

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	H8/300L
Core Size	8-Bit
Speed	5MHz
Connectivity	SCI
Peripherals	LCD, PWM, WDT
Number of I/O	51
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 75°C (TA)
Mounting Type	Surface Mount
Package / Case	80-BQFP
Supplier Device Package	80-QFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/hd64f38024rhv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	12.3.2	Start of A/D Conversion by External Trigger Input	
	12.3.3	A/D Converter Operation Modes	
12.4	Interrup	ots	
12.5	Typical	Use	
12.6	A/D Co	onversion Accuracy Definitions	
12.7	Applica	ation Notes	
	12.7.1	Permissible Signal Source Impedance	
	12.7.2	Influences on Absolute Precision	
	12.7.3	Additional Usage Notes	
Secti	on 13	I CD Controller/Driver	411
13.1	Overvie Overvie		411
15.1	13 1 1	Features	411
	13.1.2	Block Diagram	412
	13.1.2	Pin Configuration	
	13.1.5	Register Configuration	
13.2	Registe	r Descriptions	415
13.2	13.2.1	LCD Port Control Register (LPCR)	415
	13.2.1	LCD Control Register (LCR)	417
	13.2.3	LCD Control Register 2 (LCR2)	
	13.2.4	Clock Stop Register 2 (CKSTPR2)	
13.3	Operati	on	422
1010	13.3.1	Settings up to LCD Display	
	13.3.2	Relationship between LCD RAM and Display	
	13.3.3	Operation in Power-Down Modes	
	13.3.4	Boosting the LCD Drive Power Supply	
Casti	om 14	Derver On Deset and Law Welts as Detection Circuits	
secu	01114	(US/28124 Crown Only)	421
1 / 1	0	(H8/38124 Group Only)	
14.1	Overvie	Enstrung	
	14.1.1	Plast Discours	
	14.1.2	Diock Diagram	
	14.1.5	Pin Description	
14.2	14.1.4	Register Descriptions	
14.2		Law Valters Detection Control Devictor (LVDCD)	
	14.2.1	Low-Voltage Detection Control Register (LVDCR)	
	14.2.2	Low-voltage Detection Status Register (LVDSR)	
	14.2.3	Low-voltage Detection Counter (LVDCN1)	
14.2	14.2.4	Clock Stop Register 2 (CKS1PK2)	
14.3	Operati	on	

Table 1.1	Features					
Item	Specification					
CPU	High-speed H8/300L CPU					
	General-register architecture					
	General registers: Sixteen 8-bit registers (can be used as eight 16-bit registers)					
	Operating speed					
	 Max. operating speed: 8 MHz (5 MHz for HD64F38024 and H8/38024S Group) 					
	— Add/subtract: 0.25 μs (operating at 8 MHz), 0.4 μs (operating at ϕ = 5 MHz)					
	— Multiply/divide: 1.75 μs (operating at 8 MHz), 2.8 μs (operating at ϕ = 5 MHz)					
	 Can run on 32.768 kHz or 38.4 kHz subclock (32.768 kHz only for H8/38124 Group) 					
	Instruction set compatible with H8/300 CPU					
	 Instruction length of 2 bytes or 4 bytes 					
	 Basic arithmetic operations between registers 					
	 MOV instruction for data transfer between memory and registers 					
	Typical instructions					
	— Multiply (8 bits \times 8 bits)					
	— Divide (16 bits ÷ 8 bits)					
	— Bit accumulator					
	 Register-indirect designation of bit position 					
Interrupts	22 interrupt sources					
	 13 external interrupt sources (IRQ₄, IRQ₃, IRQ₁, IRQ₀, WKP₇ to WKP₀, IRQAEC) 					

• 9 internal interrupt sources

Table 2.2Effective Address Calculation

Section 2 CPU

2.5.6 Branching Instructions

Table 2.9 describes the branching instructions. Figure 2.8 shows their object code formats.

