

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Obsolete
Core Processor	H8/300L
Core Size	8-Bit
Speed	5MHz
Connectivity	SCI
Peripherals	LCD, PWM
Number of I/O	35
Program Memory Size	60KB (60K x 8)
Program Memory Type	FLASH
EEPROM Size	· ·
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 8x8b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 75°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/hd64f3857fqv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	13.2.1	Index Register (IR)	330
	13.2.2	Control Register 1 (LR0)	331
	13.2.3	Control Register 2 (LR1)	333
	13.2.4	Address Register (LR2)	335
	13.2.5	Frame Frequency Setting Register (LR3)	336
	13.2.6	Display Data Register (LR4)	338
	13.2.7	Display Start Line Register (LR5)	338
	13.2.8	Blink Register (LR6)	339
	13.2.9	Blink Start Line Register (LR8)	339
	13.2.10	Blink End Line Register (LR9)	340
	13.2.11	Contrast Control Register (LRA)	340
13.3	Operati	on	342
	13.3.1	System Overview	342
	13.3.2	CPU Interface	343
	13.3.3	LCD Drive Pin Functions	346
	13.3.4	Display Memory Configuration and Display	347
	13.3.5	Display Data Output	349
	13.3.6	Register and Display Memory Access	353
	13.3.7	Scroll Function	356
	13.3.8	Blink Function	358
	13.3.9	Module Standby Mode	360
	13.3.10	Power-On and Power-Off Procedures	361
	13.3.11	Power Supply Circuit	362
	13.3.12	LCD Drive Power Supply Voltages	363
	13.3.13	LCD Voltage Generation Circuit	365
	13.3.14	Contrast Control Circuit	373
	13.3.15	LCD Drive Bias Selection Circuit	374
Secti	on 14	Dot Matrix LCD Controller (H8/3854 Group)	375
14.1	Overvie	2W	375
	14.1.1	Features	375
	14.1.2	Block Diagram	376
	14.1.3	Pin Configuration	377
	14.1.4	Register Configuration	377
14.2	Registe	r Descriptions	378
	14.2.1	Index Register (IR)	378
	14.2.2	Control Register 1 (LR0)	378
	14.2.3	Control Register 2 (LR1)	379
	14.2.4	Address Register (LR2)	381
	14.2.5	Frame Frequency Setting Register (LR3)	382

Table 1.1 Features

Item	Description
CPU	High-speed H8/300L CPU
	General-register architecture
	General registers: Sixteen 8-bit registers (can be used as eight 16-bit registers)
	Operating speed
	 Max. operating speed: 5 MHz
	— Add/subtract: 0.4 μ s (operating at 5 MHz)
	— Multiply/divide: 2.8 μ s (operating at 5 MHz)
	 — Can run on 32.768 kHz subclock
	 Instruction set compatible with H8/300 CPU
	 Instruction length of 2 bytes or 4 bytes
	 Basic arithmetic operations between registers
	 MOV instruction for data transfer between memory and registers
	Typical instructions
	 Multiply (8 bits × 8 bits)
	Divide (16 bits ÷ 8 bits)
	Bit accumulator
	Register-indirect designation of bit position
Interrupts	H8/3857 Group: 29 interrupt sources
	 13 external interrupt sources: IRQ₄ to IRQ₀, WKP₇ to WKP₀
	16 internal interrupt sources
	H8/3854 Group: 26 interrupt sources
	• 12 external interrupt sources: IRQ ₄ , IRQ ₃ , IRQ ₁ , IRQ ₀ , WKP ₇ to WKP ₀
	14 internal interrupt sources
Clock pulse generators	Two on-chip clock pulse generators
	System clock pulse generator: 1 to 10 MHz
	Subclock pulse generator: 32.768 kHz
Power-down modes	Six power-down modes
	Sleep mode
	Standby mode
	Watch mode
	Subsleep mode
	Subactive mode
	Active (medium-speed) mode

