

Welcome to E-XFL.COM

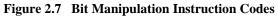
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	H8/300L
Core Size	8-Bit
Speed	10MHz
Connectivity	SCI
Peripherals	LCD, POR, PWM, WDT
Number of I/O	50
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	•
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/df38124wwv


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		Pin No.							
Туре	Symbol	FP-80A TFP-80C	FP-80B	TLP-85V	Pad No. ^{*1}	Pad No. ^{*2}	Pad No. ^{*3}	I/O	Name and Functions
Clock	OSC ₁	10	12	F2	11	12	10	Input	These pins connect to a
pins	OSC ₂	9	11	E3	10	11	9	Output	crystal or ceramic oscillator, or can be used to input an external clock. See section 4, Clock Pulse Generators, for a typical connection diagram.
	X ₁	6	8	D3	6	7	6	Input	These pins connect to a
	X ₂	7	9	D2	7	8	7	Output	⁻ 32.768-kHz or 38.4-kHz ^{*5} crystal oscillator. See section 4, Clock Pulse Generators, for a typical connection diagram.
System control	RES	12	14	F3	13	14	12	Input	Reset: When this pin is driven low, the chip is reset
	TEST	11	13	E2	12	13	11	Input	Test pin: This pin is reserved and cannot be used. It should be connected to V _{SS} .
Interrupt pins	IRQ₀ IRQ₁ IRQ₃ IRQ₄	72 76 5 3	74 78 7 5	C5 B3 D1 B2	73 77 5 3	74 78 6 4	72 76 5 3	Input	IRQ interrupt request 0, 1, 3, and 4: These are input pins for edge- sensitive external interrupts, with a selection of rising or falling edge
	IRQAEC	60	62	C10	61	62	60	Input	Asynchronous event counter event signal: This is an interrupt input pin for enabling asynchronous event input.
									On the H8/38124 Group, this must be fixed at V_{CC} or GND because the oscillator is selected by the input level during resets. Refer to section 4, Clock Pulse Generators, for information on the selection method.

Section 2 CPU

	45		0	7					0	BSET, BCLR, BNOT, B	TST
	15	ор	8	7	IMM		rr	1	0	Operand: register direct Bit No.: immediate (#2	t (Rn) xx:3)
	15		8	7					0		
	15	ор			rm		rr	n '	0	Operand: register direct Bit No.: register direct	t (Rn) t (Rm)
	15		8	7					0		. ()
		ор		,	rn	0	0	0	0	Operand: register indire	ect (@Rn)
		ор			IMM	0	0	0	0	Bit No.: immediate (#2	xx:3)
	15		8	7					0		
		ор	1	I	rn	0	0	0	0	Operand: register indire	ect (@Rn)
		ор			rm	0	0	0	0	Bit No.: register direct	t (Rm)
	15		8	7					0		
		ор		1	1	abs	'	I		Operand: absolute (@a	a:8)
		ор			IMM	0	0	0	0	Bit No.: immediate (#2	xx:3)
	15		8	7					0		
		ор		I	1 1	abs		1		Operand: absolute (@a	a:8)
		ор			rm	0	0	0	0	Bit No.: register direct	t (Rm)
										BAND, BOR, BXOR, B	LD, BST
[15	ор	8	7	IMM		rr		0	Operand: register direct	
l		00						1		Bit No.: immediate (#	xx:3)
[15		8	7		0	0	0	0	On anomaly an elisten in disc	
		ор			rn IMM	0	0	0	0	Operand: register indire Bit No.: immediate (#2	(0)
l		op				0	0	0	0	Bit NO IIIIIIediate (#)	(X.3)
[15		8	7		abs			0	Onerendu abaaluta (@a	o. 9)
		ор			IMM	abs 0	0	0	0	Operand: absolute (@a Bit No.: immediate (#	
l		00					0	0	0		xx.3)
	[Legend										
	rm, rn:	Operation field Register field									
		Absolute address Immediate data									

Bit 4—IRQ₄ Edge Select (IEG4)

Bit 4 selects the input sensing of the \overline{IRQ}_4 pin and \overline{ADTRG} pin.