Table 2.9 Branching Instructions

Instruction	Size	Function					
Bcc	_	Branches to th branching con-	ne designated address if condition cc is true. The nditions are given below.				
		Mnemonic	Description	Condition			
		BRA (BT)	Always (true)	Always			
		BRN (BF)	Never (false)	Never			
		BHI	High	C ∨ Z = 0			
		BLS	Low or same	C ∨ Z = 1			
		BCC (BHS)	Carry clear (high or same)	C = 0			
		BCS (BLO)	Carry set (low)	C = 1			
		BNE	Not equal	Z = 0			
		BEQ	Equal	Z = 1			
		BVC	Overflow clear	V = 0			
		BVS	Overflow set	V = 1			
		BPL	Plus	N = 0			
		BMI	Minus	N = 1			
		BGE	Greater or equal	N ⊕ V = 0			
		BLT	Less than	N ⊕ V = 1			
		BGT	Greater than	$Z \lor (N \oplus V) = 0$			
		BLE	Less or equal	$Z \lor (N \oplus V) = 1$			
JMP	_	Branches unco	onditionally to a specified addres	S			
BSR	_	Branches to a	subroutine at a specified addres	s			
JSR	_	Branches to a	subroutine at a specified addres	S			
RTS	_	Returns from a subroutine					

2. Bit manipulation in a register containing a write-only bit

Example 3: BCLR instruction executed designating port 3 control register PCR3

As in the examples above, P_{3_7} and P_{3_6} are input pins, with a low-level signal input at P_{3_7} and a high-level signal at P_{3_6} . The remaining pins, P_{3_5} to P_{3_0} , are output pins that output low-level signals. In this example, the BCLR instruction is used to change pin P_{3_0} to an input port. It is assumed that a high-level signal will be input to this input pin.

P37 P36 P35 **P3**₄ P33 P32 **P3**₁ P3₀ Input/output Input Input Output Output Output Output Output Output Pin state Low level High level Low level Low level Low level Low level Low level PCR3 0 0 1 1 1 1 1 1 PDR3 1 0 0 0 0 0 0 0

[A: Prior to executing BCLR]

[B: BCLR instruction executed]

BCLR #0 , @PCR3

The BCLR instruction is executed designating PCR3.

[C: After executing BCLR]

	P37	P36	P3₅	P34	P33	P32	P3 1	P30
Input/output	Output	Output	Output	Output	Output	Output	Output	Input
Pin state	Low level	High level	Low level	High level				
PCR3	1	1	1	1	1	1	1	0
PDR3	1	0	0	0	0	0	0	0

[D: Explanation of how BCLR operates]

When the BCLR instruction is executed, first the CPU reads PCR3. Since PCR3 is a write-only register, the CPU reads a value of H'FF, even though the PCR3 value is actually H'3F.

Next, the CPU clears bit 0 in the read data to 0, changing the data to H'FE. Finally, this value (H'FE) is written to PCR3 and BCLR instruction execution ends.

As a result of this operation, bit 0 in PCR3 becomes 0, making $P3_0$ an input port. However, bits 7 and 6 in PCR3 change to 1, so that $P3_7$ and $P3_6$ change from input pins to output pins.

Renesas

Bit 1—Timer C Interrupt Enable (IENTC)

Bit 1 enables or disables timer C overflow and underflow interrupt requests.

Bit 1 IENTC	Description	
0	Disables timer C interrupt requests	(initial value)
1	Enables timer C interrupt requests	

Bit 0—Asynchronous Event Counter Interrupt Enable (IENEC)

Bit 0 enables or disables asynchronous event counter interrupt requests.

Bit 0 IENEC	Description	
0	Disables asynchronous event counter interrupt requests	(initial value)
1	Enables asynchronous event counter interrupt requests	

For details of SCI3 interrupt control, see section 10.2.6 Serial control register 3 (SCR3).

