

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

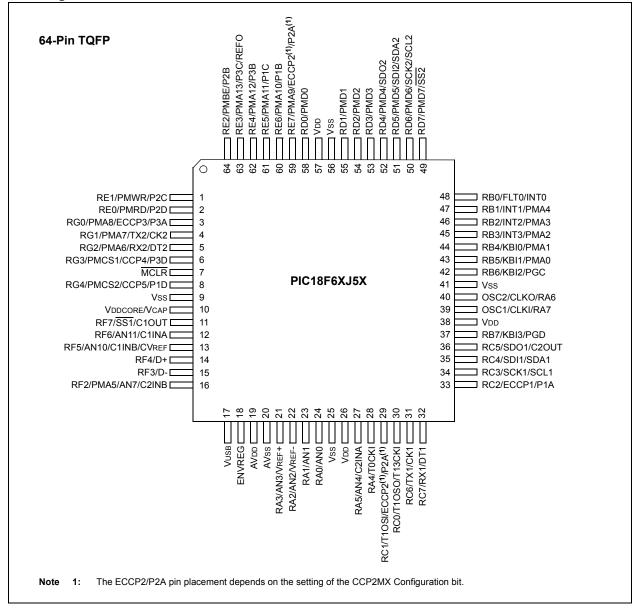
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	49
Program Memory Size	96KB (48K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f66j55t-i-pt

Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC18F87J50 FAMILY

	MSSP		P	F	ors		Bus	٩					
Device	Flash Program Memory (bytes)	SRAM Data Memory (bytes)	I/O	10-Bit A/D (ch)	CCP/ ECCP (PWM)		SPI	Master I ² C™	EUSART	Comparators	Timers 8/16-Bit	External E	dSd/dWd
PIC18F65J50	32K	3904*	49	8	2/3	2	Y	Y	2	2	2/3	Ν	Y
PIC18F66J50	64K	3904*	49	8	2/3	2	Y	Y	2	2	2/3	Ν	Y
PIC18F66J55	96K	3904*	49	8	2/3	2	Y	Y	2	2	2/3	Ν	Y
PIC18F67J50	128K	3904*	49	8	2/3	2	Y	Y	2	2	2/3	Ν	Y
PIC18F85J50	32K	3904*	65	12	2/3	2	Y	Y	2	2	2/3	Y	Y
PIC18F86J50	64K	3904*	65	12	2/3	2	Y	Y	2	2	2/3	Y	Y
PIC18F86J55	96K	3904*	65	12	2/3	2	Y	Y	2	2	2/3	Y	Y
PIC18F87J50	128K	3904*	65	12	2/3	2	Y	Y	2	2	2/3	Y	Y

* Includes the dual access RAM used by the USB module which is shared with data memory.

Pin Diagrams

Dis No.	Pin Number	Pin	Buffer	Description				
Pin Name	64-TQFP	Туре	Туре	Description				
				PORTA is a bidirectional I/O port.				
RA0/AN0	24							
RA0		I/O	TTL	Digital I/O.				
AN0		I	Analog	Analog input 0.				
RA1/AN1	23							
RA1		I/O	TTL	Digital I/O.				
AN1		I	Analog	Analog input 1.				
RA2/AN2/VREF-	22							
RA2		I/O	TTL	Digital I/O.				
AN2		I	Analog	Analog input 2.				
VREF-		I	Analog	A/D reference voltage (low) input.				
RA3/AN3/VREF+	21							
RA3		I/O	TTL	Digital I/O.				
AN3		I.	Analog	Analog input 3.				
VREF+		I	Analog	A/D reference voltage (high) input.				
RA4/T0CKI	28							
RA4		I/O	ST	Digital I/O.				
TOCKI		I	ST	Timer0 external clock input.				
RA5/AN4/C2INA	27							
RA5		I/O	TTL	Digital I/O.				
AN4		I	Analog	Analog input 4.				
C2INA			Analog	Comparator 2 input A				
RA6	—	—	-	See the OSC2/CLKO/RA6 pin.				
RA7	_	_	_	See the OSC1/CLKI/RA7 pin.				
Legend: TTL = TTL	compatible input			CMOS = CMOS compatible input or output				
ST = Sch	mitt Trigger input w	vith CMC	S levels	Analog = Analog input				
l = Inpu				O = Output				
P = Pow	-			OD = Open-Drain (no P diode to VDD)				

TABLE 1-3: PIC18F6XJ5X PINOUT I/O DESCRIPT	IONS (CONTINUED)
--	------------------

Note 1: Default assignment for ECCP2/P2A when CCP2MX Configuration bit is set.