Bit 4		
IEG4	Description	
0	Falling edge of \overline{IRQ}_4 and \overline{ADTRG} pin input is detected	(initial value)
1	Rising edge of \overline{IRQ}_4 and \overline{ADTRG} pin input is detected	

Bit 3—IRQ₃ Edge Select (IEG3)

Bit 3 selects the input sensing of the \overline{IRQ}_3 pin and TMIF pin.

Bit 3 IEG3	Description	
0	Falling edge of $\overline{\text{IRQ}}_3$ and TMIF pin input is detected	(initial value)
1	Rising edge of \overline{IRQ}_3 and TMIF pin input is detected	

Bit 2—Reserved

Bit 2 is reserved: it can only be written with 0.

Bit 1—IRQ1 Edge Select (IEG1)

Bit 1 selects the input sensing of the \overline{IRQ}_1 pin and TMIC pin.

Bit 1		
IEG1	Description	
0	Falling edge of \overline{IRQ}_1 and TMIC pin input is detected	(initial value)
1	Rising edge of IRQ ₁ and TMIC pin input is detected	

Bit 0—IRQ₀ Edge Select (IEG0)

Bit 0 selects the input sensing of pin \overline{IRQ}_0 .

Bit 0 IEG0	Description	
0	Falling edge of \overline{IRQ}_0 pin input is detected	(initial value)
1	Rising edge of \overline{IRQ}_0 pin input is detected	

3.3.6 Interrupt Response Time

Table 3.4 shows the number of wait states after an interrupt request flag is set until the first instruction of the interrupt handler is executed.

Table 3.4 Interrupt Wait States

Item	States	Total
Waiting time for completion of executing instruction*	1 to 13	15 to 27
Saving of PC and CCR to stack	4	
Vector fetch	2	
Instruction fetch	4	
Internal processing	4	

Note: * Not including EEPMOV instruction.

Bit 3		
EV	Description	
0	Erase-verify mode is cancelled	(initial value)
1	The flash memory changes to erase-verify mode	

Bit 2—Program-Verify (PV)

This bit is to set changing to or cancelling program-verify mode (do not set SWE, ESU, PSU, EV, E, and P bits at the same time).

Bit 2 PV	Description	
0	Program-verify mode is cancelled	(initial value)
1	The flash memory changes to program-verify mode	

Bit 1—Erase (E)

This bit is to set changing to or cancelling erase mode (do not set SWE, ESU, PSU, EV, PV, and P bits at the same time).

Bit 1

E	Description	
0	Erase mode is cancelled	(initial value)
1	When this bit is set to 1, while the SWE = 1 and ESU = 1, the flash changes to erase mode.	memory

Bit 0—Program (P)

This bit is to set changing to or cancelling program mode (do not set SWE, ESU, PSU, EV, PV, and E bits at the same time).

Bit 0 P	Description	
0	Program mode is cancelled	(initial value)
1	When this bit is set to 1, while the SWE = 1 and PSU = 1, the fla changes to program mode.	ash memory

This section only deals with the bits related to timer G and the watchdog timer. For the functions of the bits, see the descriptions of port 3 (POF1) and port 4 (IRQ0).

Bit 2—Watchdog Timer Source Clock (WDCKS)

This bit selects the watchdog timer source clock. Note that stabilization times for the H8/38024, H8/38024S, and H8/38024R Group and for the H8/38124 Group are different.

• H8/38024, H8/38024S, H8/38024R Group

Bit 2 WDCKS	Description	
0	Selects ø/8192	(initial value)
1	Selects $\phi_W/32$	

• H8/38124 Group

Bit 2 WDCKS	Description	
0	Selects clock based on timer mode register W (TMW) setting $\!\!\!\!\!*$	(initial value)
1	Selects $\phi_W/32$	

Note: * See section 9.6, Watchdog Timer, for details.

