

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	49
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f66j50t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

						MSSP			F	ors		sus	Р
Device	Flash Program Memory (bytes)	SRAM Data Memory (bytes)	I/O	10-Bit A/D (ch)	CCP/ ECCP (PWM)		SPI	Master I ² C™	EUSAR	Comparat	Timers 8/16-Bi	External E	Sd/dMd
PIC18F65J50	32K	3904*	49	8	2/3	2	Y	Y	2	2	2/3	Ν	Y
PIC18F66J50	64K	3904*	49	8	2/3	2	Y	Y	2	2	2/3	Ν	Y
PIC18F66J55	96K	3904*	49	8	2/3	2	Y	Y	2	2	2/3	Ν	Y
PIC18F67J50	128K	3904*	49	8	2/3	2	Y	Y	2	2	2/3	Ν	Y
PIC18F85J50	32K	3904*	65	12	2/3	2	Y	Y	2	2	2/3	Y	Y
PIC18F86J50	64K	3904*	65	12	2/3	2	Y	Y	2	2	2/3	Y	Y
PIC18F86J55	96K	3904*	65	12	2/3	2	Y	Y	2	2	2/3	Y	Y
PIC18F87J50	128K	3904*	65	12	2/3	2	Y	Y	2	2	2/3	Y	Y

* Includes the dual access RAM used by the USB module which is shared with data memory.

Pin Diagrams

FIGURE 4-6: SLOW RISE TIME (MCLR TIED TO VDD, VDD RISE > TPWRT)

9.1 INTCON Registers

The INTCON registers are readable and writable registers which contain various enable, priority and flag bits.

Note: Interrupt flag bits are set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the global interrupt enable bit. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt. This feature allows for software polling.

REGISTER 9-1: INTCON: INTERRUPT CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x
GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF ⁽¹⁾
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	GIE/GIEH: Global Interrupt Enable bit <u>When IPEN = 0:</u> 1 = Enables all unmasked interrupts 0 = Disables all interrupts <u>When IPEN = 1:</u> 1 = Enables all high-priority interrupts 0 = Disables all interrupts
bit 6	PEIE/GIEL: Peripheral Interrupt Enable bit When IPEN = 0: 1 = Enables all unmasked peripheral interrupts 0 = Disables all peripheral interrupts When IPEN = 1: 1 = Enables all low-priority peripheral interrupts 0 = Disables all low-priority peripheral interrupts 0 = Disables all low-priority peripheral interrupts
bit 5	<pre>TMR0IE: TMR0 Overflow Interrupt Enable bit 1 = Enables the TMR0 overflow interrupt 0 = Disables the TMR0 overflow interrupt</pre>
bit 4	INTOIE: INTO External Interrupt Enable bit 1 = Enables the INTO external interrupt 0 = Disables the INTO external interrupt
bit 3	RBIE: RB Port Change Interrupt Enable bit 1 = Enables the RB port change interrupt 0 = Disables the RB port change interrupt
bit 2	<pre>TMR0IF: TMR0 Overflow Interrupt Flag bit 1 = TMR0 register has overflowed (must be cleared in software) 0 = TMR0 register did not overflow</pre>
bit 1	INTOIF: INTO External Interrupt Flag bit 1 = The INTO external interrupt occurred (must be cleared in software) 0 = The INTO external interrupt did not occur
bit 0	RBIF: RB Port Change Interrupt Flag bit ⁽¹⁾ 1 = At least one of the RB7:RB4 pins changed state (must be cleared in software) 0 = None of the RB7:RB4 pins have changed state

Note 1: A mismatch condition will continue to set this bit. Reading PORTB will end the mismatch condition and allow the bit to be cleared.

Pin Name	Function	TRIS Setting	I/O	I/O Type	Description
RE5/AD13/	RE5	0	0	DIG	LATE<5> data output.
PMA11/P1C		1	Ι	ST	PORTE<5> data input.
	AD13 ⁽³⁾	х	0	DIG	External memory interface, address/data bit 13 output. ⁽²⁾
		х	Ι	TTL	External memory interface, data bit 13 input. ⁽²⁾
	PMA11	х	0	DIG	Parallel Master Port address.
	P1C ⁽¹⁾	0	0	DIG	ECCP1 Enhanced PWM output, channel C; takes priority over port and PMP data. May be configured for tri-state during Enhanced PWM shutdown events.
RE6/AD14/	RE6	0	0	DIG	LATE<6> data output.
PMA10/P1B		1	Ι	ST	PORTE<6> data input.
	AD14 ⁽³⁾	х	0	DIG	External memory interface, address/data bit 14 output. ⁽²⁾
		х	Ι	TTL	External memory interface, data bit 14 input. ⁽²⁾
	PMA10	х	0	DIG	Parallel Master Port address.
	P1B ⁽¹⁾	0	0	DIG	ECCP1 Enhanced PWM output, channel B; takes priority over port and PMP data. May be configured for tri-state during Enhanced PWM shutdown events.
RE7/AD15/	RE7	0	0	DIG	LATE<7> data output.
PMA9/ECCP2/		1	Ι	ST	PORTE<7> data input.
PZA	AD15 ⁽³⁾	х	0	DIG	External memory interface, address/data bit 15 output. ⁽²⁾
		х	I	TTL	External memory interface, data bit 15 input. ⁽²⁾
	PMA9	х	0	DIG	Parallel Master Port address.
	ECCP2 ⁽⁴⁾	0	0	DIG	ECCP2 compare output and ECCP2 PWM output; takes priority over port data.
		1	I	ST	ECCP2 capture input.
	P2A ⁽⁴⁾	0	0	DIG	ECCP2 Enhanced PWM output, channel A; takes priority over port and PMP data. May be configured for tri-state during Enhanced PWM shutdown events.

TABLE 10-12: PORTE FUNCTIONS (CONTINUED)

Legend: O = Output, I = Input, DIG = Digital Output, ST = Schmitt Buffer Input, TTL = TTL Buffer Input,

x = Don't care (TRIS bit does not affect port direction or is overridden for this option).

