peripheral Pin Select Output 20)	
RPOR21 (Peripheral Pin Select Output 21)	
RPOR22 (Peripheral Pin Select Output 22)	
RPOR23 (Peripheral Pin Select Output 23)	168
RPOR24 (Peripheral Pin Select Output 24)	
RPOR3 (Peripheral Pin Select Output 3)	
RPOR4 (Peripheral Pin Select Output 4)	
RPOR5 (Peripheral Pin Select Output 5)	
RPOR6 (Peripheral Pin Select Output 6)	
RPOR7 (Peripheral Pin Select Output 7)	
RPOR8 (Peripheral Pin Select Output 8)	
RPOR9 (Peripheral Pin Select Output 9) RTCCAL (RTCC Calibration)	
RTCCFG (RTCC Configuration)	
SECONDS (Seconds Value)	

SPI Mode (MSSP)
SSPxCON1 (MSSPx Control 1, I ² C Mode) 293
SSPxCON1 (MSSPx Control 1, SPI Mode) 274
SSPxCON2 (MSSPx Control 2, I ² C Master Mode) 294
SSPxCON2 (MSSPx Control 2, I ² C Slave Mode) 295
SSPxMSK (I ² C Slave Address Mask)
SSPxSTAT (MSSPx Status, I ² C Mode)
SSPxSTAT (MSSPx Status, SPI Mode)
STATUS
STKPTR (Stack Pointer) 80
T0CON (Timer0 Control)
T1CON (Timer1 Control)
T1GCON (Timer1 Gate Control)
T2CON (Timer2 Control)
T3CON (Timer3 Control)
T3GCON (Timer3 Gate Control)
T4CON (Timer4 Control)
TCLKCON (Timer Clock Control)
TXSTAx (Transmit Status and Control)
WDTCON (Watchdog Timer Control) 406
WKDY (Weekday Value)234
YEAR (Year Value)
RESET
Reset
Brown-out Reset65
Brown-out Reset (BOR) 63
Configuration Mismatch (CM) 63
Configuration Mismatch Reset
Deep Sleep63
Fast Register Stack81
MCLR
MCLR Reset, During Power-Managed Modes
MCLR Reset Normal Operation 63
MCLR Reset, Normal Operation
Power-on Reset 65
Power-on Reset
Power-on Reset
Power-on Reset65Power-on Reset (POR)63Power-up Timer66RESET Instruction63
Power-on Reset65Power-on Reset (POR)63Power-up Timer66RESET Instruction63Stack Full63
Power-on Reset65Power-on Reset (POR)63Power-up Timer66RESET Instruction63Stack Full63Stack Underflow63
Power-on Reset65Power-on Reset (POR)63Power-up Timer66RESET Instruction63Stack Full63Stack Underflow63State of Registers68
Power-on Reset65Power-on Reset (POR)63Power-up Timer66RESET Instruction63Stack Full63Stack Underflow63State of Registers68Watchdog Timer (WDT) Reset63
Power-on Reset 65 Power-on Reset (POR) 63 Power-up Timer 66 RESET Instruction 63 Stack Full 63 Stack Underflow 63 State of Registers 68 Watchdog Timer (WDT) Reset 63 Resets 395
Power-on Reset 65 Power-on Reset (POR) 63 Power-up Timer 66 RESET Instruction 63 Stack Full 63 Stack Underflow 63 State of Registers 68 Watchdog Timer (WDT) Reset 63 Resets 395 Brown-out Reset (BOR) 395
Power-on Reset65Power-on Reset (POR)63Power-up Timer66RESET Instruction63Stack Full63Stack Underflow63State of Registers68Watchdog Timer (WDT) Reset63Resets395Brown-out Reset (BOR)395Oscillator Start-up Timer (OST)395
Power-on Reset 65 Power-on Reset (POR) 63 Power-up Timer 66 RESET Instruction 63 Stack Full 63 Stack Underflow 63 State of Registers 68 Watchdog Timer (WDT) Reset 63 Resets 395 Brown-out Reset (BOR) 395 Oscillator Start-up Timer (OST) 395 Power-on Reset (POR) 395
Power-on Reset65Power-on Reset (POR)63Power-up Timer66RESET Instruction63Stack Full63Stack Underflow63State of Registers68Watchdog Timer (WDT) Reset63Resets395Brown-out Reset (BOR)395Oscillator Start-up Timer (OST)395Power-on Reset (POR)395Power-up Timer (PWRT)395
Power-on Reset 65 Power-on Reset (POR) 63 Power-up Timer 66 RESET Instruction 63 Stack Full 63 Stack Underflow 63 State of Registers 68 Watchdog Timer (WDT) Reset 63 Resets 395 Brown-out Reset (BOR) 395 Oscillator Start-up Timer (OST) 395 Power-on Reset (POR) 395
Power-on Reset65Power-on Reset (POR)63Power-up Timer66RESET Instruction63Stack Full63Stack Underflow63State of Registers68Watchdog Timer (WDT) Reset63Resets395Brown-out Reset (BOR)395Oscillator Start-up Timer (OST)395Power-on Reset (POR)395Power-up Timer (PWRT)395