		Activ	ve Mode					
Function		High Speed	Medium Speed	Sleep Mode	Watch Mode	Subactive Mode	Subsleep Mode	Standby Mode
System clo	ck oscillator	Functions	Functions	Functions	Halted	Halted	Halted	Halted
Subclock o	scillator	Functions	Functions	Functions	Functions	Functions	Functions	Functions
CPU	Instructions	Functions	Functions	Halted	Halted	Functions	Halted	Halted
operation	RAM	_		Retained	Retained	_	Retained	Retained
	Registers	_						
	I/O	_						Retained*1
External	IRQ₀	Functions	Functions	Functions	Functions	Functions	Functions	Functions
interrupts	IRQ,	_			Retained*4	-		
	IRQ ₂ *6	_						Retained*4
	IRQ ₃	_						
	IRQ_4	_						
	WKP₀	Functions	Functions	Functions	Functions	Functions	Functions	Functions
	WKP ₁	_						
	WKP ₂	_						
	WKP ₃	_						
	WKP ₄	_						
	WKP₅	_						
	WKP ₆	_						
	WKP ₇	_						
Peripheral	Timer A	Functions	Functions	Functions	Functions*3	Functions*3	Functions*3	Retained
module functions	Timer B	_			Retained	Retained	Retained	-
TUTICUOTIS	Timer C*6	-				Functions/ Retained* ²	Functions/ Retained* ²	_
	Timer F	_				Retained	Retained	-
	SCI1*6	Functions	Functions	Functions	Retained	Retained	Retained	Retained
	SCI3	_			Reset	Reset	Reset	Reset
	PWM* ⁶	Functions	Functions	Retained	Retained	Retained	Retained	Retained
	A/D	Functions	Functions	Functions	Retained	Retained	Retained	Retained
	LCD* ⁵	Functions	Functions	Functions	Functions	Functions	Functions	Retained

Table 5.2 Internal State in Each Operation Mode

3. Functions when timekeeping time-base function is selected.

4. External interrupt requests are ignored. The interrupt request register contents are not affected.

5. In module standby mode, only the clock supplied to the LCD controller is stopped. Register values are retained, and all outputs go to the V_{ss} potential.

6. This is a function of the H8/3857 Group only, and is not provided in the H8/3854 Group.

Port Pull-up Control Register 5 (PUCR5)

Bit	7	6	5	4	3	2	1	0
	PUCR5 ₇	PUCR5 ₆	PUCR5₅	$PUCR5_4$	$PUCR5_3$	$PUCR5_2$	PUCR5 ₁	PUCR5 ₀
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

PUCR5 bits control the on/off state of pin $P5_7-P5_0$ MOS pull-ups. When a PCR5 bit is cleared to 0, setting the corresponding PUCR5 bit to 1 turns on the MOS pull-up for the corresponding pin, while clearing the bit to 0 turns off the MOS pull-up.

Upon reset, PUCR5 is initialized to H'00.

Port Mode Register 5 (PMR5)

Bit	7	6	5	4	3	2	1	0
	WKP ₇	$WKP_{_6}$	WKP_{s}	WKP_4	$WKP_{\mathfrak{g}}$	WKP ₂	WKP ₁	WKP₀
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

PMR5 is an 8-bit read/write register, controlling the selection of pin functions for port 5 pins.

Upon reset, PMR5 is initialized to H'00.

Bit n—P5_n/ \overline{WKP}_n **Pin Function Switch (WKPn):** This bit selects whether pin P5_n/ \overline{WKP}_n is used as P5_n or as \overline{WKP}_n .

Bit n: WKPn	Description	
0	Functions as P5 _n I/O pin	(initial value)
1	Functions as \overline{WKP}_n input pin	
N		

Note: n = 7 to 0

Timer Counter B (TCB)

Bit	7	6	5	4	3	2	1	0
	TCB7	TCB6	TCB5	TCB4	TCB3	TCB2	TCB1	TCB0
Initial value	0	0	0	0	0	0	0	0
Read/Write	R	R	R	R	R	R	R	R

TCB is an 8-bit read-only up-counter, which is incremented by internal clock or external event input. The clock source for input to this counter is selected by bits TMB2 to TMB0 in timer mode register B (TMB). TCB values can be read by the CPU at any time.

When TCB overflows from H'FF to H'00 or to the value set in TLB, the IRRTB bit in interrupt request register 2 (IRR2) is set to 1.

TCB is allocated to the same address as timer load register B (TLB).

Upon reset, TCB is initialized to H'00.

Timer Load Register B (TLB)

Bit	7	6	5	4	3	2	1	0
	TLB7	TLB6	TLB5	TLB4	TLB3	TLB2	TLB1	TLB0
Initial value	0	0	0	0	0	0	0	0
Read/Write	W	W	W	W	W	W	W	W

TLB is an 8-bit write-only register for setting the reload value of timer counter B.