Interrupt Request Register 1 (IRR1)

Bit	7	6	5	4	3	2	1	0
	IRRTA			IRRI4	IRRI3	IRREC2	IRRI1	IRRI0
Initial value	0		1	0	0	0	0	0
Read/Write	R/(W)*	W		R/(W)*	R/(W)*	R/(W)*	R/(W)*	R/(W)*

Note: * Only a write of 0 for flag clearing is possible

IRR1 is an 8-bit read/write register, in which a corresponding flag is set to 1 when a timer A, IRQAEC, IRQ_4 , IRQ_3 , IRQ_1 , or IRQ_0 interrupt is requested. The flags are not cleared automatically when an interrupt is accepted. It is necessary to write 0 to clear each flag.

5.2.2 Clearing Sleep Mode

Sleep mode is cleared by any interrupt (timer A, timer C, timer F, timer G, asynchronous event counter, IRQAEC, IRQ₄, IRQ₃, IRQ₁, IRQ₀, WKP₇ to WKP₀, SCI3, A/D converter), or by input at the $\overline{\text{RES}}$ pin.

• Clearing by interrupt

When an interrupt is requested, sleep mode is cleared and interrupt exception handling starts. A transition is made from sleep (high-speed) mode to active (high-speed) mode, or from sleep (medium-speed) mode to active (medium-speed) mode. Sleep mode is not cleared if the I bit of the condition code register (CCR) is set to 1 or the particular interrupt is disabled in the interrupt enable register.

To synchronize the interrupt request signal with the system clock, up to $2/\phi(s)$ delay may occur after the interrupt request signal occurrence, before the interrupt exception handling start.

• Clearing by RES input

When the $\overline{\text{RES}}$ pin goes low, the CPU goes into the reset state and sleep mode is cleared.

5.2.3 Clock Frequency in Sleep (Medium-Speed) Mode

Operation in sleep (medium-speed) mode is clocked at the frequency designated by the MA1 and MA0 bits in SYSCR1.

Renesas

Register Name	Bit Name		Operation
CKSTPR2	LDCKSTP	1	LCD module standby mode is cleared
		0	LCD is set to module standby mode
	PW1CKSTP	1	PWM1 module standby mode is cleared
		0	PWM1 is set to module standby mode
	WDCKSTP	1	Watchdog timer module standby mode is cleared
		0	Watchdog timer is set to module standby mode
	AECKSTP 1		Asynchronous event counter module standby mode is cleared
		0	Asynchronous event counter is set to module standby mode
	PW2CKSTP	1	PWM2 module standby mode is cleared
		0	PWM2 is set to module standby mode
	LVDCKSTP*	1	LVD module standby mode is cleared
		0	LVD is set to module standby mode

Notes: For details of module operation, see the sections on the individual modules.

* LVDCKSTP is implemented on the H8/38124 group only.

5.10 Usage Note

5.10.1 Contention Between Module Standby and Interrupts

If, due to timing with which a peripheral module issues interrupt requests, the module in question is set to module standby mode before an interrupt is processed, the module will stop with the interrupt request still pending. In this situation, interrupt processing will be repeated indefinitely unless interrupts are prohibited.

It is therefore necessary to ensure that no interrupts are generated when a module is set to module standby mode. The surest way to do this is to specify the module standby mode setting only when interrupts are prohibited (interrupts prohibited using the interrupt enable register or interrupts masked using bit CCR-1).

9.4.2 Register Descriptions

16-bit Timer Counter (TCF)8-bit Timer Counter (TCFH)8-bit Timer Counter (TCFL)

TCF is a 16-bit read/write up-counter configured by cascaded connection of 8-bit timer counters TCFH and TCFL. In addition to the use of TCF as a 16-bit counter with TCFH as the upper 8 bits and TCFL as the lower 8 bits, TCFH and TCFL can also be used as independent 8-bit counters.

TCFH and TCFL can be read and written by the CPU, but when they are used in 16-bit mode, data transfer to and from the CPU is performed via a temporary register (TEMP). For details of TEMP, see section 9.4.3, CPU Interface.