Power-on Reset 65 Power-on Reset (POR) 63 Power-up Timer 66 RESET Instruction 63 Stack Full 63 Stack Underflow 63 State of Registers 68 Watchdog Timer (WDT) Reset 63 Brown-out Reset (BOR) 395 Oscillator Start-up Timer (OST) 395 Power-on Reset (POR) 395 Power-up Timer (PWRT) 395 RETFIE 444
Power-on Reset 65 Power-on Reset (POR) 63 Power-up Timer 66 RESET Instruction 63 Stack Full 63 Stack Underflow 63 State of Registers 68 Watchdog Timer (WDT) Reset 63 Resets 395 Brown-out Reset (BOR) 395 Oscillator Start-up Timer (OST) 395 Power-on Reset (POR) 395 Power-up Timer (PWRT) 395 RETFIE 444 RETLW 445
Power-on Reset 65 Power-on Reset (POR) 63 Power-up Timer 66 RESET Instruction 63 Stack Full 63 Stack Underflow 63 State of Registers 68 Watchdog Timer (WDT) Reset 63 Brown-out Reset (BOR) 395 Oscillator Start-up Timer (OST) 395 Power-on Reset (POR) 395 Power-up Timer (PWRT) 395 RETFIE 444 RETLW 444 RETURN 445 Return Address Stack 79
Power-on Reset 65 Power-on Reset (POR) 63 Power-up Timer 66 RESET Instruction 63 Stack Full 63 Stack Underflow 63 State of Registers 68 Watchdog Timer (WDT) Reset 63 Resets 395 Brown-out Reset (BOR) 395 Oscillator Start-up Timer (OST) 395 Power-on Reset (POR) 395 Power-up Timer (PWRT) 395 RETFIE 444 RETLW 444 RETURN 445 Return Address Stack 79 Associated Registers 79
Power-on Reset 65 Power-on Reset (POR) 63 Power-up Timer 66 RESET Instruction 63 Stack Full 63 Stack Underflow 63 Stack Underflow 63 Stack Underflow 63 State of Registers 68 Watchdog Timer (WDT) Reset 63 Resets 395 Brown-out Reset (BOR) 395 Oscillator Start-up Timer (OST) 395 Power-on Reset (POR) 395 Power-up Timer (PWRT) 395 RETFIE 444 RETURN 445 Return Address Stack 79 Associated Registers 79 Revision History 519
Power-on Reset 65 Power-on Reset (POR) 63 Power-up Timer 66 RESET Instruction 63 Stack Full 63 Stack Underflow 63 Stack Underflow 63 Stack Underflow 63 State of Registers 68 Watchdog Timer (WDT) Reset 63 Resets 395 Brown-out Reset (BOR) 395 Oscillator Start-up Timer (OST) 395 Power-on Reset (POR) 395 Power-up Timer (PWRT) 395 RETFIE 444 RETURN 445 Return Address Stack 79 Associated Registers 79 Revision History 519 RLCF 445
Power-on Reset 65 Power-on Reset (POR) 63 Power-up Timer 66 RESET Instruction 63 Stack Full 63 Stack Underflow 63 Stack Underflow 63 Stack Underflow 63 State of Registers 68 Watchdog Timer (WDT) Reset 63 Resets 395 Brown-out Reset (BOR) 395 Oscillator Start-up Timer (OST) 395 Power-on Reset (POR) 395 Power-up Timer (PWRT) 395 RETFIE 444 RETURN 445 Return Address Stack 79 Associated Registers 79 Revision History 519 RLCF 445 RLNCF 446
Power-on Reset 65 Power-on Reset (POR) 63 Power-up Timer 66 RESET Instruction 63 Stack Full 63 Stack Underflow 63 Stack Underflow 63 State of Registers 68 Watchdog Timer (WDT) Reset 63 Resets 395 Brown-out Reset (BOR) 395 Oscillator Start-up Timer (OST) 395 Power-on Reset (POR) 395 Power-up Timer (PWRT) 395 RETFIE 444 RETURN 445 Return Address Stack 79 Associated Registers 79 Revision History 519 RLCF 446 RRCF 446
Power-on Reset 65 Power-on Reset (POR) 63 Power-up Timer 66 RESET Instruction 63 Stack Full 63 Stack Underflow 63 Stack Underflow 63 Stack Underflow 63 State of Registers 68 Watchdog Timer (WDT) Reset 63 Resets 395 Brown-out Reset (BOR) 395 Oscillator Start-up Timer (OST) 395 Power-on Reset (POR) 395 Power-up Timer (PWRT) 395 RETFIE 444 RETUW
Power-on Reset 65 Power-on Reset (POR) 63 Power-up Timer 66 RESET Instruction 63 Stack Full 63 Stack Underflow 63 Stack Underflow 63 Stack Orderflow 63 Stack Underflow 63 State of Registers 68 Watchdog Timer (WDT) Reset 63 Resets 395 Brown-out Reset (BOR) 395 Oscillator Start-up Timer (OST) 395 Power-on Reset (POR) 395 Power-up Timer (PWRT) 395 RETFIE 444 RETUW 444 RETUW 444 RETUW 444 RETURN 445 Return Address Stack 79 Associated Registers 79 Revision History 519 RLCF 446 RRCF 446 RRCF 446 RRNCF 447 RTCC 447