Note 1: Default assignments for P1B/P1C and P3B/P3C when ECCPMX Configuration bit is set (80-pin devices only).

2: External memory interface I/O takes priority over all other digital and PMP I/O.

3: Available on 80-pin devices only.

4: Alternate assignment for ECCP2/P2A when ECCP2MX Configuration bit is cleared (all devices in Microcontroller mode).

5: Default configuration for PMP (PMPMX Configuration bit = 1).

TABLE 10-13: SUMMARY OF REGISTERS ASSOCIATED WITH PORTE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:
PORTE	RE7	RE6	RE5	RE4	RE3	RE2	RE1	RE0	65
LATE	LATE7	LATE6	LATE5	LATE4	LATE3	LATE2	LATE1	LATE0	64
TRISE	TRISE7	TRISE6	TRISE5	TRISE4	TRISE3	TRISE2	TRISE1	TRISE0	64
PORTG	RDPU	REPU	RJPU ⁽¹⁾	RG4	RG3	RG2	RG1	RG0	65

Legend: Shaded cells are not used by PORTE.

Note 1: Unimplemented on 64-pin devices, read as '0'.

13.2 Timer1 16-Bit Read/Write Mode

Timer1 can be configured for 16-bit reads and writes (see Figure 13-2). When the RD16 control bit, T1CON<7>, is set, the address for TMR1H is mapped to a buffer register for the high byte of Timer1. A read from TMR1L will load the contents of the high byte of Timer1 into the Timer1 High Byte Buffer register. This provides the user with the ability to accurately read all 16 bits of Timer1 without having to determine whether a read of the high byte, followed by a read of the low byte, has become invalid due to a rollover between reads.

A write to the high byte of Timer1 must also take place through the TMR1H Buffer register. The Timer1 high byte is updated with the contents of TMR1H when a write occurs to TMR1L. This allows a user to write all 16 bits to both the high and low bytes of Timer1 at once.

The high byte of Timer1 is not directly readable or writable in this mode. All reads and writes must take place through the Timer1 High Byte Buffer register. Writes to TMR1H do not clear the Timer1 prescaler. The prescaler is only cleared on writes to TMR1L.

13.3 Timer1 Oscillator

An on-chip crystal oscillator circuit is incorporated between pins T1OSI (input) and T1OSO (amplifier output). It is enabled by setting the Timer1 Oscillator Enable bit, T1OSCEN (T1CON<3>). The oscillator is a low-power circuit rated for 32 kHz crystals. It will continue to run during all power-managed modes. The circuit for a typical LP oscillator is shown in Figure 13-3. Table 13-1 shows the capacitor selection for the Timer1 oscillator.

The user must provide a software time delay to ensure proper start-up of the Timer1 oscillator.

FIGURE 13-3: EXTERNAL COMPONENTS FOR THE TIMER1 LP OSCILLATOR

TABLE 13-1: CAPACITOR SELECTION FOR THETIMEROSCILLATOR^(2,3,4)

Oscillator Type	Freq.	C1	C2				
LP	32 kHz	27 pF ⁽¹⁾	27 pF ⁽¹⁾				
Note 1:	Microchip sug starting point circuit.	gests these in validating	values as a the oscillator				
2:	Higher capacitance increases the stability of the oscillator but also increases the start-up time.						
3:	Since each rescharacteristics the resonator appropriate components.	sonator/crysta , the user sh /crystal mani values o	l has its own ould consult ufacturer for f external				
4:	Capacitor valu only.	es are for des	ign guidance				

13.3.1 USING TIMER1 AS A CLOCK SOURCE

The Timer1 oscillator is also available as a clock source in power-managed modes. By setting the clock select bits, SCS1:SCS0 (OSCCON<1:0>), to '01', the device switches to SEC_RUN mode; both the CPU and peripherals are clocked from the Timer1 oscillator. If the IDLEN bit (OSCCON<7>) is cleared and a SLEEP instruction is executed, the device enters SEC_IDLE mode. Additional details are available in **Section 3.0 "Power-Managed Modes"**.

Whenever the Timer1 oscillator is providing the clock source, the Timer1 system clock status flag, T1RUN (T1CON<6>), is set. This can be used to determine the controller's current clocking mode. It can also indicate the clock source being currently used by the Fail-Safe Clock Monitor. If the Clock Monitor is enabled and the Timer1 oscillator fails while providing the clock, polling the T1RUN bit will indicate whether the clock is being provided by the Timer1 oscillator or another source.

13.3.2 TIMER1 OSCILLATOR LAYOUT CONSIDERATIONS

The Timer1 oscillator circuit draws very little power during operation. Due to the low-power nature of the oscillator, it may also be sensitive to rapidly changing signals in close proximity.

The oscillator circuit, shown in Figure 13-3, should be located as close as possible to the microcontroller. There should be no circuits passing within the oscillator circuit boundaries other than Vss or VDD.

15.0 TIMER3 MODULE

The Timer3 timer/counter module incorporates these features:

- Software selectable operation as a 16-bit timer or counter
- Readable and writable 8-bit registers (TMR3H and TMR3L)
- Selectable clock source (internal or external) with device clock or Timer1 oscillator internal options
- Interrupt-on-overflow
- Module Reset on ECCP Special Event Trigger

A simplified block diagram of the Timer3 module is shown in Figure 15-1. A block diagram of the module's operation in Read/Write mode is shown in Figure 15-2.

The Timer3 module is controlled through the T3CON register (Register 15-1). It also selects the clock source options for the CCP and ECCP modules; see **Section 17.1.1 "CCP Modules and Timer Resources"** for more information.