Bit 1—TMIG Noise Canceller Select (NCS)

This bit selects controls the noise cancellation circuit of the input capture input signal (TMIG).

Bit 1		
NCS	Description	
0	No noise cancellation circuit	(initial value)
1	Noise cancellation circuit	

Port Data Register 5 (PDR5)

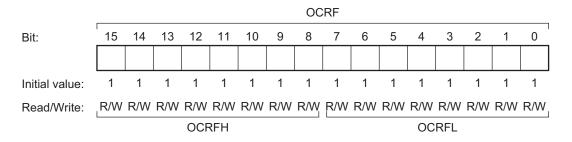
Bit	7	6	5	4	3	2	1	0
	P57	P56	P5₅	P54	P5₃	P52	P51	P50
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W							

PDR5 is an 8-bit register that stores data for port 5 pins $P5_7$ to $P5_0$. If port 5 is read while PCR5 bits are set to 1, the values stored in PDR5 are read, regardless of the actual pin states. If port 5 is read while PCR5 bits are cleared to 0, the pin states are read.

Upon reset, PDR5 is initialized to H'00.

Port Control Register 5 (PCR5)

Bit	7	6	5	4	3	2	1	0
	PCR57	PCR5 ₆	PCR55	PCR5 ₄	PCR53	PCR5 ₂	PCR51	PCR50
Initial value	0	0	0	0	0	0	0	0
Read/Write	W	W	W	W	W	W	W	W


PCR5 is an 8-bit register for controlling whether each of the port 5 pins $P5_7$ to $P5_0$ functions as an input pin or output pin. Setting a PCR5 bit to 1 makes the corresponding pin an output pin, while clearing the bit to 0 makes the pin an input pin. PCR5 and PDR5 settings are valid when the corresponding pins are designated for general-purpose input/output by PMR5 and bits SGS3 to SGS0 in LPCR.

Upon reset, PCR5 is initialized to H'00.

PCR5 is a write-only register, which is always read as all 1s.

16-bit Output Compare Register (OCRF)8-bit Output Compare Register (OCRFH)8-bit Output Compare Register (OCRFL)

OCRF is a 16-bit read/write register composed of the two registers OCRFH and OCRFL. In addition to the use of OCRF as a 16-bit register with OCRFH as the upper 8 bits and OCRFL as the lower 8 bits, OCRFH and OCRFL can also be used as independent 8-bit registers.

OCRFH and OCRFL can be read and written by the CPU, but when they are used in 16-bit mode, data transfer to and from the CPU is performed via a temporary register (TEMP). For details of TEMP, see section 9.4.3, CPU Interface.

OCRFH and OCRFL are each initialized to H'FF upon reset.

a. 16-bit mode (OCRF)

When CKSH2 is cleared to 0 in TCRF, OCRF operates as a 16-bit register. OCRF contents are constantly compared with TCF, and when both values match, CMFH is set to 1 in TCSRF. At the same time, IRRTFH is set to 1 in IRR2. If IENTFH in IENR2 is 1 at this time, an interrupt request is sent to the CPU.

Toggle output can be provided from the TMOFH pin by means of compare matches, and the output level can be set (high or low) by means of TOLH in TCRF.

b. 8-bit mode (OCRFH/OCRFL)

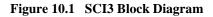
When CKSH2 is set to 1 in TCRF, OCRFH, and OCRFL operate as two independent 8-bit registers. OCRFH contents are compared with TCFH, and OCRFL contents are with TCFL. When the OCRFH (OCRFL) and TCFH (TCFL) values match, CMFH (CMFL) is set to 1 in TCSRF. At the same time, IRRTFH (IRRTFL) is set to 1 in IRR2. If IENTFH (IENTFL) in IENR2 is 1 at this time, an interrupt request is sent to the CPU.