Power-on Reset 65 Power-on Reset (POR) 63 Power-up Timer 66 RESET Instruction 63 Stack Full 63 Stack Underflow 63 Stack Underflow 63 Stack Underflow 63 State of Registers 68 Watchdog Timer (WDT) Reset 63 Resets 395 Brown-out Reset (BOR) 395 Oscillator Start-up Timer (OST) 395 Power-on Reset (POR) 395 Power-up Timer (PWRT) 395 RETFIE 444 RETURN 445 Return Address Stack 79 Associated Registers 79 Revision History 519 RLCF 446 RRNCF 446
Power-on Reset 65 Power-on Reset (POR) 63 Power-up Timer 66 RESET Instruction 63 Stack Full 63 Stack Underflow 63 Stack Underflow 63 Stack Underflow 63 State of Registers 68 Watchdog Timer (WDT) Reset 63 Resets 395 Brown-out Reset (BOR) 395 Oscillator Start-up Timer (OST) 395 Power-on Reset (POR) 395 Power-up Timer (PWRT) 395 RETFIE 444 RETURN 445 Return Address Stack 79 Associated Registers 79 Revision History 519 RLCF 445 RLNCF 446 RRCF 446 RRNCF 447 RTCC 447 Alarm 243 Configuring 243
Power-on Reset 65 Power-on Reset (POR) 63 Power-up Timer 66 RESET Instruction 63 Stack Full 63 Stack Underflow 63 Stack Underflow 63 Stack Underflow 63 State of Registers 68 Watchdog Timer (WDT) Reset 63 Resets 395 Brown-out Reset (BOR) 395 Oscillator Start-up Timer (OST) 395 Power-on Reset (POR) 395 Power-up Timer (PWRT) 395 RETFIE 444 RETURN 445 Return Address Stack 79 Associated Registers 79 Revision History 519 RLCF 445 RLNCF 446 RRCF 446 RRNCF 447 RTCC 443 Configuring 243 Interrupt 244
Power-on Reset 65 Power-on Reset (POR) 63 Power-up Timer 66 RESET Instruction 63 Stack Full 63 Stack Underflow 63 Stack Underflow 63 Stack Underflow 63 State of Registers 68 Watchdog Timer (WDT) Reset 63 Resets 395 Brown-out Reset (BOR) 395 Oscillator Start-up Timer (OST) 395 Power-on Reset (POR) 395 Power-up Timer (PWRT) 395 RETFIE 444 RETURN 445 Return Address Stack 79 Associated Registers 79 Revision History 519 RLCF 445 RLNCF 446 RRCF 446 RRCF 446 RRCF 447 RTCC 447 Alarm 243 Interrupt 244 Mask Settings 243
Power-on Reset 65 Power-on Reset (POR) 63 Power-up Timer 66 RESET Instruction 63 Stack Full 63 Stack Underflow 63 Stack Underflow 63 Stack Underflow 63 State of Registers 68 Watchdog Timer (WDT) Reset 63 Resets 395 Brown-out Reset (BOR) 395 Oscillator Start-up Timer (OST) 395 Power-on Reset (POR) 395 Power-up Timer (PWRT) 395 RETFIE 444 RETURN 445 Return Address Stack 79 Associated Registers 79 Revision History 519 RLCF 446 RRCF 446 RRCF 446 RRNCF 447 RTCC 447 Mask Settings 243 Interrupt 244 Mask Settings 243 Alarm Value Registers (A
Power-on Reset 65 Power-on Reset (POR) 63 Power-up Timer 66 RESET Instruction 63 Stack Full 63 Stack Underflow 63 Stack Underflow 63 Stack Underflow 63 State of Registers 68 Watchdog Timer (WDT) Reset 63 Resets 395 Brown-out Reset (BOR) 395 Oscillator Start-up Timer (OST) 395 Power-on Reset (POR) 395 Power-up Timer (PWRT) 395 RETFIE 444 RETURN 445 Return Address Stack 79 Associated Registers 79 Revision History 519 RLCF 446 RRCF 446 RRCF 446 RRCF 446 RRCF 446 RRNCF 447 RTCC 447 Mask Settings 243 Alarm Value Registers (ALRMVAL)
Power-on Reset 65 Power-on Reset (POR) 63 Power-up Timer 66 RESET Instruction 63 Stack Full 63 Stack Underflow 63 Stack Underflow 63 Stack Underflow 63 State of Registers 68 Watchdog Timer (WDT) Reset 63 Resets 395 Brown-out Reset (BOR) 395 Oscillator Start-up Timer (OST) 395 Power-on Reset (POR) 395 Power-up Timer (PWRT) 395 RETFIE 444 RETURN 445 Return Address Stack 79 Associated Registers 79 Revision History 519 RLCF 446 RRCF 446 RRCF 446 RRNCF 447 RTCC 447 Mask Settings 243 Interrupt 244 Mask Settings 243 Alarm Value Registers (A