2: Alternate assignment for ECCP2/P2A when CCP2MX Configuration bit is cleared.

3: RA7 and RA6 will be disabled if OSC1 and OSC2 are used for the clock function.

File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on Page:
TOSU	_	_	_	Top-of-Stack	Upper Byte (TOS<20:16>)			0 0000	61, 73
TOSH	Top-of-Stack	High Byte (TC)S<15:8>)						0000 0000	61, 73
TOSL	Top-of-Stack	Low Byte (TO	S<7:0>)						0000 0000	61, 73
STKPTR	STKFUL	STKUNF	—	SP4	SP3	SP2	SP1	SP0	00-0 0000	61, 74
PCLATU	_	_	bit 21 ⁽¹⁾	Holding Reg	ister for PC<2	0:16>			0 0000	61, 73
PCLATH	Holding Regi	ster for PC<15	5:8>						0000 0000	61, 73
PCL	PC Low Byte	(PC<7:0>)							0000 0000	61, 73
TBLPTRU	—	—	bit 21	Program Me	mory Table Po	ointer Upper B	yte (TBLPTR∢	<20:16>)	00 0000	61, 106
TBLPTRH	Program Mer	mory Table Po	inter High Byt	e (TBLPTR<1	5:8>)				0000 0000	61, 106
TBLPTRL	Program Mer	mory Table Po	inter Low Byte	e (TBLPTR<7	:0>)				0000 0000	61, 106
TABLAT	Program Mer	mory Table Lat	ch						0000 0000	61, 106
PRODH	Product Reg	ister High Byte	•						XXXX XXXX	61, 119
PRODL	Product Reg	ister Low Byte							XXXX XXXX	61, 119
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	0000 000x	61, 123
INTCON2	RBPU	INTEDG0	INTEDG1	INTEDG2	INTEDG3	TMR0IP	INT3IP	RBIP	1111 1111	61, 123
INTCON3	INT2IP	INT1IP	INT3IE	INT2IE	INT1IE	INT3IF	INT2IF	INT1IF	1100 0000	61, 123
INDF0	Uses content	ts of FSR0 to a	address data i	memory – valu	ue of FSR0 no	t changed (no	t a physical re	gister)	N/A	61, 91
POSTINC0	Uses content	ts of FSR0 to a	address data i	memory – valu	ue of FSR0 po	st-incremente	d (not a physi	cal register)	N/A	61, 92
POSTDEC0	Uses content	ts of FSR0 to a	address data i	memory – valu	ue of FSR0 po	st-decremente	ed (not a phys	ical register)	N/A	61, 92
PREINC0	Uses content	ts of FSR0 to a	address data i	memory – valu	ue of FSR0 pre	e-incremented	(not a physic	al register)	N/A	61, 92
PLUSW0		ts of FSR0 to a 0 offset by W	address data i	memory – valu	ue of FSR0 pre	e-incremented	(not a physic	al register) –	N/A	61, 92
FSR0H	_	_	_	_	Indirect Data	Memory Add	ress Pointer 0	High Byte	xxxx	61, 91
FSR0L	Indirect Data	Memory Addr	ess Pointer 0	Low Byte					XXXX XXXX	61, 91
WREG	Working Reg	ister							XXXX XXXX	61, 75
INDF1	Uses content	ts of FSR1 to a	address data i	memory – valu	ue of FSR1 no	t changed (no	t a physical re	egister)	N/A	61, 91
POSTINC1	Uses content	ts of FSR1 to a	address data i	memory – valu	ue of FSR1 po	st-incremente	d (not a physi	cal register)	N/A	61, 92
POSTDEC1	Uses content	ts of FSR1 to a	address data i	memory – valu	ue of FSR1 po	st-decremente	ed (not a phys	ical register)	N/A	61, 92
PREINC1	Uses content	ts of FSR1 to a	address data i	memory – valu	ue of FSR1 pre	e-incremented	(not a physic	al register)	N/A	61, 92
PLUSW1		ts of FSR1 to a 1 offset by W	address data i	memory – valu	ue of FSR1 pre	e-incremented	(not a physic	al register) –	N/A	61, 92
FSR1H	_	_	_	_	Indirect Data	Memory Add	ress Pointer 1	High Byte	xxxx	61, 91
FSR1L	Indirect Data	Memory Addr	ess Pointer 1	Low Byte					XXXX XXXX	61, 91
BSR	_	_	_	_	Bank Select	Register			0000	61, 78
INDF2	Uses content	ts of FSR2 to a	address data i	memory – valu	ue of FSR2 no	t changed (no	t a physical re	egister)	N/A	62, 91
POSTINC2	Uses content	ts of FSR2 to a	address data i	memory – valu	ue of FSR2 po	st-incremente	d (not a physi	cal register)	N/A	62, 92
POSTDEC2	Uses content	ts of FSR2 to a	address data i	memory - valu	ue of FSR2 po	st-decremente	ed (not a phys	ical register)	N/A	62, 92
PREINC2	Uses content	ts of FSR2 to a	address data i	memory – valu	ue of FSR2 pre	e-incremented	(not a physic	al register)	N/A	62, 92
PLUSW2		ts of FSR2 to a 2 offset by W	address data i	memory – valu	ue of FSR2 pro	e-incremented	(not a physic	al register) –	N/A	62, 92
FSR2H	_	_	_	_	Indirect Data	Memory Add	ress Pointer 2	High Byte	xxxx	62, 91