Toggle output can be provided from the TMOFH pin (TMOFL pin) by means of compare matches, and the output level can be set (high or low) by means of TOLH (TOLL) in TCRF.

Renesas

Mode	Maximum AEVH/AEVL Pin Input Clock Frequency				
Active (high-speed), sleep (high-speed)	16 MHz				
Active (medium-speed), sleep (medium-speed	2 • fosc				
	(ф/32)	fosc			
	(\$/64)	1/2 • f _{OSC}			
$f_{OSC} = 1 \text{ MHz to 4 MHz}$	(ቀ/128)	1/4 • f _{OSC}			
Watch, subactive, subsleep, standby	(¢w/2)	1000 kHz			
	(¢w/4)	500 kHz			
φw = 32.768 kHz or 38.4 kHz*	(¢w/8)	250 kHz			

Note: * Does not apply to H8/38124 Group.


- 3. When using the clock in the 16-bit mode, set CUEH to 1 first, then set CRCH to 1 in ECCSR. Or, set CUEH and CRCH simultaneously before inputting the clock. After that, do not change the CUEH value while using in the 16-bit mode. Otherwise, an error counter increment may occur. Also, to reset the counter, clear CRCH and CRCL to 0 simultaneously or clear CRCL and CRCH to 0 sequentially, in that order.
- 4. When ECPWME in AEGSR is 1, event counter PWM is operating and therefore ECPWCRH, ECPWCRL, ECPWDRH, and ECPWDRL should not be modified. When changing the data, event counter PWM must be halted by clearing ECPWME to 0 in AEGSR before modifying these registers.
- 5. The event counter PWM data register and event counter PWM compare register must be set so that event counter PWM data register < event counter PWM compare register. If the settings do not satisfy this condition, do not set ECPWME to 1 in AEGSR.
- 6. As synchronization is established internally when an IRQAEC interrupt is generated, a maximum error of 1 t_{cvc} will occur between clock halting and interrupt acceptance.

Renesas

10.1.2 Block Diagram

External Internal clock ($\phi/64$, $\phi/16$, $\phi_W/2$, ϕ) SCK₃₂ -Baud rate generator clock BRC BRR Clock SMR Internal data bus Transmit/receive SCR3 control circuit SSR TXD₃₂ O◄ TSR TDR SPCR RXD₃₂ O-RSR RDR Interrupt request (TEI, TXI, RXI, ERI) [Legend] RSR: Receive shift register RDR: Receive data register TSR: Transmit shift register Transmit data register TDR: Serial mode register SMR: SCR3: Serial control register 3 SSR: Serial status register Bit rate register BRR: Bit rate counter BRC: SPCR: Serial port control register

Figure 10.1 shows a block diagram of SCI3.

11.2.3 Clock Stop Register 2 (CKSTPR2)

Bit	7	6	5	4	3	2	1	0
	LVDCKSTP*	_	—	PW2CKSTP	AECKSTP	WDCKSTP	PW1CKSTP	LDCKSTP
Initial value	1	1	1	1	1	1	1	1
Read/Write	R/W	_	_	R/W	R/W	R/W	R/W	R/W

Note: * Bits 6 and 5 are also reserved on products other than the H8/38124 Group.

CKSTPR2 is an 8-bit read/write register that performs module standby mode control for peripheral modules. Only the bit relating to the PWM is described here. For details of the other bits, see the sections on the relevant modules.

Bits 4 and 1—PWM Module Standby Mode Control (PWmCKSTP)

Bits 4 and 1 control setting and clearing of module standby mode for the PWMm.