REGISTER 15-1: T3CON: TIMER3 CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
RD16	T3CCP2	T3CKPS1	T3CKPS0	T3CCP1	T3SYNC	TMR3CS	TMR3ON
bit 7							bit 0

Legend:											
R = Readable	bit	W = Writable bit	U = Unimplemented bit, read	l as '0'							
-n = Value at	POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown							
bit 7	RD16: 16-Bit I	Read/Write Mode Enable bit									
	1 = Enables re	egister read/write of Timer3 in	one 16-bit operation								
	0 = Enables re	egister read/write of Timer3 in	two 8-bit operations								
bit 6,3	T3CCP2:T3CCP1: Timer3 and Timer1 to ECCPx/CCPx Enable bits										
	11 = Timer3 and Timer4 are the clock sources for all ECCP/CCP modules										
	10 = Timer3 and Timer4 are the clock sources for ECCP3, CCP4 and CCP5; Timer1 and Timer2 are the clock sources for ECCP1 and ECCP2										
	01 = Timer3 a	ind Timer4 are the clock sour	ces for ECCP2, ECCP3, CCP	4 and CCP5;							
	Timer1 a	nd Timer2 are the clock sour	ces for ECCP1								
	00 = Timer1 a	ind Timer2 are the clock sour	ces for all ECCP/CCP module	es							
bit 5-4	T3CKPS1:T3CKPS0: Timer3 Input Clock Prescale Select bits										
	11 = 1:8 Prese	cale value									
	10 = 1.4 Pres	cale value									
	00 = 1:1 Pres	cale value									
bit 2	T3SYNC: Tim	er3 External Clock Input Syn	chronization Control bit								
	(Not usable if	the device clock comes from	Timer1/Timer3.)								
	When TMR3C	<u>S = 1:</u>									
	1 = Do not syr	chronize external clock input									
	When TMR3C										
	This bit is igno	ored. Timer3 uses the internal	clock when TMR3CS = 0.								
bit 1	TMR3CS: Tim	er3 Clock Source Select bit									
	1 = External of	clock input from Timer1 oscilla	ator or T13CKI (on the rising e	edge after the first							
	falling edg	ge)									
	0 = Internal c	lock (Fosc/4)									
bit 0	TMR3ON: Tim	ner3 On bit									
	1 = Enables T	imer3									

19.4.4 CLOCK STRETCHING

Both 7-Bit and 10-Bit Slave modes implement automatic clock stretching during a transmit sequence.

The SEN bit (SSPxCON2<0>) allows clock stretching to be enabled during receives. Setting SEN will cause the SCLx pin to be held low at the end of each data receive sequence.

19.4.4.1 Clock Stretching for 7-Bit Slave Receive Mode (SEN = 1)

In 7-Bit Slave Receive mode, on the falling edge of the ninth clock at the end of the ACK sequence, if the BF bit is set, the CKP bit in the SSPxCON1 register is automatically cleared, forcing the SCLx output to be held low. The CKP bit being cleared to '0' will assert the SCLx line low. The CKP bit must be set in the user's ISR before reception is allowed to continue. By holding the SCLx line low, the user has time to service the ISR and read the contents of the SSPxBUF before the master device can initiate another receive sequence. This will prevent buffer overruns from occurring (see Figure 19-15).

- Note 1: If the user reads the contents of the SSPxBUF before the falling edge of the ninth clock, thus clearing the BF bit, the CKP bit will not be cleared and clock stretching will not occur.
 - 2: The CKP bit can be set in software regardless of the state of the BF bit. The user should be careful to clear the BF bit in the ISR before the next receive sequence in order to prevent an overflow condition.

19.4.4.2 Clock Stretching for 10-Bit Slave Receive Mode (SEN = 1)

In 10-Bit Slave Receive mode during the address sequence, clock stretching automatically takes place but CKP is not cleared. During this time, if the UA bit is set after the ninth clock, clock stretching is initiated. The UA bit is set after receiving the upper byte of the 10-bit address and following the receive of the second byte of the 10-bit address with the R/W bit cleared to '0'. The release of the clock line occurs upon updating SSPxADD. Clock stretching will occur on each data receive sequence as described in 7-bit mode.

Note: If the user polls the UA bit and clears it by updating the SSPxADD register before the falling edge of the ninth clock occurs, and if the user hasn't cleared the BF bit by reading the SSPxBUF register before that time, then the CKP bit will still NOT be asserted low. Clock stretching on the basis of the state of the BF bit only occurs during a data sequence, not an address sequence.

19.4.4.3 Clock Stretching for 7-Bit Slave Transmit Mode

The 7-Bit Slave Transmit mode implements clock stretching by clearing the CKP bit after the falling edge of the ninth clock if the BF bit is clear. This occurs regardless of the state of the SEN bit.

The user's ISR must set the CKP bit before transmission is allowed to continue. By holding the SCLx line low, the user has time to service the ISR and load the contents of the SSPxBUF before the master device can initiate another transmit sequence (see Figure 19-10).

- Note 1: If the user loads the contents of SSPxBUF, setting the BF bit before the falling edge of the ninth clock, the CKP bit will not be cleared and clock stretching will not occur.
 - 2: The CKP bit can be set in software regardless of the state of the BF bit.

19.4.4.4 Clock Stretching for 10-Bit Slave Transmit Mode

In 10-Bit Slave Transmit mode, clock stretching is controlled during the first two address sequences by the state of the UA bit, just as it is in 10-Bit Slave Receive mode. The first two addresses are followed by a third address sequence, which contains the high-order bits of the 10-bit address and the R/W bit set to '1'. After the third address sequence is performed, the UA bit is not set, the module is now configured in Transmit mode and clock stretching is controlled by the BF flag as in 7-Bit Slave Transmit mode (see Figure 19-13).

19.4.6.1 I²C Master Mode Operation

The master device generates all of the serial clock pulses and the Start and Stop conditions. A transfer is ended with a Stop condition or with a Repeated Start condition. Since the Repeated Start condition is also the beginning of the next serial transfer, the I²C bus will not be released.