IADLE 3-3. REGISTER FILE SUIVIVIART (FICTORO/JSU FAIVILT	TABLE 5-5:	REGISTER FILE SUMMARY (PIC18F87J50 FAMILY)
--	------------	--

Legend: Note 1

d: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition. Bold indicates shared-access SFRs.
 Bit 21 of the PC is only available in Serial Programming modes.

2: Default (legacy) SFR at this address, available when WDTCON<4> = 0.

3: Configuration SFR, overlaps with default SFR at this address; available only when WDTCON<4> = 1.

4: Reset value is '0' when Two-Speed Start-up is enabled and '1' if disabled.

5: The SSPxMSK registers are only accessible when SSPxCON2<3:0> = 1001.

6: Alternate names and definitions for these bits when the MSSP module is operating in I²C™ Slave mode. See Section 19.4.3.2 "Address Masking Modes" for details

7: These bits and/or registers are only available in 80-pin devices; otherwise, they are unimplemented and read as '0'. Reset values are shown for 80-pin devices.

8: The PMADDRH/PMDOUT1H and PMADDRL/PMDOUT1L register pairs share the physical registers and addresses, but have different functions determined by the module's operating mode. See Section 11.1.2 "Data Registers" for more information.

File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on Page:	
ECCP1AS	ECCP1ASE	ECCP1AS2	ECCP1AS1	ECCP1AS0	PSS1AC1	PSS1AC0	PSS1BD1	PSS1BD0	0000 0000	63, 232	
ECCP1DEL	P1RSEN	P1DC6	P1DC5	P1DC4	P1DC3	P1DC2	P1DC1	P1DC0	0000 0000	63, 232	
CCPR1H	Capture/Corr	apture/Compare/PWM Register 1 HIgh Byte									
CCPR1L	Capture/Corr	apture/Compare/PWM Register 1 Low Byte									
CCP1CON	P1M1	P1M0	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	0000 0000	63, 232	
ECCP2AS	ECCP2ASE	ECCP2AS2	ECCP2AS1	ECCP2AS0	PSS2AC1	PSS2AC0	PSS2BD1	PSS2BD0	0000 0000	63, 232	
ECCP2DEL	P2RSEN	P2DC6	P2DC5	P2DC4	P2DC3	P2DC2	P2DC1	P2DC0	0000 0000	63, 232	
CCPR2H	Capture/Corr	pare/PWM Re	egister 2 High	Byte					XXXX XXXX	63, 232	
CCPR2L	Capture/Corr	pare/PWM Re	egister 2 Low	Byte					XXXX XXXX	63, 232	
CCP2CON	P2M1	P2M0	DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0	0000 0000	63, 232	
ECCP3AS	ECCP3ASE	ECCP3AS2	ECCP3AS1	ECCP3AS0	PSS3AC1	PSS3AC0	PSS3BD1	PSS3BD0	0000 0000	63, 232	
ECCP3DEL	P3RSEN	P3DC6	P3DC5	P3DC4	P3DC3	P3DC2	P3DC1	P3DC0	0000 0000	63, 232	
CCPR3H	Capture/Corr	pare/PWM Re	egister 3 High	Byte	•	•	•	•	XXXX XXXX	63, 232	
CCPR3L	Capture/Corr	pare/PWM Re	egister 3 Low	Byte					XXXX XXXX	63, 232	
CCP3CON	P3M1	P3M0	DC3B1	DC3B0	CCP3M3	CCP3M2	CCP3M1	CCP3M0	0000 0000	63, 232	
SPBRG1	EUSART1 Ba	aud Rate Gen	erator Registe	r Low Byte	•	•	•	•	0000 0000	63, 283	
RCREG1	EUSART1 R	EUSART1 Receive Register									
TXREG1	EUSART1 Tr	ansmit Regist	er						XXXX XXXX	63, 289, 290	
TXSTA1	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	0000 0010	63, 289	
RCSTA1	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	63, 291	
SPBRG2	EUSART2 Ba	aud Rate Gen	erator Registe	er Low Byte					0000 0000	63, 283	
RCREG2	EUSART2 R	eceive Registe	er						0000 0000	63, 291, 292	
TXREG2	EUSART2 Tr	ansmit Regist	er						0000 0000	63, 289, 290	
TXSTA2	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	0000 0010	63, 289	
EECON2	Program Mer	mory Control F	Register 2 (not	t a physical reg	gister)					63, 98	
EECON1	_	_	WPROG	FREE	WRERR	WREN	WR		00 x00-	63, 98	
IPR3	SSP2IP	BCL2IP	RC2IP	TX2IP	TMR4IP	CCP5IP	CCP4IP	CCP3IP	1111 1111	64, 132	
PIR3	SSP2IF	BCL2IF	RC2IF	TX2IF	TMR4IF	CCP5IF	CCP4IF	CCP3IF	0000 0000	64, 126	
PIE3	SSP2IE	BCL2IE	RC2IE	TX2IE	TMR4IE	CCP5IE	CCP4IE	CCP3IE	0000 0000	64, 129	
IPR2	OSCFIP	CM2IP	CM1IP	USBIP	BCL1IP	LVDIP	TMR3IP	CCP2IP	1111 1111	64, 132	
PIR2	OSCFIF	CM2IF	CM1IF	USBIF	BCL1IF	LVDIF	TMR3IF	CCP2IF	0000 0000	64, 126	
PIE2	OSCFIE	CM2IE	CM1IE	USBIE	BCL1IE	LVDIE	TMR3IE	CCP2IE	0000 0000	64, 129	
IPR1	PMPIP	ADIP	RC1IP	TX1IP	SSP1IP	CCP1IP	TMR2IP	TMR1IP	1111 1111	64, 132	
PIR1	PMPIF	ADIF	RC1IF	TX1IF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	0000 0000	64, 126	
PIE1	PMPIE	ADIE	RC1IE	TX1IE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	0000 0000	64, 129	
1 1 - 1						1	-				
RCSTA2	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	64, 291	