When a reload value is set in TLB, the same value is loaded into timer counter B (TCB) as well, and TCB starts counting up from that value. When TCB overflows during operation in auto-reload mode, the TLB value is loaded into TCB. Accordingly, overflow periods can be set within the range of 1 to 256 input clocks.

The same address is allocated to TLB as to TCB.

Upon reset, TLB is initialized to H'00.

The receive shift register (RSR) is for receiving serial data.

Serial data is input in LSB (bit 0) order into RSR from pin RXD, converting it to parallel data. After each byte of data has been received, the byte is automatically transferred to the receive data register (RDR).

RSR cannot be read or written directly by the CPU.

Receive Data Register (RDR)

Bit	7	6	5	4	3	2	1	0
	RDR7	RDR6	RDR5	RDR4	RDR3	RDR2	RDR1	RDR0
Initial value	0	0	0	0	0	0	0	0
Read/Write	R	R	R	R	R	R	R	R

The receive data register (RDR) is an 8-bit register for storing received serial data.

Each time a byte of data is received, the received data is transferred from the receive shift register (RSR) to RDR, completing a receive operation. Thereafter RSR again becomes ready to receive new data. RSR and RDR form a double buffer mechanism that allows data to be received continuously.

RDR is exclusively for receiving data and cannot be written by the CPU.

RDR is initialized to H'00 upon reset or in standby mode, watch mode, subactive mode, or subsleep mode.

Transmit Shift Register (TSR)

Bit	7	6	5	4	3	2	1	0
Read/Write	_	_	_	_	_	_	_	

The transmit shift register (TSR) is for transmitting serial data.

Transmit data is first transferred from the transmit data register (TDR) to TSR, then is transmitted from pin TXD, starting from the LSB (bit 0).

After one byte of data has been sent, the next byte is automatically transferred from TDR to TSR, and the next transmission begins. If no data has been written to TDR (1 is set in TDRE), there is no data transfer from TDR to TSR.

Bit 4—Framing Error (FER): Bit 4 is a status flag indicating that a framing error has occurred during asynchronous receiving.

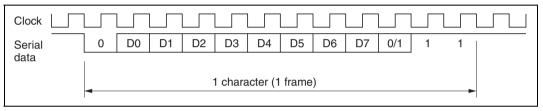
Bit 4: FER	Description								
0	Indicates that data receiving is in progress or has been completed* ¹ (initial value)								
	Clearing condition: After reading FER = 1, cleared by writing 0 to FER								
1	Indicates that a framing error occurred in data receiving								
	Setting condition: The stop bit at the end of receive data is checked for a value of 1 and found to be 0^{*^2}								
	nen bit RE in serial control register 3 (SCR3) is cleared to 0, FER is unaffected and eps its previous state.								
	nen two stop bits are used only the first stop bit is checked, not the second. When a ming error occurs, receive data is transferred to RDR but RDRF is not set. While								

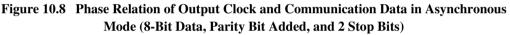
framing error occurs, receive data is transferred to RDR but RDRF is not set. While FER is set to 1, data receiving cannot be continued. In synchronous mode, data transmitting cannot be continued either.

Bit 3—Parity Error (PER): Bit 3 is a status flag indicating that a parity error has occurred during asynchronous receiving.

Bit 3: PER	Description
0	Indicates that data receiving is in progress or has been completed* ¹ (initial value)
	Clearing condition: After reading PER = 1, cleared by writing 0 to PER
1	Indicates that a parity error occurred in data receiving*2
	Setting condition: When the sum of 1s in received data plus the parity bit does not match the parity mode bit (PM) setting in the serial mode register (SMR)
	nen bit RE in serial control register 3 (SCR3) is cleared to 0, PER is unaffected and eps its previous state.

 When a parity error occurs, receive data is transferred to RDR but RDRF is not set. While PER is set to 1, data receiving cannot be continued. In synchronous mode, data transmitting cannot be continued either.




Clock

The clock source is determined by bit COM in SMR and bits CKE1 and CKE0 in serial control register 3 (SCR3). See table 10.12 for the settings. Either an internal clock source can be used to run the built-in baud rate generator, or an external clock source can be input at pin SCK₃.