In Master Transmitter mode, serial data is output through SDAx while SCLx outputs the serial clock. The first byte transmitted contains the slave address of the receiving device (7 bits) and the Read/Write (R/W) bit. In this case, the R/W bit will be logic '0'. Serial data is transmitted 8 bits at a time. After each byte is transmitted, an Acknowledge bit is received. Start and Stop conditions are output to indicate the beginning and the end of a serial transfer.

In Master Receive mode, the first byte transmitted contains the slave address of the transmitting device (7 bits) and the R/\overline{W} bit. In this case, the R/\overline{W} bit will be logic '1'. Thus, the first byte transmitted is a 7-bit slave address, followed by a '1' to indicate the receive bit. Serial data is received via SDAx, while SCLx outputs the serial clock. Serial data is received, an Acknowledge bit is transmitted. Start and Stop conditions indicate the beginning and end of transmission.

The Baud Rate Generator, used for the SPI mode operation, is used to set the SCLx clock frequency for either 100 kHz, 400 kHz or 1 MHz I^2C operation. See **Section 19.4.7 "Baud Rate"** for more details.

A typical transmit sequence would go as follows:

- 1. The user generates a Start condition by setting the Start Enable bit, SEN (SSPxCON2<0>).
- 2. SSPxIF is set. The MSSP module will wait the required start time before any other operation takes place.
- 3. The user loads the SSPxBUF with the slave address to transmit.
- 4. Address is shifted out the SDAx pin until all 8 bits are transmitted.
- 5. The MSSP module shifts in the ACK bit from the slave device and writes its value into the SSPxCON2 register (SSPxCON2<6>).
- The MSSP module generates an interrupt at the end of the ninth clock cycle by setting the SSPxIF bit.
- 7. The user loads the SSPxBUF with eight bits of data.
- 8. Data is shifted out the SDAx pin until all 8 bits are transmitted.
- The MSSP module shifts in the ACK bit from the slave device and writes its value into the SSPxCON2 register (SSPxCON2<6>).
- 10. The MSSP module generates an interrupt at the end of the ninth clock cycle by setting the SSPxIF bit.
- 11. The user generates a Stop condition by setting the Stop Enable bit, PEN (SSPxCON2<2>).
- 12. Interrupt is generated once the Stop condition is complete.

19.4.14 SLEEP OPERATION

While in Sleep mode, the I^2C module can receive addresses or data and when an address match or complete byte transfer occurs, wake the processor from Sleep (if the MSSP interrupt is enabled).

19.4.15 EFFECTS OF A RESET

A Reset disables the MSSP module and terminates the current transfer.

19.4.16 MULTI-MASTER MODE

In Multi-Master mode, the interrupt generation on the detection of the Start and Stop conditions allows the determination of when the bus is free. The Stop (P) and Start (S) bits are cleared from a Reset or when the MSSP module is disabled. Control of the I²C bus may be taken when the P bit (SSPxSTAT<4>) is set, or the bus is Idle, with both the S and P bits clear. When the bus is busy, enabling the MSSP interrupt will generate the interrupt when the Stop condition occurs.

In multi-master operation, the SDAx line must be monitored for arbitration to see if the signal level is the expected output level. This check is performed in hardware with the result placed in the BCLxIF bit.

The states where arbitration can be lost are:

- · Address Transfer
- Data Transfer
- A Start Condition
- A Repeated Start Condition
- An Acknowledge Condition

19.4.17 MULTI -MASTER COMMUNICATION, BUS COLLISION AND BUS ARBITRATION

Multi-Master mode support is achieved by bus arbitration. When the master outputs address/data bits onto the SDAx pin, arbitration takes place when the master outputs a '1' on SDAx, by letting SDAx float high and another master asserts a '0'. When the SCLx pin floats high, data should be stable. If the expected data on SDAx is a '1' and the data sampled on the SDAx pin = 0, then a bus collision has taken place. The master will set the Bus Collision Interrupt Flag, BCLxIF and reset the I²C port to its Idle state (Figure 19-27).

If a transmit was in progress when the bus collision occurred, the transmission is halted, the BF flag is cleared, the SDAx and SCLx lines are deasserted and the SSPxBUF can be written to. When the user services the bus collision Interrupt Service Routine and if the I^2C bus is free, the user can resume communication by asserting a Start condition.

If a Start, Repeated Start, Stop or Acknowledge condition was in progress when the bus collision occurred, the condition is aborted, the SDAx and SCLx lines are deasserted and the respective control bits in the SSPxCON2 register are cleared. When the user services the bus collision Interrupt Service Routine, and if the I²C bus is free, the user can resume communication by asserting a Start condition.

The master will continue to monitor the SDAx and SCLx pins. If a Stop condition occurs, the SSPxIF bit will be set.

A write to the SSPxBUF will start the transmission of data at the first data bit regardless of where the transmitter left off when the bus collision occurred.

In Multi-Master mode, the interrupt generation on the detection of Start and Stop conditions allows the determination of when the bus is free. Control of the I^2C bus can be taken when the P bit is set in the SSPxSTAT register, or the bus is Idle and the S and P bits are cleared.

FIGURE 19-27: BUS COLLISION TIMING FOR TRANSMIT AND ACKNOWLEDGE

		SYNC = 0, BRGH = 0, BRG16 = 1												
BAUD	Fosc = 40.000 MHz			Fosc = 20.000 MHz			Fosc = 10.000 MHz			Fos	Fosc = 8.000 MHz			
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)		
0.3	0.300	0.00	8332	0.300	0.02	4165	0.300	0.02	2082	0.300	-0.04	1665		
1.2	1.200	0.02	2082	1.200	-0.03	1041	1.200	-0.03	520	1.201	-0.16	415		
2.4	2.402	0.06	1040	2.399	-0.03	520	2.404	0.16	259	2.403	-0.16	207		
9.6	9.615	0.16	259	9.615	0.16	129	9.615	0.16	64	9.615	-0.16	51		
19.2	19.231	0.16	129	19.231	0.16	64	19.531	1.73	31	19.230	-0.16	25		
57.6	58.140	0.94	42	56.818	-1.36	21	56.818	-1.36	10	55.555	3.55	8		
115.2	113.636	-1.36	21	113.636	-1.36	10	125.000	8.51	4	—	_	_		