TCFH and TCFL are each initialized to H'00 upon reset.

a. 16-bit mode (TCF)

When CKSH2 is cleared to 0 in TCRF, TCF operates as a 16-bit counter. The TCF input clock is selected by bits CKSL2 to CKSL0 in TCRF.

TCF can be cleared in the event of a compare match by means of CCLRH in TCSRF.

When TCF overflows from H'FFFF to H'0000, OVFH is set to 1 in TCSRF. If OVIEH in TCSRF is 1 at this time, IRRTFH is set to 1 in IRR2, and if IENTFH in IENR2 is 1, an interrupt request is sent to the CPU.

b. 8-bit mode (TCFL/TCFH)

When CKSH2 is set to 1 in TCRF, TCFH, and TCFL operate as two independent 8-bit counters. The TCFH (TCFL) input clock is selected by bits CKSH2 to CKSH0 (CKSL2 to CKSL0) in TCRF.

TCFH (TCFL) can be cleared in the event of a compare match by means of CCLRH (CCLRL) in TCSRF.

When TCFH (TCFL) overflows from H'FF to H'00, OVFH (OVFL) is set to 1 in TCSRF. If OVIEH (OVIEL) in TCSRF is 1 at this time, IRRTFH (IRRTFL) is set to 1 in IRR2, and if IENTFH (IENTFL) in IENR2 is 1, an interrupt request is sent to the CPU.

In this example, high-level input of less than five times the width of the sampling clock at the input capture input pin is eliminated as noise.

Figure 9.10 Noise Canceler Timing (Example)

Section 14 Power-On Reset and Low-Voltage Detection Circuits (H8/38124 Group Only)

14.1 Overview

This LSI can include a power-on reset circuit and low-voltage detection circuit.

The low-voltage detection circuit consists of two circuits: LVDI (interrupt by low voltage detect) and LVDR (reset by low voltage detect) circuits.

This circuit is used to prevent abnormal operation (runaway execution) from occurring due to the power supply voltage fall and to recreate the state before the power supply voltage fall when the power supply voltage rises again.

Even if the power supply voltage falls, the unstable state when the power supply voltage falls below the guaranteed operating voltage can be removed by entering standby mode^{*} when exceeding the guaranteed operating voltage and during normal operation. Thus, system stability can be improved. If the power supply voltage falls more, the reset state is automatically entered. If the power supply voltage rises again, the reset state is held for a specified period, then active mode is automatically entered.

Figure 14.1 is a block diagram of the power-on reset circuit and the low-voltage detection circuit.

Note: * The voltage maintained in standby mode is the same as the RAM data retaining voltage (V_{RAM}). See section 16.8.2, DC Characteristics, for information on retaining voltage.

14.1.1 Features

The features of the power-on reset circuit and low-voltage detection circuit are described below.

• Power-on reset circuit

Uses an external capacitor to generate an internal reset signal when power is first supplied.

Low-voltage detection circuit

LVDR: Monitors the power-supply voltage, and generates an internal reset signal when the voltage falls below a specified value.

LVDI: Monitors the power-supply voltage, and generates an interrupt when the voltage falls below or rises above respective specified values.

Renesas

16.4.2 DC Characteristics

Table 16.8 lists the DC characteristics of the HD64F38024 and HD64F38024R.