When an external clock is input at pin SCK₃, it should have a frequency 16 times the desired bit rate.

When an internal clock source is used, SCK₃ is used as the clock output pin. The clock output has the same frequency as the serial bit rate, and is synchronized as in figure 10.8 so that the rising edge of the clock occurs in the center of each bit of transmit/receive data.

Data Transmit/Receive Operations

SCI3 Initialization: Before data is sent or received, bits TE and RE in serial control register 3 (SCR3) must be cleared to 0, after which initialization can be performed using the procedure shown in figure 10.9.

Note: When modifying the operation mode, transfer format or other settings, always be sure to clear bits TE and RE first. When TE is cleared to 0, bit TDRE will be set to 1. Clearing RE does not clear the status flags RDRF, PER, FER, or OER, or alter the contents of the receive data register (RDR).

When an external clock is used in asynchronous mode, do not stop the clock during operation, including during initialization. When an external clock is used in synchronous mode, do not supply the clock during initialization.

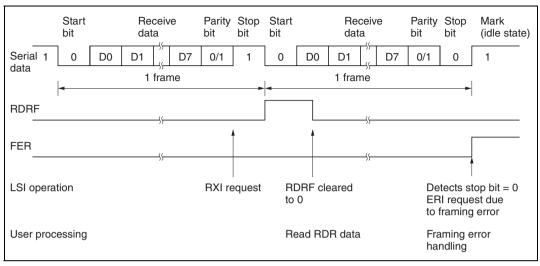
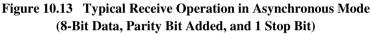



Figure 10.13 shows a typical SCI3 data receive operation in asynchronous mode.

10.3.5 Operation in Synchronous Mode

In synchronous mode, data is sent or received in synchronization with clock pulses. This mode is suited to high-speed serial communication.

SCI3 consists of independent transmit and receive modules, so full duplex communication is possible, sharing the same clock between both modules. Both the transmit and receive modules have a double-buffer configuration. This allows data to be written during a transmit operation so that data can be transmitted continuously, and enables data to be read during a receive operation so that data can be received continuously.

Transmit/Receive Format

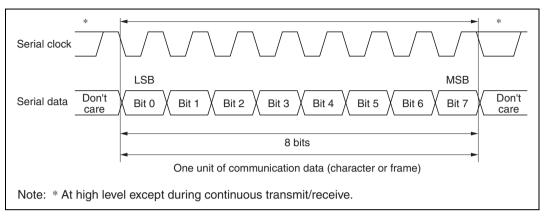


Figure 10.14 shows the general communication data format for synchronous communication.

Figure 10.14 Data Format in Synchronous Communication Mode

In synchronous communication, data on the communication line is output from one falling edge of the serial clock until the next falling edge. Data is guaranteed valid at the rising edge of the serial clock.

One character of data starts from the LSB and ends with the MSB. The communication line retains the MSB state after the MSB is output.

In synchronous receive mode, SCI3 latches receive data in synchronization with the rising edge of the serial clock.

The transmit/receive format is fixed at 8-bit data. No parity bit or multiprocessor bit is added in this mode.

Clock

Either an internal clock from the built-in baud rate generator is used, or an external clock is input at pin SCK₃. The choice of clock sources is designated by bit COM in SMR and bits CKE1 and CKE0 in serial control register 3 (SCR3). See table 10.12 for details on selecting the clock source.

When operation is based on an internal clock, a serial clock is output at pin SCK₃. Eight clock pulses are output per character of transmit/receive data. When no transmit or receive operation is being performed, the pin is held at the high level.

Receiving: Figure 10.17 shows a typical flow chart for receiving data. After SCI3 initialization, follow the procedure below.