TABLE 20-3: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)

	SYNC = 0, BRGH = 0, BRG16 = 1												
BAUD	Foso	= 4.000	MHz	Fos	c = 2.000	MHz	Fosc = 1.000 MHz						
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	II % SPBRG Actual % S Error value Rate Error (decimal) (K) (/	SPBRG value (decimal)							
0.3	0.300	0.04	832	0.300	-0.16	415	0.300	-0.16	207				
1.2	1.202	0.16	207	1.201	-0.16	103	1.201	-0.16	51				
2.4	2.404	0.16	103	2.403	-0.16	51	2.403	-0.16	25				
9.6	9.615	0.16	25	9.615	-0.16	12	_	_	_				
19.2	19.231	0.16	12	_	_	_	_	_	_				
57.6	62.500	8.51	3	—	_	_	—	_	_				
115.2	125.000	8.51	1	—	_	_	—	_	_				

	SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1											
BAUD	Fosc = 40.000 MHz			Fosc = 20.000 MHz			Fosc = 10.000 MHz			Fosc = 8.000 MHz		
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)
0.3	0.300	0.00	33332	0.300	0.00	16665	0.300	0.00	8332	0.300	-0.01	6665
1.2	1.200	0.00	8332	1.200	0.02	4165	1.200	0.02	2082	1.200	-0.04	1665
2.4	2.400	0.02	4165	2.400	0.02	2082	2.402	0.06	1040	2.400	-0.04	832
9.6	9.606	0.06	1040	9.596	-0.03	520	9.615	0.16	259	9.615	-0.16	207
19.2	19.193	-0.03	520	19.231	0.16	259	19.231	0.16	129	19.230	-0.16	103
57.6	57.803	0.35	172	57.471	-0.22	86	58.140	0.94	42	57.142	0.79	34
115.2	114.943	-0.22	86	116.279	0.94	42	113.636	-1.36	21	117.647	-2.12	16

		SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1											
BAUD	Fos	c = 4.000	MHz	Fos	c = 2.000	MHz	Fosc = 1.000 MHz						
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)				
0.3	0.300	0.01	3332	0.300	-0.04	1665	0.300	-0.04	832				
1.2	1.200	0.04	832	1.201	-0.16	415	1.201	-0.16	207				
2.4	2.404	0.16	415	2.403	-0.16	207	2.403	-0.16	103				
9.6	9.615	0.16	103	9.615	-0.16	51	9.615	-0.16	25				
19.2	19.231	0.16	51	19.230	-0.16	25	19.230	-0.16	12				
57.6	58.824	2.12	16	55.555	3.55	8	—	—	—				
115.2	111.111	-3.55	8	—	_		—	_	_				

22.5.3 USB ERROR INTERRUPT STATUS REGISTER (UEIR)

The USB Error Interrupt Status register (Register 22-9) contains the flag bits for each of the error sources within the USB peripheral. Each of these sources is controlled by a corresponding interrupt enable bit in the UEIE register. All of the USB error flags are ORed together to generate the USB Error Interrupt Flag (UERRIF) at the top level of the interrupt logic.

Each error bit is set as soon as the error condition is detected. Thus, the interrupt will typically not correspond with the end of a token being processed.

Once an interrupt bit has been set by the SIE, it must be cleared by software by writing a '0'.

REGISTER 22-9: UEIR: USB ERROR INTERRUPT STATUS REGISTER

R/C-0	U-0	U-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
BTSEF	—	—	BTOEF	DFN8EF	CRC16EF	CRC5EF	PIDEF
bit 7							bit 0

Legend:									
R = Readable	bit	C = Clearable bit	U = Unimplemented bit, read as '0'						
-n = Value at P	OR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown					
bit 7	BTSEF: Bit St	uff Error Flag bit							
	1 = A bit stuff 0 = No bit stu	error has been detected							
bit 6-5	Unimplement	ted: Read as '0'							
bit 4	BTOEF: Bus	Turnaround Time-out Error	Flag bit						
 1 = Bus turnaround time-out has occurred (more than 16 bit times of Idle from previous 0 = No bus turnaround time-out 									
bit 3	DFN8EF: Dat	a Field Size Error Flag bit							
	1 = The data 0 = The data	field was not an integral nu field was an integral numbe	mber of bytes er of bytes						
bit 2	CRC16EF: CI	RC16 Failure Flag bit							
	1 = The CRC	16 failed							
	0 = The CRC	16 passed							
bit 1	CRC5EF: CR	C5 Host Error Flag bit							
	1 = The toker 0 = The toker	n packet was rejected due t n packet was accepted	o a CRC5 error						
bit 0	PIDEF: PID C	heck Failure Flag bit							
	1 = PID chec	k failed							
	0 = PID chec	k passed							

. OW (DVTE ADDDECC 200000L) NEIGAI .