TABLE 5-5: REGISTER FILE SUMMARY (PIC18F87J50 FAMILY) (CONTINUED)

Legend:

nd: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition. Bold indicates shared-access SFRs.

Note 1: Bit 21 of the PC is only available in Serial Programming modes.

2: Default (legacy) SFR at this address, available when WDTCON<4> = 0.

3: Configuration SFR, overlaps with default SFR at this address; available only when WDTCON<4> = 1.

4: Reset value is '0' when Two-Speed Start-up is enabled and '1' if disabled.

5: The SSPxMSK registers are only accessible when SSPxCON2<3:0> = 1001.

6: Alternate names and definitions for these bits when the MSSP module is operating in I²C™ Slave mode. See Section 19.4.3.2 "Address Masking Modes" for details

7: These bits and/or registers are only available in 80-pin devices; otherwise, they are unimplemented and read as '0'. Reset values are shown for 80-pin devices.

8: The PMADDRH/PMDOUT1H and PMADDRL/PMDOUT1L register pairs share the physical registers and addresses, but have different functions determined by the module's operating mode. See Section 11.1.2 "Data Registers" for more information.

5.3.6 STATUS REGISTER

The STATUS register, shown in Register 5-4, contains the arithmetic status of the ALU. The STATUS register can be the operand for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC, C, OV or N bits, then the write to these five bits is disabled.

These bits are set or cleared according to the device logic. Therefore, the result of an instruction with the STATUS register as destination may be different than intended. For example, CLRF STATUS will set the Z bit but leave the other bits unchanged. The STATUS

register then reads back as '000u u1uu'. It is recommended, therefore, that only BCF, BSF, SWAPF, MOVFF and MOVWF instructions are used to alter the STATUS register because these instructions do not affect the Z, C, DC, OV or N bits in the STATUS register.

For other instructions not affecting any Status bits, see the instruction set summaries in Table 26-2 and Table 26-3.

Note: The C and DC bits operate as a borrow and digit borrow bit respectively, in subtraction.