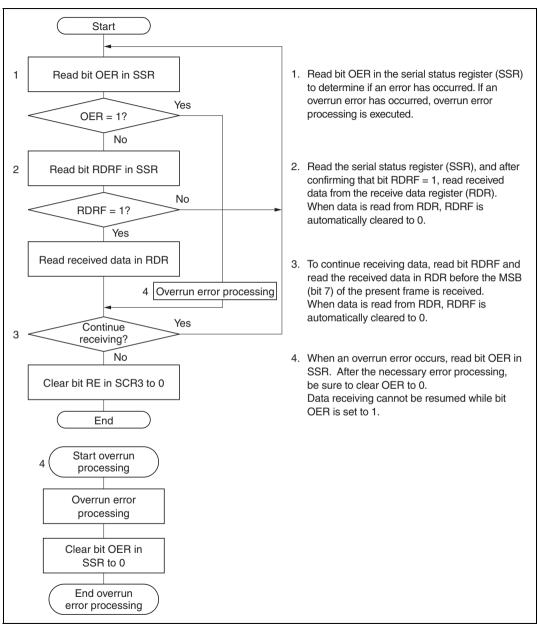
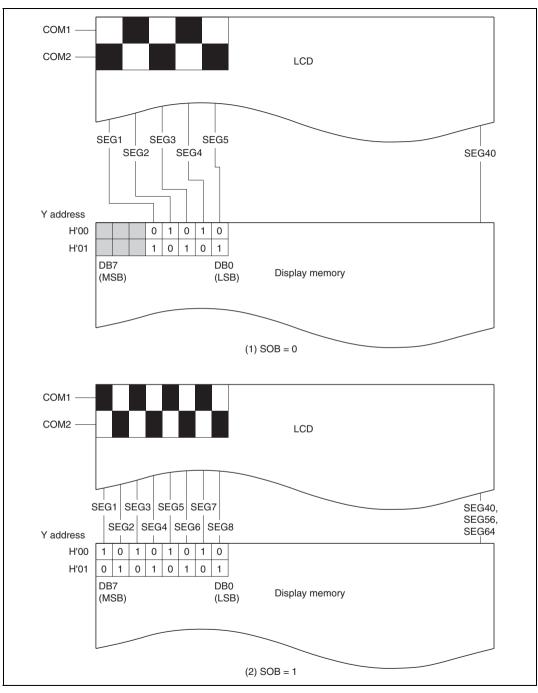



Figure 10.17 Typical Data Receiving Flow Chart in Synchronous Mode

Reading for Display

The LCD controller's display RAM is of the dual-port type, with accesses from the CPU and reads for LCD display independent of each other. This allows flexible interfacing.

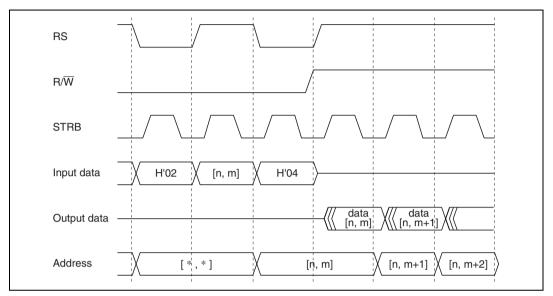


Figure 13.7 Memory Read Procedure

14.3.11 LCD Voltage Generation Circuit

When Using Internal Power Supply and Built-In Bleeder Resistances

The LCD controller includes bleeder resistances that generate levels V1 to V5. For the LCD drive power supply, drive can be performed using the internal power supply and V_{cc} , or using an external supply. When the internal power supply is used, and the built-in bleeder resistances are employed, bits LPS1 and LPS0 in control register 2 (LR1) should both be set to 1. If the capacitance of the LCD panel to be driven is large, capacitors of around 0.1 to 0.5 µF should be inserted between V10UT to V50UT and V_{ss} to provide stabilization.

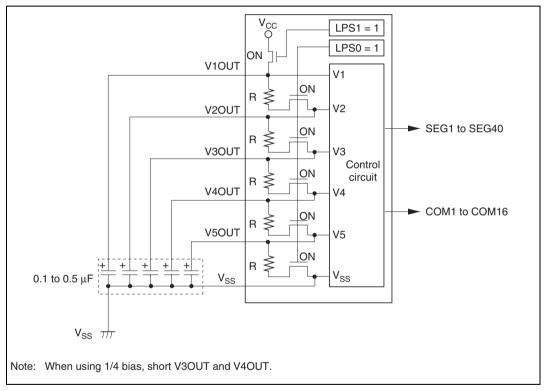


Figure 14.12 When Using Internal Power Supply and Built-In Bleeder Resistances (1/5 Bias)

Table 16.3 DC Characteristics of H8/3852, H8/3853, and H8/3854 (2)

 $V_{cc} = 2.7$ V to 5.5 V of the mask ROM version of H8/3852, H8/3853, and H8/3854, $V_{cc} = 3.0$ V to 5.5 V of H8/3854F, $V_{ss} = 0.0$ V, $T_a = -20^{\circ}$ C to $+75^{\circ}$ C*², including subactive mode, unless otherwise specified.