REGISTER 2	5-1: CONF	IGIL: CONFI	GURATION	REGISTER		ADDRESS	500000n)
R/WO-1	R/WO-1	R/WO-1	U-0	R/WO-1	R/WO-1	R/WO-1	R/WO-1
DEBUG	XINST	STVREN	—	PLLDIV2	PLLDIV1	PLLDIV0	WDTEN
bit 7							bit 0
Legend:							
R = Readable	bit	WO = Write-C	Once bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	IOWN
bit 7	DEBUG : Bac	kground Debug	gger Enable bi	t and RB7 confi	aured as gener	al nurnose I/O	nins
	0 = Backgro	und debugger	enabled; RB6	and RB7 are of	dedicated to In-	Circuit Debug	pino
bit 6	XINST: Exten	ded Instruction	Set Enable bi	it			
	1 = Instructio	on set extensior	n and Indexed	Addressing m	ode enabled		
	0 = Instructio	on set extension	n and Indexed	Addressing m	ode disabled (L	egacy mode)	
bit 5	STVREN: Sta	ick Overflow/U	nderflow Rese	t Enable bit			
	1 = Reset on	stack overflow	/underflow en	abled			
hit 4				Sableu			
bit 3_1			or Selection bi	ite			
bit 5-1	PLLDIV2.PLI	be selected to a	or Selection bi	tz innut into th	96 MH7 PH		
	111 = No div	/ide - oscillator	used directly (4 MHz input)			
	110 = Oscilla	ator divided by	2 (8 MHz inpu	t)			
	101 = Oscilla	ator divided by	3 (12 MHz inp	ut)			
	100 = Oscilla	ator divided by	4 (16 MHz inp 5 (20 MHz inp	ut)			
	011 = Oscilla010 = Oscilla	ator divided by	5 (20 MHZ INP 6 (24 MHz inp	ut)			
	001 = Oscilla	ator divided by	10 (40 MHz in	put)			
	000 = Oscilla	ator divided by	12 (48 MHz in	put)			
bit 0	WDTEN: Wat	tchdog Timer E	nable bit				
	1 = WDT ena	abled					
	0 = WDT dis	abled (control i	s placed on S	NDTEN bit)			

Byte-oriented file register operations Example Instruction 15 10 9 8 7 0 OPCODE d a f (FILE #) ADDWF MYREG, W, B	
15 10 9 8 7 0 OPCODE d a f(FILE #) ADDWF MYREG, W, B	
OPCODE d a f(FILE #) ADDWF MYREG, W, B	
 d = 0 for result destination to be WREG register d = 1 for result destination to be file register (f) a = 0 to force Access Bank a = 1 for BSR to select bank f = 8-bit file register address 	
Byte to Byte move operations (2-word)	
15 12 11 0	
OPCODE f (Source FILE #) MOVFF MYREG1, MYREG2	
15 12 11 0	
1111 f (Destination FILE #)	
f = 12-bit file register address	
Bit-oriented file register operations	
<u>15 12 11 9 8 7 0</u>	
OPCODE b(BIT #) a f(FILE #) BSF MYREG, bit, B	
b = 3-bit position of bit in file register (f)	
a = 0 to force Access Bank a = 1 for BSR to select bank	
f = 8-bit file register address	
Literal operations	
15 8 7 0	
OPCODE k (literal) MOVLW 7Fh	
k = 8-bit immediate value	
Control operations	
CALL, GOTO and Branch operations	
15 12 11 U	
n = 20-bit immediate value	
<u>15 8 7 0</u>	
OPCODE S n<7:0> (literal) CALL MYFUNC	
<u>15 12 11 0</u>	
1111 n<19:8> (literal)	
S = Fast bit	
15 11 10 0	
OPCODE n<10:0> (literal) BRA MYFUNC	
15 8 7 0	
OPCODE n<7:0> (literal) BC MYFUNC	

Mnemo	onic,	Description	Civalaa	16-E	Bit Instr	uction V	Vord	Status	Notoo
Opera	nds	Description	Cycles	MSb			LSb	Affected	Notes
BYTE-ORI	ENTED (OPERATIONS							
ADDWF	f, d, a	Add WREG and f	1	0010	01da	ffff	ffff	C, DC, Z, OV, N	1, 2
ADDWFC	f, d, a	Add WREG and Carry bit to f	1	0010	00da	ffff	ffff	C, DC, Z, OV, N	1, 2
ANDWF	f, d, a	AND WREG with f	1	0001	01da	ffff	ffff	Z, N	1,2
CLRF	f, a	Clear f	1	0110	101a	ffff	ffff	Z	2
COMF	f, d, a	Complement f	1	0001	11da	ffff	ffff	Z, N	1, 2
CPFSEQ	f, a	Compare f with WREG, Skip =	1 (2 or 3)	0110	001a	ffff	ffff	None	4
CPFSGT	f, a	Compare f with WREG, Skip >	1 (2 or 3)	0110	010a	ffff	ffff	None	4
CPFSLT	f, a	Compare f with WREG, Skip <	1 (2 or 3)	0110	000a	ffff	ffff	None	1, 2
DECF	f, d, a	Decrement f	1	0000	01da	ffff	ffff	C, DC, Z, OV, N	1, 2, 3, 4
DECFSZ	f, d, a	Decrement f, Skip if 0	1 (2 or 3)	0010	11da	ffff	ffff	None	1, 2, 3, 4
DCFSNZ	f, d, a	Decrement f, Skip if Not 0	1 (2 or 3)	0100	11da	ffff	ffff	None	1, 2
INCF	f, d, a	Increment f	1	0010	10da	ffff	ffff	C, DC, Z, OV, N	1, 2, 3, 4
INCFSZ	f, d, a	Increment f, Skip if 0	1 (2 or 3)	0011	11da	ffff	ffff	None	4
INFSNZ	f, d, a	Increment f, Skip if Not 0	1 (2 or 3)	0100	10da	ffff	ffff	None	1, 2
IORWF	f, d, a	Inclusive OR WREG with f	1	0001	00da	ffff	ffff	Z, N	1, 2
MOVF	f, d, a	Move f	1	0101	00da	ffff	ffff	Z, N	1
MOVFF	f _s , f _d	Move f _s (source) to 1st word	2	1100	ffff	ffff	ffff	None	
		f _d (destination) 2nd word		1111	ffff	ffff	ffff		
MOVWF	f, a	Move WREG to f	1	0110	111a	ffff	ffff	None	
MULWF	f, a	Multiply WREG with f	1	0000	001a	ffff	ffff	None	1, 2
NEGF	f, a	Negate f	1	0110	110a	ffff	ffff	C, DC, Z, OV, N	
RLCF	f, d, a	Rotate Left f through Carry	1	0011	01da	ffff	ffff	C, Z, N	1, 2
RLNCF	f, d, a	Rotate Left f (No Carry)	1	0100	01da	ffff	ffff	Z, N	
RRCF	f, d, a	Rotate Right f through Carry	1	0011	00da	ffff	ffff	C, Z, N	
RRNCF	f, d, a	Rotate Right f (No Carry)	1	0100	00da	ffff	ffff	Z, N	
SETF	f, a	Set f	1	0110	100a	ffff	ffff	None	1, 2
SUBFWB	f, d, a	Subtract f from WREG with	1	0101	01da	ffff	ffff	C, DC, Z, OV, N	
		Borrow							
SUBWF	f, d, a	Subtract WREG from f	1	0101	11da	ffff	ffff	C, DC, Z, OV, N	1, 2
SUBWFB	f, d, a	Subtract WREG from f with	1	0101	10da	ffff	ffff	C, DC, Z, OV, N	
		Borrow							
SWAPF	f, d, a	Swap Nibbles in f	1	0011	10da	ffff	ffff	None	4
TSTFSZ	f, a	Test f, Skip if 0	1 (2 or 3)	0110	011a	ffff	ffff	None	1, 2
XORWF	f, d, a	Exclusive OR WREG with f	1	0001	10da	ffff	ffff	Z, N	