PWmCKSTP Description

0	PWMm is set to module standby mode	
1	PWMm module standby mode is cleared	(initial value)

12.2 Register Descriptions

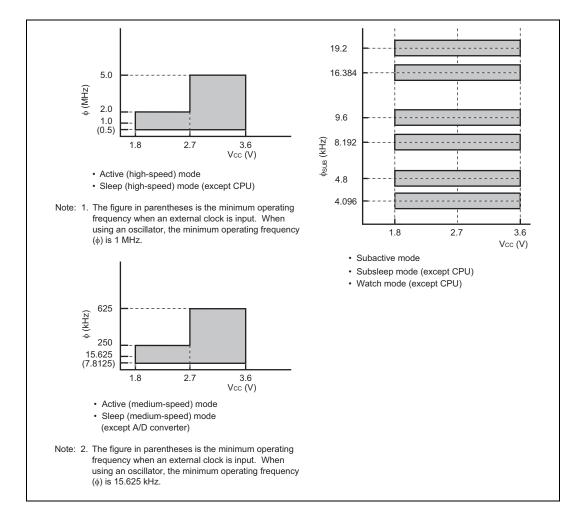
12.2.1 A/D Result Registers (ADRRH, ADRRL)

Bit	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
	ADR9	ADR8	ADR7	ADR6	ADR5	ADR4	ADR3	ADR2	ADR1	ADR0	_	_	_	_	_	_
Initial value	Unde-	_	_	_	_		_									
	fined															
Read/Write	R	R	R	R	R	R	R	R	R	R		_	_	_	_	_
					~				_				~			
ADRRH										AD	RRL					

ADRRH and ADRRL together comprise a 16-bit read-only register for holding the results of analog-to-digital conversion. The upper 8 bits of the data are held in ADRRH, and the lower 2 bits in ADRRL.

ADRRH and ADRRL can be read by the CPU at any time, but the ADRRH and ADRRL values during A/D conversion are not fixed. After A/D conversion is complete, the conversion result is stored as 10-bit data, and this data is held until the next conversion operation starts.

ADRRH and ADRRL are not cleared on reset.


12.2.2 A/D Mode Register (AMR)

Bit	7	6	5	4	3	2	1	0
	CKS	TRGE	_		CH3	CH2	CH1	CH0
Initial value	0	0	1	1	0	0	0	0
Read/Write	R/W	R/W			R/W	R/W	R/W	R/W

AMR is an 8-bit read/write register for specifying the A/D conversion speed, external trigger option, and the analog input pins.

Upon reset, AMR is initialized to H'30.

Power Supply Voltage and Operating Frequency Range

BRR—Bit Rate Register

H'A9

SCI3

Bit	7	6	5	4	3	2	1	0
	BRR7	BRR6	BRR5	BRR4	BRR3	BRR2	BRR1	BRR0
Initial value	1	1	1	1	1	1	1	1
Read/Write	R/W							