					Valu			
Item	Symbol	Applicable Pins	Test Conditions	Min	Тур	Max	Unit	Notes
Allowable output low	I _{ol}	Output pins except in port 2	V_{cc} = 4.0 V to 5.5 V	_	_	2.0	mA	*1
current (per pin)		Port 2	V_{cc} = 4.0 V to 5.5 V	—	—	10.0		
(per pin)		All output pins		_	_	0.5		
Allowable output low	$\Sigma I_{\rm OL}$	Output pins except in port 2	V_{cc} = 4.0 V to 5.5 V	_	_	20.0	mA	*1
current (total))	Port 2	$V_{\rm cc}$ = 4.0 V to 5.5 V	—	_	80.0		
		All output pins		_	_	20.0		
Allowable output high	— I _{он}	All output pins	V_{cc} = 4.0 V to 5.5 V	_	_	2.0	mA	*1
current (per pin)				—	—	0.2		
Allowable output high	$\Sigma - \mathbf{I}_{OH}$	All output pins	V_{cc} = 4.0 V to 5.5 V	_	_	10.0	mA	*1
current (total))			_	—	8.0		

Notes: 1. Excludes LCD output pins.

2. The guaranteed temperature as an electrical characteristic for die type products is 75°C.

16.5 Usage Note

Although both the F-ZTAT and mask ROM versions fully meet the electrical specifications listed in this manual, there may be differences in the actual values of the electrical characteristics, operating margins, noise margins, and so forth, due to differences in the fabrication process, the on-chip ROM, and the layout patterns.

If the F-ZTAT version is used to carry out system evaluation and testing, therefore, when switching to the mask ROM version the same evaluation and testing procedures should also be conducted on the mask ROM version.

			Addressing Mode/ Instruction Length (Bytes)								s)	Condition Code						
Mnemonic	Operand Size	Operation	#xx: 8/16	Rn	@Rn	@(d:16, Rn)	@-Rn/@Rn+	@aa: 8/16	@(d:8, PC)	@ @aa	Implied	I	н	N	z	v	с	No. of States
BSET #xx:3, Rd	В	(#xx:3 of Rd8) ← 1		2									—					2
BSET #xx:3, @Rd	В	(#xx:3 of @Rd16) \leftarrow 1			4								—					8
BSET #xx:3, @aa:8	В	(#xx:3 of @aa:8) ← 1						4					—					8
BSET Rn, Rd	В	(Rn8 of Rd8) ← 1		2									—					2
BSET Rn, @Rd	В	(Rn8 of @Rd16) ← 1			4								—					8
BSET Rn, @aa:8	В	(Rn8 of @aa:8) ← 1						4					—	—	—	—		8
BCLR #xx:3, Rd	В	(#xx:3 of Rd8) ← 0		2									—					2
BCLR #xx:3, @Rd	В	(#xx:3 of @Rd16) ← 0			4								—	—	—	—		8
BCLR #xx:3, @aa:8	В	(#xx:3 of @aa:8) ← 0						4					—					8
BCLR Rn, Rd	В	(Rn8 of Rd8) ← 0		2									—					2
BCLR Rn, @Rd	в	(Rn8 of @Rd16) ← 0			4								—					8
BCLR Rn, @aa:8	в	(Rn8 of @aa:8) ← 0						4					—					8
BNOT #xx:3, Rd	В	$(\#xx:3 \text{ of } Rd8) \leftarrow \\ (\#xx:3 \text{ of } Rd8)$		2									—					2
BNOT #xx:3, @Rd	В	$(\#xx:3 \text{ of } @Rd16) \leftarrow \\ (\#xx:3 \text{ of } @Rd16)$			4								—					8
BNOT #xx:3, @aa:8	В	$(\#xx:3 \text{ of } @aa:8) \leftarrow \\ (\#xx:3 \text{ of } @aa:8)$						4					—					8
BNOT Rn, Rd	В	$(\frac{\text{Rn8 of Rd8}}{(\overline{\text{Rn8 of Rd8}})} \leftarrow$		2									—					2
BNOT Rn, @Rd	В	$(\frac{\text{Rn8 of } @\text{Rd16}}{(\text{Rn8 of } @\text{Rd16})} \leftarrow$			4								—					8
BNOT Rn, @aa:8	В	$(\frac{\text{Rn8 of } @aa:8)}{(\overline{\text{Rn8 of } @aa:8)}} \leftarrow$						4					—					8
BTST #xx:3, Rd	В	$(\overline{\#xx:3} \text{ of } \overline{\text{Rd8}}) \rightarrow Z$		2									—		\$			2
BTST #xx:3, @Rd	В	$(\overline{\#xx:3} \text{ of } \overline{@\text{Rd16}}) \rightarrow Z$			4							_	—	<u> </u>	\$	<u> </u>	_	6
BTST #xx:3, @aa:8	в	$(\overline{\#xx:3} \text{ of } \overline{@aa:8}) \rightarrow Z$	1					4					—	—	\$	—		6
BTST Rn, Rd	в	$(\overline{\text{Rn8}} \ \overline{\text{of}} \ \overline{\text{Rd8}}) \rightarrow \text{Z}$	1	2									—	—	\$	—		2
BTST Rn, @Rd	в	$(\overline{\text{Rn8}} \ \overline{\text{of}} \ \overline{@\text{Rd16}}) \rightarrow \text{Z}$	1		4								—	—	\$	—		6
BTST Rn, @aa:8	В	$(\overline{\text{Rn8}} \ \overline{\text{of}} \ \overline{@aa:8}) \rightarrow \text{Z}$						4					—		\$			6