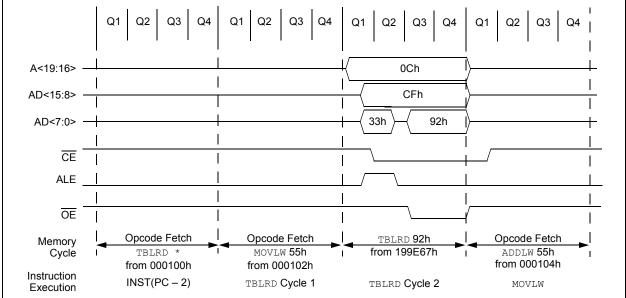
REGISTER 5-4: STATUS REGISTER

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x				
_	—	—	Ν	OV	Z	DC ⁽¹⁾	C ⁽²⁾				
bit 7							bit (
Legend:											
R = Read		W = Writable I	oit	U = Unimplem	nented bit, rea	ad as '0'					
-n = Valu	e at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown				
bit 7-5	Unimplem	ented: Read as '0)'								
bit 4	N: Negative	e bit									
		used for signed ari LU MSB = 1).	thmetic (2's c	omplement). It i	ndicates whe	ther the result wa	as				
		was negative was positive									
bit 3	OV: Overflo	OV: Overflow bit									
		This bit is used for signed arithmetic (2's complement). It indicates an overflow of the 7-bit magnitude which causes the sign bit (bit 7) to change state.									
		w occurred for sig	ned arithmeti	c (in this arithme	etic operation)					
bit 2	Z: Zero bit	Z: Zero bit									
		sult of an arithmet sult of an arithmet			0						
bit 1		arry/ borrow bit ⁽¹⁾ , ADDLW, SUBL	w and SUBWF	instructions:							
		-out from the 4th I y-out from the 4th			urred						
bit 0	C: Carry/bo	prrow bit ⁽²⁾									
		, ADDLW, SUBL									
		-out from the Mos y-out from the Mo	U U								
Note 1:		polarity is reverse otate (RRF, RLF)				•					
2:		polarity is reverse otate (RRF, RLF)									

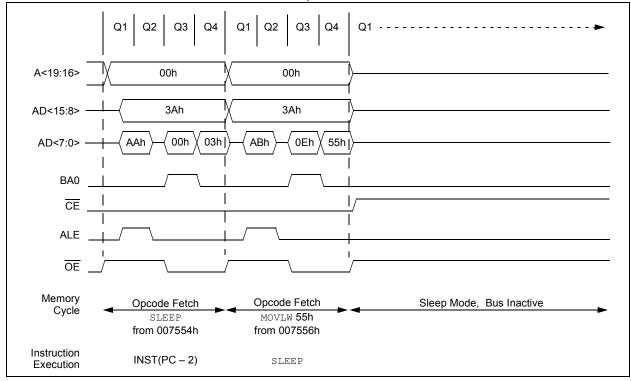
REGISTER 6-1: EECON1: EEPROM CONTROL REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-x	R/W-0	R/S-0	U-0
—	—	WPROG	FREE	WRERR ⁽¹⁾	WREN	WR	—
bit 7							bit 0

Legend:	S = Settable only bit (can	S = Settable only bit (cannot be cleared in software)					
R = Readable bit	W = Writable bit	U = Unimplemented bi	t, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				


bit 7-6	6 Unimplemented: Read as '0'
bit 5	WPROG: One Word-Wide Program bit
	 1 = Program 2 bytes on the next WR command 0 = Program 64 bytes on the next WR command
bit 4	FREE: Flash Row Erase Enable bit
	 1 = Erase the program memory row addressed by TBLPTR on the next WR command (cleared by completion of erase operation) 0 = Perform write only
bit 3	WRERR: Flash Program Error Flag bit ⁽¹⁾
	 1 = A write operation is prematurely terminated (any Reset during self-timed programming in normal operation, or an improper write attempt) 0 = The write operation completed
bit 2	WREN: Flash Program Write Enable bit
	 1 = Allows write cycles to Flash program memory 0 = Inhibits write cycles to Flash program memory
bit 1	WR: Write Control bit
	 1 = Initiates a program memory erase cycle or write cycle (The operation is self-timed and the bit is cleared by hardware once write is complete. The WR bit can only be set (not cleared) in software.) 0 = Write cycle is complete
bit 0	Unimplemented: Read as '0'
Nata	4. When a WOEDD second the EEDOD and OEOO bits are not closed. This allows to size of the second

Note 1: When a WRERR occurs, the EEPGD and CFGS bits are not cleared. This allows tracing of the error condition.


7.7.1 8-BIT MODE TIMING

The presentation of control signals on the External Memory Bus is different for the various operating modes. Typical signal timing diagrams are shown in Figure 7-7 and Figure 7-8.