Table 16.8 DC Characteristics

 V_{CC} = 2.7 V to 3.6 V, AV_{CC} = 2.7 V to 3.6 V, V_{SS} = AV_{SS} = 0.0 V

				Value	S			
ltem	Symbol	Applicable Pins	Min	Тур	Мах	Unit	Test Condition	Notes
Input high voltage	V _{IH}	$\label{eq:response} \begin{array}{l} \overline{\text{RES}}, \\ \overline{\text{WKP}}_0 \text{ to } \overline{\text{WKP}}_7, \\ \overline{\text{IRQ}}_0, \overline{\text{IRQ}}_3, \overline{\text{IRQ}}_4, \\ AEVL, AEVH, \\ TMIC, TMIF, \\ TMIG, \overline{\text{ADTRG}}, \\ SCK_{32} \end{array}$	0.9 V _{cc}		V _{cc} + 0.3	V		
		IRQ ₁	$0.9 \ V_{CC}$	_	AV_{CC} + 0.3	V		
		RXD ₃₂ , UD	$0.8 \ V_{CC}$	_	V _{CC} + 0.3	V		
		OSC ₁	$0.9 \ V_{CC}$	_	V _{CC} + 0.3	V		
		X ₁	$0.9 V_{CC}$	_	V _{CC} + 0.3	V		
		$\begin{array}{c} P1_3, P1_4, \\ P1_6, P1_7, \\ P3_0 \mbox{ to } P3_7, \\ P4_0 \mbox{ to } P4_3, \\ P5_0 \mbox{ to } P5_7, \\ P6_0 \mbox{ to } P6_7, \\ P7_0 \mbox{ to } P7_7, \\ P8_0 \mbox{ to } P8_7, \\ PA_0 \mbox{ to } PA_3 \end{array}$	0.8 V _{cc}	_	V _{cc} + 0.3	V		
		PB ₀ to PB ₇	0.8 V _{CC}	_	$AV_{CC} + 0.3$	V		
		IRQAEC, $P9_5^{*5}$	$0.9 V_{CC}$	_	7.3	V		

Section 16	Electrical	Characteristics

			Values					
Item	Symbol	Applicable Pins	Min	Тур	Max	Unit	Test Condition	Notes
Active mode current dissipation	I _{OPE1}	V _{cc}	_	0.2	_	mA	Active (high-speed) mode $V_{CC} = 1.8 V$, $f_{OSC} = 1 MHz$	*1 *2 Max. guideline = 1.1 x typ.
			_	0.6	_	mA	Active (high-speed) mode $V_{CC} = 3 V$, $f_{OSC} = 2 MHz$	*1 *2 Max. guideline = 1.1 x typ.
			_	1.2	_	mA	Active (high-speed) mode $V_{CC} = 3 V$, $f_{OSC} = 4 MHz$	*1 *2 Max. guideline = 1.1 x typ.
			_	3.1	6.0	mA	Active (high-speed) mode $V_{CC} = 3 V$, $f_{OSC} = 10 MHz$	*1 *2
	I _{OPE2}	V _{cc}	_	0.03	_	mA	Active (medium- speed) mode $V_{CC} = 1.8 V$, $f_{OSC} = 1 MHz$ $\phi_{osc}/128$	*1 *2 Max. guideline = 1.1 x typ.
			_	0.1	_	mA	Active (medium- speed) mode $V_{CC} = 3 V$, $f_{OSC} = 2 MHz$ $\phi_{osc}/128$	*1 *2 Max. guideline = 1.1 × typ.