SCR1—Serial control register 1	H'A0

SCI1 (H8/3857 Group only)

Bit	7	6	5	i	4	;	3	2	1	0		
	SNC1	SNC0	_	-	_	Ck	(S3	CKS2	CKS1	CKS0		
Initial value	0	0	0)	0	(0	0	0	0		
Read/Write	R/W	R/W	R/	W	R/W	R	/W	R/W	R/W	R/W		
]											
		Clock §	Select (CKS2 t	o CKS	D)						
								Serial Clo	ock Cycle			
		Bit 2	Bit 1	Bit 0	Presca	aler		Synch				
		CKS2	CKS1	CKS0	Divisio	on	φ = \$	5 MHz	φ = 2.5 MH	lz		
		0	0	0	¢/1024	4	204.	.8 µs	μs 409.6 μs			
				1	¢/256		51.2	2μs	102.4 μs			
			1	0	φ/64		12.8	βμs	25.6 μs			
				1	ф/32		6.4	μs	12.8 μs			
		1	0	0	ф/16		3.2	μs	6.4 μs			
				1	φ/8		1.6	μs	3.2 μs			
			1	0	φ/4		0.8 μs		1.6 μs			
				1	ф/2				0.8 μs			
		sources	alact									
				escaler	S and	nin S	SCK	is output	nin			
						-		K_1 is input	-			
				cornur o	100it, ai				" M"			
Ope	eration mo	ode sele	ct									
0	0 9 bit c	vnohron	oue trar	ocfor m	odo		7					

0	0	8-bit synchronous transfer mode
	1	16-bit synchronous transfer mode
1	0	Continuous clock output mode
	1	Reserved

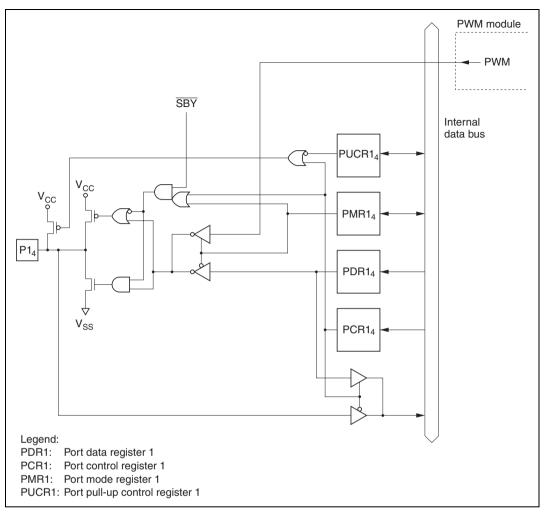


Figure C.1 (b) Port 1 Block Diagram (Pin P1₄: Function of H8/3857 Group Only)