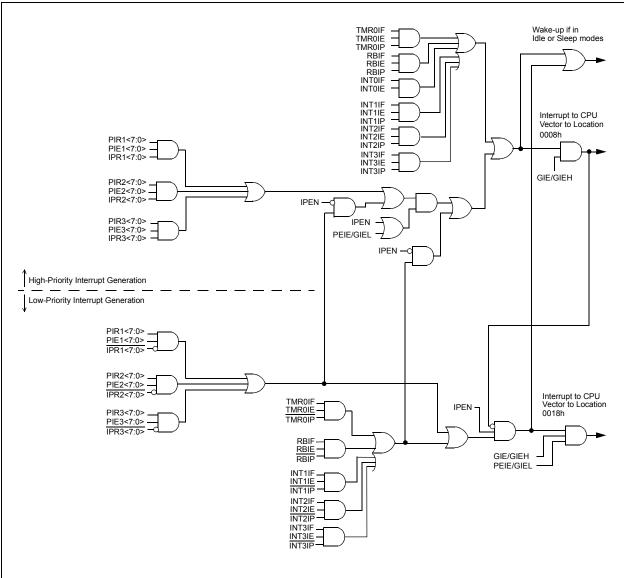


FIGURE 7-8: EXTERNAL MEMORY BUS TIMING FOR SLEEP (EXTENDED MICROCONTROLLER MODE)

PIC18F87J50 FAMILY

REGISTER 11-4: PMMODEL: PARALLEL PORT MODE REGISTER LOW BYTE

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
WAITB1 ⁽¹⁾	WAITB0 ⁽¹⁾	WAITM3	WAITM2	WAITM1	WAITM0	WAITE1 ⁽¹⁾	WAITE0 ⁽¹⁾			
bit 7				·			bit 0			
Logond:										
Legend: R = Readable	hit	W = Writable	hit	II – Unimplon	nented bit, read	d ac '0'				
			UIL	-						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown				
bit 5-2	 10 = Data wait of 3 TCY; multiplexed address phase of 3 TCY 01 = Data wait of 2 TCY; multiplexed address phase of 2 TCY 00 = Data wait of 1 TCY; multiplexed address phase of 1 TCY 5-2 WAITM3:WAITM0: Read to Byte Enable Strobe Wait State Configuration bits 									
	1111 = Wait of additional 15 Tcy									
	 0001 = Wait of additional 1 Tcy 0000 = No additional wait cycles (operation forced into one Tcy)									
bit 1-0	WAITE1:WAI	TE0: Data Hold	After Strobe	Wait State Conf	iguration bits ⁽¹)				
	11 = Wait of 4 Tcy									
	10 = Wait of 3									
	01 = Wait of 2									
	00 = Wait of 1	IICY								

Note 1: WAITB and WAITE bits are ignored whenever WAITM3:WAITM0 = 0000.

REGISTER 11-5: PMEH: PARALLEL PORT ENABLE REGISTER HIGH BYTE

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PTEN15	PTEN14	PTEN13	PTEN12	PTEN11	PTEN10	PTEN9	PTEN8
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6	PTEN15:PTEN14: PMCSx Strobe Enable bits
	 1 = PMA15 and PMA14 function as either PMA<15:14> or PMCS2 and PMCS1 0 = PMA15 and PMA14 function as port I/O
bit 5-0	PTEN13:PTEN8: PMP Address Port Enable bits
	 1 = PMA<13:8> function as PMP address lines 0 = PMA<13:8> function as port I/O

18.0 ENHANCED CAPTURE/ COMPARE/PWM (ECCP) MODULE

In the PIC18F87J10 family of devices, three of the CCP modules are implemented as standard CCP modules with Enhanced PWM capabilities. These include the provision for 2 or 4 output channels, user-selectable polarity, dead-band control and automatic shutdown and restart. The Enhanced features are discussed in detail in **Section 18.4 "Enhanced PWM Mode"**. Capture, Compare and single-output PWM functions of the ECCP module are the same as described for the standard CCP module.

The control register for the Enhanced CCP module is shown in Register 18-1. It differs from the CCP4CON/ CCP5CON registers in that the two Most Significant bits are implemented to control PWM functionality.