Section 16 Electrical Characteristics

			Values					
ltem	Symbol	Applicable Pins	Min	Тур	Max	Unit	Test Condition	Notes
Output low voltage	Vol	P1 ₃ , P1 ₄ , P1 ₇ , P4 ₀ to P4 ₂ , P5 ₀ to P5 ₇ , P6 ₀ to P6 ₇ , P7 ₀ to P7 ₇ , P8 ₀ to P8 ₇ , PA ₀ to PA ₃	_	_	0.6	V	$V_{CC} = 4.0 V \text{ to } 5.5 V$ $I_{OL} = 1.6 \text{ mA}$	
			_	_	0.5		I _{OL} = 0.4 mA	-
		P3 ₀ to P3 ₇	_	_	1.0		$V_{\rm CC}$ = 4.0 V to 5.5 V	-
							I _{OL} = 10 mA	
			_		0.6		V_{CC} = 4.0 V to 5.5 V	-
							I _{OL} = 1.6 mA	
			_		0.5		I _{OL} = 0.4 mA	-
		P9 ₀ to P9 ₅	_	_	1.5		V_{CC} = 4.0 V to 5.5 V	-
							I _{OL} = 15 mA	
			_		1.0		V_{CC} = 4.0 V to 5.5 V	-
							I _{OL} = 10 mA	
			_	_	0.8		V_{CC} = 4.0 V to 5.5 V	-
							I _{OL} = 8 mA	
			_		1.0		$I_{OL} = 5 \text{ mA}$	-
			_	_	0.6		I _{OL} = 1.6 mA	_
			_	_	0.5		$I_{OL} = 0.4 \text{ mA}$	_
Input/ output leakage current	IIL	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			1.0	μA	V _{IN} = 0.5 V to V _{CC} – 0.5 V	
		PB ₀ to PB ₇	-	_	1.0		V_{IN} = 0.5 V to AV_{CC} $-$ 0.5 V	_
Pull-up MOS	-I _p	P1 ₃ , P1 ₄ , P1 ₇ , P3 ₀ to P3 ₇ , P5 ₀ to P5 ₇ , P6 ₀ to P6 ₇	20	_	200	μΑ	V _{CC} = 5.0 V, V _{IN} = 0.0 V	
current			_	40	_		V _{CC} = 2.7 V, V _{IN} = 0.0 V	Refer- ence value

Section 16 Electrical Characteristics

			Values					
Item	Symbol	Applicable Pins	Min	Тур	Max	Unit	Test Condition	Notes
Subsleep mode current consump- tion	I _{SUBSP}	V _{CC}	_	4.0	16	μA	$V_{CC} = 2.7 V,$ LCD on, 32-kHz crystal resonator used $(\phi_{SUB} = \phi_W/2)$	*3 *4
Watch mode current consump- tion	Іwатсн	V _{cc}	-	1.4	—	μA	$V_{CC} = 2.7 V,$ $T_a = 25^{\circ}C,$ 32-kHz crystal resonator used, LCD not used	*1 *3 *4 Reference value
			_	1.8				*2 *3 *4 Reference value
				1.8	6.0		V _{CC} = 2.7 V, 32-kHz crystal resonator used, LCD not used	*3 *4
Standby mode current consump- tion	ISTBY	Vcc	_	0.3	_	μA	$V_{CC} = 2.7 V,$ $T_a = 25^{\circ}C,$ 32-kHz crystal resonator not used	*1 *3 *4 Reference value
			_	0.5	—		$V_{CC} = 2.7 V,$ $T_a = 25^{\circ}C,$ 32-kHz crystal resonator not used	*2 *3 *4 Reference value
			_	0.05	_		$V_{CC} = 2.7 V,$ $T_a = 25^{\circ}C,$ SUBSTP (subclock oscillator control register) setting = 1	*2 *4 Reference value
			_	0.6	—		$V_{CC} = 5.0 V,$ $T_a = 25^{\circ}C,$ 32-kHz crystal resonator not used	*2 *3 *4 Reference value
			_	0.16	_		$V_{CC} = 5.0 V,$ $T_a = 25^{\circ}C,$ SUBSTP (subclock oscillator control register) setting = 1	*2 *4 Reference value
			—	1.0	5.0		32-kHz crystal resonator not used	*3 *4
RAM data retaining voltage	V _{RAM}	V _{CC}	2.0	_	—	V		*6

Rev. 8.00 Mar. 09, 2010 Page 512 of 658 REJ09B0042-0800

TMG—Timer Mode Register G

0	Clearing	con	dition:		

	After reading OVFH = 1, cleared by writing 0 to OVFH
1	Setting condition:

Set when TCG overflows from H'FF to H'00

Note: * Bits 7 and 6 can only be written with 0, for flag clearing.

Figure G.3 Chip Sectional Figure of the HCD64338024S, HCD64338023S, HCD64338022S, HCD64338021S, and HCD64338020S