TABLE 26-2: PIC18F87J50 FAMILY INSTRUCTION SET

Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned.

3: If the Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

4: Some instructions are two-word instructions. The second word of these instructions will be executed as a NOP unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all program memory locations have a valid instruction.

SLE	EP	Enter Slee	Enter Sleep Mode					
Synta	ax:	SLEEP						
Oper	ands:	None						
Oper	ration:	$\begin{array}{l} 00h \rightarrow WE \\ 0 \rightarrow WDT \\ 1 \rightarrow \overline{TO}, \\ 0 \rightarrow \overline{PD} \end{array}$	$\begin{array}{l} 00h \rightarrow WDT, \\ 0 \rightarrow WDT \text{ postscaler,} \\ 1 \rightarrow \overline{TO}, \\ 0 \rightarrow \overline{PD} \end{array}$					
Statu	is Affected:	TO, PD						
Enco	oding:	0000	0000	0000	0011			
Desc	cription:	The Power cleared. Th is set. The postscaler	The Power-Down status bit (PD) is cleared. The Time-out status bit (TO) is set. The Watchdog Timer and its postscaler are cleared					
		The proces with the os	The processor is put into Sleep mode with the oscillator stopped.					
Word	ds:	1						
Cycle	es:	1	1					
QC	ycle Activity:							
	Q1	Q2	Q3		Q4			
	Decode	No operation	Process Data		Go to Sleep			
Exan	nple: Before Instruc PD = After Instructio TO = PD =	SLEEP ? ? n 1 † 0						
† If	WDT causes v	wake-up, this b	it is cleared	d.				

SUBFWB	Subtract	f from W v	vith Borr	wo				
Syntax:	SUBFWB	f {,d {,a}]	ł					
Operands:	$\begin{array}{l} 0\leq f\leq 25\\ d\in [0,1]\\ a\in [0,1] \end{array}$	5						
Operation:	(W) – (f) -	$-(\overline{C}) \rightarrow des$	st					
Status Affected:	N, OV, C,	DC, Z						
Encoding:	0101	01da	ffff	ffff				
Description:	Subtract register 'f' and Carry flag (borrow) from W (2's complement method). If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored in register 'f' (default).							
	If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default).							
	If 'a' is '0' set is ena Indexed L whenever Section 2 Bit-Orien Literal O	and the ex bled, this in iteral Offse $f \le 95$ (5FI 26.2.3 "Byt ted Instruct ffset Mode	tended ir struction et Addres n). See e-Orient ctions in " for deta	nstruction operates in sing mode ed and Indexed ails.				
Words:	1							
Cycles:	1							
Q Cycle Activity:								
Q1	Q2	Q	3	Q4				
Decode	Read	Proc	ess	Write to				
	register	r Da	ta c	estination				
Example 1:	SUBFW	B REG,	1, 0					
Before Instruct	tion = 3							
W	= 2							
C After Instructio	= 1							
REG	= FF							
W	= 2							
Z	= 0							
Ν	= 1	; result is n	egative					
Example 2:	SUBFW	B REG,	0, 0					
Before Instruct	= 2							
W C	= 5 = 1							
After Instructio	n 							
W	= 2 = 3							
C	= 1							
N N	= 0	; result is p	ositive					
Example 3:	SUBFW	B REG,	1, 0					
Before Instruct	tion							
REG W	= 1 = 2							
Č	= 0							
After Instructio	n							
REG W	= 0 = 2							
Ç	= 1		~~~					
∠ N	= 0	, result is z	eiu					

26.2.5 SPECIAL CONSIDERATIONS WITH MICROCHIP MPLAB[®] IDE TOOLS

The latest versions of Microchip's software tools have been designed to fully support the extended instruction set for the PIC18F87J10 family. This includes the MPLAB C18 C Compiler, MPASM assembly language and MPLAB Integrated Development Environment (IDE).

When selecting a target device for software development, MPLAB IDE will automatically set default Configuration bits for that device. The default setting for the XINST Configuration bit is '0', disabling the extended instruction set and Indexed Literal Offset Addressing. For proper execution of applications developed to take advantage of the extended instruction set, XINST must be set during programming.

To develop software for the extended instruction set, the user must enable support for the instructions and the Indexed Addressing mode in their language tool(s). Depending on the environment being used, this may be done in several ways:

- A menu option or dialog box within the environment that allows the user to configure the language tool and its settings for the project
- · A command line option
- · A directive in the source code

These options vary between different compilers, assemblers and development environments. Users are encouraged to review the documentation accompanying their development systems for the appropriate information.