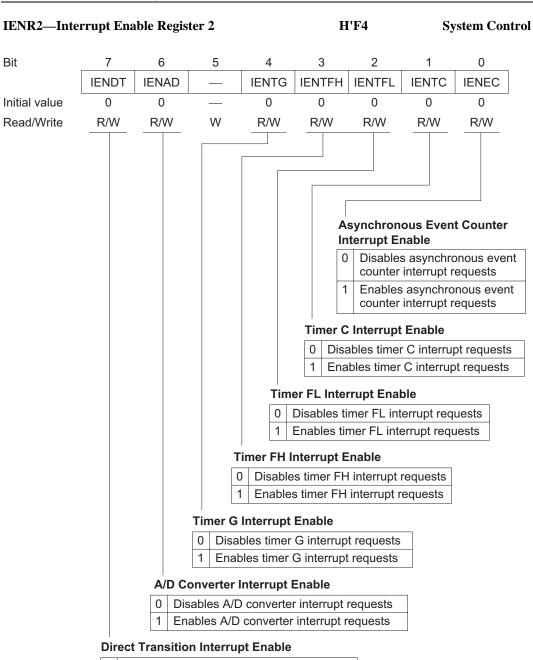
Serial transmit/receive bit rate

PMR5—Port Mode Register 5

Bit		7	6	5	4	3	2	1	0			
	WH	۲P ₇	WKP ₆	WKP ₅	WKP ₄	WKP ₃	WKP ₂	WKP ₁	WKP0			
Initial value	value 0 0 0		0	0	0	0	0	0				
Read/Write	R/W		R/W	R/W	R/W	R/W	R/W	R/W	R/W			
				P5./WK	P./SEG.	⊿ Pin Fun	ction Swi	tch				
	P5n/WKPn/SEGn+1Pin Function Switch0Functions as P5n I/O pin1Functions as WKPn input pin											
							(n = 7	to 0)				
PWCR2—PV	WM2	Cont	rol Regis	ter		H		10-Bit PW				
Bit		7	6	5	4	3	2	1	0			
	-	-	_	—	—		PWCR22	PWCR21	PWCR20			
Initial value		1	1	1	1	1	+0		0			
Read/Write			R/W	W								
Г												
	С	lock	Select —									
		0 0	The inp	ut clock is	$\phi (t\phi^{*1} = t)$	1/ø) The c	onversion	period is 5	512/φ,			
				with a minimum modulation width of $1/2\phi$								
		1	The input clock is $\phi/2$ (t $\phi^{*1} = 2/\phi$) The conversion period is 1,024/ ϕ , with a minimum method.									
		with a minimum modulation width of 1/¢										
		1 0		The input clock is $\phi/4$ (t $\phi^{*1} = 4/\phi$) The conversion period is 2,048/ ϕ , with a minimum modulation width of 2/ ϕ								
	1 The input clock is $\phi/8$ (t $\phi^{*1} = 8/\phi$) The conversion period is 4,0								s 4,096/φ,			
				ninimum m								

H'CC

I/O Port


PWH Output Select (H8/38124 Group only)

0	10-bit PWM
1	Event counter PWM

- Notes: 1. to: Period of PWM2 input clock
 - 2. 1 on products other than the H8/38124 Group

Note: * Readable/writable reserved bit in the H8/38024S Group and H8/38124 Group.

- 0 Disables direct transition interrupt requests
- 1 Enables direct transition interrupt requests

C.7 Block Diagram of Port 8

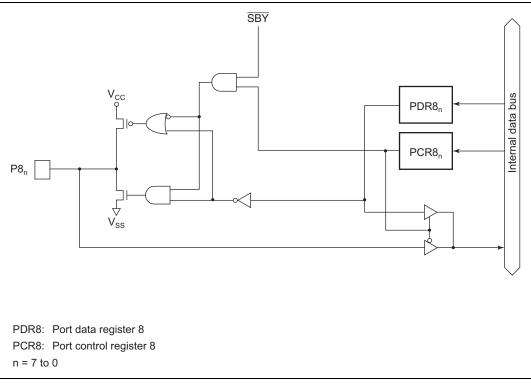


Figure C.7 Port 8 Block Diagram

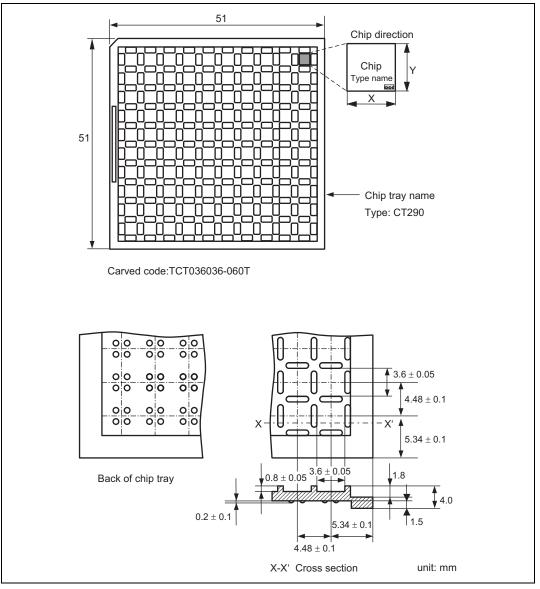


Figure I.3 Specifications of Chip Tray for the HCD64338024S, HCD64338023S, HCD64338022S, HCD64338021S, and HCD64338020S