In addition to the expanded range of modes available through the Enhanced CCPxCON register, the ECCP modules each have two additional registers associated with Enhanced PWM operation and auto-shutdown features. They are:

- ECCPxDEL (ECCPx PWM Delay)
- ECCPxAS (ECCPx Auto-Shutdown Control)

REGISTER 18-1:	CCPxCON: ECCPx CONTROL REGISTER (ECCP1/ECCP2/ECCP3)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
PxM1	PxM0	DCxB1	DCxB0	CCPxM3	CCPxM2	CCPxM1	CCPxM0				
bit 7							bit C				
Legend:											
R = Readab	le bit	W = Writable I	oit	U = Unimplem	nented bit, read	d as '0'					
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown				
bit 7-6	PxM1:PxM0:	Enhanced PWM	Output Config	uration bits							
		<u>CPxM2 = 00, 01,</u> signed as Captur		ut/output: DvD F		and an part pipe					
	If CCPxM3:C	•	e/Compare inp	иі/оцриі, Рхв, г	-xc, FxD assig	led as port pins					
			lulated; PxB,	PxC, PxD assig	ned as port pir	IS					
		00 = Single output: PxA modulated; PxB, PxC, PxD assigned as port pins 01 = Full-bridge output forward: P1D modulated; P1A active; P1B, P1C inactive									
	10 = Half-bridge output: P1A, P1B modulated with dead-band control; P1C, P1D assigned as port pins										
	11 = Full-bridge output reverse: P1B modulated; P1C active; P1A, P1D inactive										
bit 5-4	DCxB1:DCxB0: PWM Duty Cycle bit 1 and bit 0										
	<u>Capture mode:</u> Unused.										
	Compare mode:										
	Unused.										
	<u>PWM mode:</u> These bits are the two LSbs of the 10-bit PWM duty cycle. The eight MSbs of the duty cycle are found in CCPRxL.										
bit 3-0	CCPxM3:CCPxM0: ECCPx Module Mode Select bits										
	0000 = Capture/Compare/PWM off (resets ECCPx module)										
	0001 = Reserved										
	0010 = Compare mode: toggle output on match										
	0011 = Capture mode 0100 = Capture mode: every falling edge										
	0101 = Capture mode: every rising edge										
	0110 = Capture mode: every 4th rising edge 0111 = Capture mode, every 16th rising edge										
	1000 = Compare mode: initialize ECCPx pin low; set output on compare match (set CCPxIF)										
	1001 = Compare mode: initialize ECCPx pin high; clear output on compare match (set CCPxIF)										
	1010 = Compare mode: generate software interrupt only; ECCPx pin reverts to I/O state 1011 = Compare mode: trigger special event (ECCPx resets TMR1 or TMR3, sets CCPxIF bit, ECCP2										
	trigge	er also starts A/D	conversion if	A/D module is en	nabled) ⁽¹⁾	-, - 0 0 0 0 1 All	,				
		1 mode: PxA, Px0 1 mode: PxA, Px0									
		1 mode: PxA, Px0									
		1 mode: PxA, Px									

Note 1: Implemented only for ECCP1 and ECCP2; same as '1010' for ECCP3.

19.3.7 SLAVE MODE

In Slave mode, the data is transmitted and received as the external clock pulses appear on SCKx. When the last bit is latched, the SSPxIF interrupt flag bit is set.

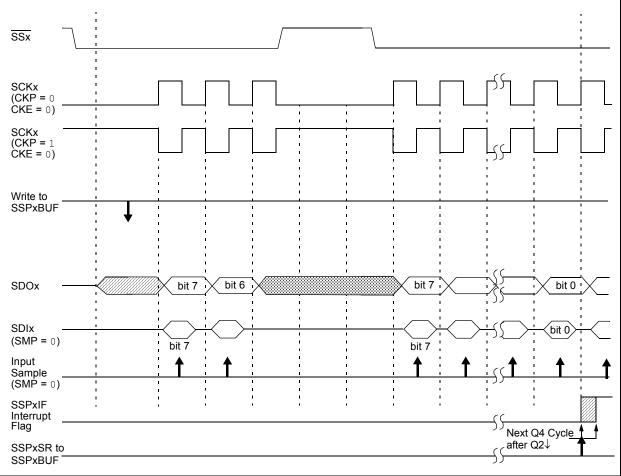
While in Slave mode, the external clock is supplied by the external clock source on the SCKx pin. This external clock must meet the minimum high and low times as specified in the electrical specifications.

While in Sleep mode, the slave can transmit/receive data. When a byte is received, the device can be configured to wake-up from Sleep.

19.3.8 SLAVE SELECT SYNCHRONIZATION

The \overline{SSx} pin allows a Synchronous Slave mode. The SPI must be in Slave mode with the \overline{SSx} pin control enabled (SSPxCON1<3:0> = 04h). When the \overline{SSx} pin is low, transmission and reception are enabled and the SDOx pin is driven. When the \overline{SSx} pin goes high, the SDOx pin is no longer driven, even if in the middle of a

transmitted byte and becomes a floating output. External pull-up/pull-down resistors may be desirable depending on the application.