Operating Conditions: 3.0V < VDD < 3.6V, -40°C < TA < +85°C (unless otherwise stated)									
Param No.	Sym	Characteristics	Min	Тур	Max	Units	Comments		
D300	VIOFF	Input Offset Voltage	—	±5.0	±10	mV			
D301	VICM	Input Common Mode Voltage	0	_	AVDD - 1.5	V			
	Virv	Internal Reference Voltage	_	±1.2 ⁽²⁾	—	V	±1.2%		
D302	CMRR	Common Mode Rejection Ratio	55	—	_	dB			
300	TRESP	Response Time ⁽¹⁾		150	400	ns			
301	Тмс2оv	Comparator Mode Change to Output Valid	—	—	10	μS			

TABLE 28-2: COMPARATOR SPECIFICATIONS

Note 1: Response time measured with one comparator input at (VDD – 1.5)/2, while the other input transitions from Vss to VDD.

2: Tolerance is $\pm 1.2\%$.

TABLE 28-3: VOLTAGE REFERENCE SPECIFICATIONS

Operating Conditions: 3.0V < VDD < 3.6V, -40°C < TA < +85°C (unless otherwise stated)									
Param No.	Sym	Characteristics	Min	Тур	Max	Units	Comments		
D310	VRES	Resolution	VDD/24	_	VDD/32	LSb			
D311	VRAA	Absolute Accuracy	—	—	1/2	LSb			
D312	VRur	Unit Resistor Value (R)	—	2k	—	Ω			
310	TSET	Settling Time ⁽¹⁾	_	_	10	μS			

Note 1: Settling time measured while CVRR = 1 and CVR3:CVR0 bits transition from '0000' to '1111'.

TABLE 28-4: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS

Operating Conditions: -40°C < TA < +85°C (unless otherwise stated)									
Param No.	Sym	Characteristics	Min	Тур	Max	Units	Comments		
	Vrgout	Regulator Output Voltage	2.45	2.5	_	V	VDD, ENVREG = 3.0V		
	CEFC	External Filter Capacitor Value	4.7	10	_	μF	Capacitor must be low-ESR		

FIGURE 28-14: EXAMPLE SPI MASTER MODE TIMING (CKE = 1)

TABLE 28-19: EXAMPLE SPI MODE REQUIREMENTS (MASTER MODE, CKE = 1)

Param. No.	Symbol	Characteristic	Min	Max	Units	Conditions
73	TDIV2scH, TDIV2scL	Setup Time of SDIx Data Input to SCKx Edge	100	—	ns	
73A	Тв2в	Last Clock Edge of Byte 1 to the 1st Clock Edge of Byte 2	1.5 Tcy + 40		ns	
74	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	100		ns	
75	TDOR	SDOx Data Output Rise Time	—	25	ns	
76	TDOF	SDOx Data Output Fall Time	—	25	ns	
78	TscR	SCKx Output Rise Time (Master mode)	—	25	ns	
79	TscF	SCKx Output Fall Time (Master mode)	—	25	ns	
80	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	50	ns	
81	TDOV2scH, TDOV2scL	SDOx Data Output Setup to SCKx Edge	Тсү		ns	

Param No.	Symbol	Characteristic		Min	Max	Units	Conditions
70	TssL2scH, TssL2scL	$\overline{\mathrm{SSx}}\downarrow$ to SCKx \downarrow or SCKx \uparrow Input		3 Tcy		ns	
70A	TssL2WB	$\overline{SSx} \downarrow$ to Write to SSPxBUF		3 Tcy		ns	
71	TscH	SCKx Input High Time	Continuous	1.25 Tcy + 30		ns	
71A		(Slave mode)	Single byte	40		ns	(Note 1)
72	TscL	SCKx Input Low Time	Continuous	1.25 Tcy + 30	_	ns	
72A		(Slave mode)	Single byte	40		ns	(Note 1)
73	TDIV2SCH, TDIV2SCL	Setup Time of SDIx Data Input to SCKx Edge		100	—	ns	
73A	Тв2в	Last Clock Edge of Byte 1 to the First	1.5 Tcy + 40		ns	(Note 2)	
74	TscH2dlL, TscL2dlL	Hold Time of SDIx Data Input to SCKx Edge		100	—	ns	
75	TDOR	SDOx Data Output Rise Time		—	25	ns	
76	TDOF	SDOx Data Output Fall Time		—	25	ns	
77	TssH2doZ	SSx ↑ to SDOx Output High-Impedance		10	50	ns	
78	TscR	SCKx Output Rise Time (Master mode)			25	ns	
79	TscF	SCKx Output Fall Time (Master mode)			25	ns	
80	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge		—	50	ns	
81	TDOV2SCH, TDOV2SCL	SDOx Data Output Setup to SCKx Edge		Тсү		ns	
82	TssL2doV	SDOx Data Output Valid after $\overline{SSx} \downarrow Edge$		_	50	ns	
83	TscH2ssH, TscL2ssH	SSx ↑ after SCKx Edge		1.5 Tcy + 40	—	ns	

TABLE 28-21: EXAMPLE SPI SLAVE MODE REQUIREMENTS (CKE = 1)

Note 1: Requires the use of Parameter #73A.

2: Only if Parameter #71A and #72A are used.

FIGURE 28-24: USB SIGNAL TIMING

TABLE 28-30: USB LOW-SPEED TIMING REQUIREMENTS

Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions
	Tlr	Transition Rise Time	75	_	300	ns	C∟ = 200 to 600 pF
	Tlf	Transition Fall Time	75	-	300	ns	CL = 200 to 600 pF
	TLRFM	Rise/Fall Time Matching	80	_	125	%	

TABLE 28-31: USB FULL-SPEED REQUIREMENTS

Param No.	Symbol	Characteristic	Min	Тур	Мах	Units	Conditions
	Tfr	Transition Rise Time	4	_	20	ns	CL = 50 pF
	Tff	Transition Fall Time	4	-	20	ns	CL = 50 pF
	TFRFM	Rise/Fall Time Matching	90	_	111.1	%	