16.6.2 DC	Page 492	Revision (See Manual for Details) Table amended								
Characteristics	432									
Table 16.16 DC		Item	Symbol	Applicable Pins	Min	Valu Typ	es Max	 Unit	Test Condition	Notes
Characteristics		Subactive mode current dissipation	I _{SUB}	V _{cc}	-	6.2	_	μΑ	V_{CC} = 1.8 V, LCD on 32 kHz External Clock $(\phi_{SUB}=\phi_w/2)$	*1 *2 Reference
					-	5.7	-	μΑ	$V_{CC} = 1.8 \text{ V},$ LCD on 32 kHz crystal resonator $(\phi_{SUB}=\varphi_w/2)$	_
					-	4.4	_	μΑ	$\label{eq:Vcc} \begin{array}{l} V_{CC} = 2.7 \ V, \\ LCD \ on \ 32 \ kHz \\ crystal \ resonator \\ (\phi_{SUB} = \varphi_w/8) \end{array}$	
					_	10	40	μΑ	V_{CC} = 2.7 V, LCD on 32 kHz External Clock $(\phi_{SUB}=\phi_w/2)$	*1 *2
					_	11	40	μΑ	V_{CC} = 2.7 V, LCD on 32 kHz crystal resonator ($\phi_{SUB}=\phi_w/2$)	
		Subsleep mode current dissipation	I _{SUBSP}	V _{cc}	_	4.8	16.0	μΑ	V_{CC} = 2.7 V, LCD on 32 kHz External Clock ($\phi_{SUB}=\phi_w/2$)	*1 *2
					-	5.1	16.0	μΑ	V_{CC} = 2.7 V, LCD on 32 kHz crystal resonator ($\phi_{SUB}=\phi_w/2$)	-
		Watch mode current dissipation	Iwatch	V _{cc}	_	1.2	-	μΑ	V_{CC} = 1.8 V, T_a = 25°C 32 kHz crystal oscillator LCD not used	*1 *2 Reference value
					_	2.0	_	μΑ	$V_{CC} = 2.7 V,$ $T_a = 25^{\circ}C$ 32 kHz External Clock LCD not used	

Table amended

Symbol	Applicable Pins	Values					
		Min	Тур	Max	Unit	Test Condition	Notes
I _{WATCH}	V _{cc}	_	2.3	_	μA	V_{CC} = 2.7 V, T_a = 25°C 32 kHz crystal resonator LCD not used	*1 *2 Reference value
		-	2.0	6.0	μΑ	V _{CC} = 2.7 V, 32 kHz External Clock LCD not used	*1 *2
		-	2.3	6.0	μΑ	V _{CC} = 2.7 V, 32 kHz crystal resonator LCD not used	_
		,	Symbol Applicable Pins Min I _{WATCH} Vcc —	Symbol Applicable Pins Min Тур I _{WATCH} V _{CC} — 2.3 — 2.0	Symbol Applicable Pins Min Тур Max I _{WATCH} V _{CC} — 2.3 — — 2.0 6.0	Symbol Applicable Pins Min Typ Max Unit I _{WATCH} V _{CC} — 2.3 — μA — 2.0 6.0 μA	Symbol Applicable Pins Min Typ Max Unit Test Condition I _{WATCH} V _{CC} — 2.3 — µA V _{CC} = 2.7 V, T _s = 25°C 32 kHz crystal resonator LCD not used — 2.0 6.0 µA V _{CC} = 2.7 V, 32 kHz crystal resonator LCD not used — 2.0 6.0 µA V _{CC} = 2.7 V, 32 kHz crystal resonator LCD not used — 2.3 6.0 µA V _{CC} = 2.7 V, 32 kHz crystal resonator