Note 1:	When	the	SPI	is	in	Slave	mode
	with	SSx	pin	C	contr	ol e	nabled
	(SSPx	CON1	<3:0>	= 0	100), the	SPI
	module	e will re	set if th	ne S	Sx p	in is set	to VDD.

2: If the SPI is used in Slave mode with CKE set, then the SSx pin control must be enabled.

When the SPI module resets, the bit counter is forced to '0'. This can be done by either forcing the SSx pin to a high level or clearing the SSPEN bit.

To emulate two-wire communication, the SDOx pin can be connected to the SDIx pin. When the SPI needs to operate as a receiver, the SDOx pin can be configured as an input. This disables transmissions from the SDOx. The SDIx can always be left as an input (SDIx function) since it cannot create a bus conflict.

19.4.3.5 Reception

When the R/\overline{W} bit of the address byte is clear and an address match occurs, the R/\overline{W} bit of the SSPxSTAT register is cleared. The received address is loaded into the SSPxBUF register and the SDAx line is held low (ACK).

When the address byte overflow condition exists, then the no Acknowledge (ACK) pulse is given. An overflow condition is defined as either bit, BF (SSPxSTAT<0>), is set or bit, SSPOV (SSPxCON1<6>), is set.

An MSSP interrupt is generated for each data transfer byte. The interrupt flag bit, SSPxIF, must be cleared in software. The SSPxSTAT register is used to determine the status of the byte.

If SEN is enabled (SSPxCON2<0> = 1), SCLx will be held low (clock stretch) following each data transfer. The clock must be released by setting bit, CKP (SSPxCON1<4>). See **Section 19.4.4** "Clock **Stretching**" for more details.

19.4.3.6 Transmission

When the R/W bit of the incoming address byte is set and an address match occurs, the R/W bit of the SSPxSTAT register is set. The received address is loaded into the SSPxBUF register. The ACK pulse will be sent on the ninth bit and pin SCLx is held low regardless of SEN (see **Section 19.4.4 "Clock Stretching"** for more details). By stretching the clock, the master will be unable to assert another clock pulse until the slave is done preparing the transmit data. The transmit data must be loaded into the SSPxBUF register which also loads the SSPxSR register. Then, pin SCLx should be enabled by setting bit, CKP (SSPxCON1<4>). The eight data bits are shifted out on the falling edge of the SCLx input. This ensures that the SDAx signal is valid during the SCLx high time (Figure 19-10).

The ACK pulse from the master-receiver is latched on the rising edge of the <u>ninth</u> SCLx input pulse. If the SDAx line is high (not ACK), then the data transfer is complete. In this case, when the ACK is latched by the slave, the slave logic is reset (resets the SSPxSTAT register) and the slave monitors for another occurrence of the Start bit. If the SDAx line was low (ACK), the next transmit data must be loaded into the SSPxBUF register. Again, pin SCLx must be enabled by setting bit, CKP.

An MSSP interrupt is generated for each data transfer byte. The SSPxIF bit must be cleared in software and the SSPxSTAT register is used to determine the status of the byte. The SSPxIF bit is set on the falling edge of the ninth clock pulse.

19.4.6.1 I²C Master Mode Operation

The master device generates all of the serial clock pulses and the Start and Stop conditions. A transfer is ended with a Stop condition or with a Repeated Start condition. Since the Repeated Start condition is also the beginning of the next serial transfer, the I²C bus will not be released.

In Master Transmitter mode, serial data is output through SDAx while SCLx outputs the serial clock. The first byte transmitted contains the slave address of the receiving device (7 bits) and the Read/Write (R/W) bit. In this case, the R/W bit will be logic '0'. Serial data is transmitted 8 bits at a time. After each byte is transmitted, an Acknowledge bit is received. Start and Stop conditions are output to indicate the beginning and the end of a serial transfer.

In Master Receive mode, the first byte transmitted contains the slave address of the transmitting device (7 bits) and the R/\overline{W} bit. In this case, the R/\overline{W} bit will be logic '1'. Thus, the first byte transmitted is a 7-bit slave address, followed by a '1' to indicate the receive bit. Serial data is received via SDAx, while SCLx outputs the serial clock. Serial data is received, an Acknowledge bit is transmitted. Start and Stop conditions indicate the beginning and end of transmission.

The Baud Rate Generator, used for the SPI mode operation, is used to set the SCLx clock frequency for either 100 kHz, 400 kHz or 1 MHz I^2C operation. See **Section 19.4.7 "Baud Rate"** for more details.

A typical transmit sequence would go as follows:

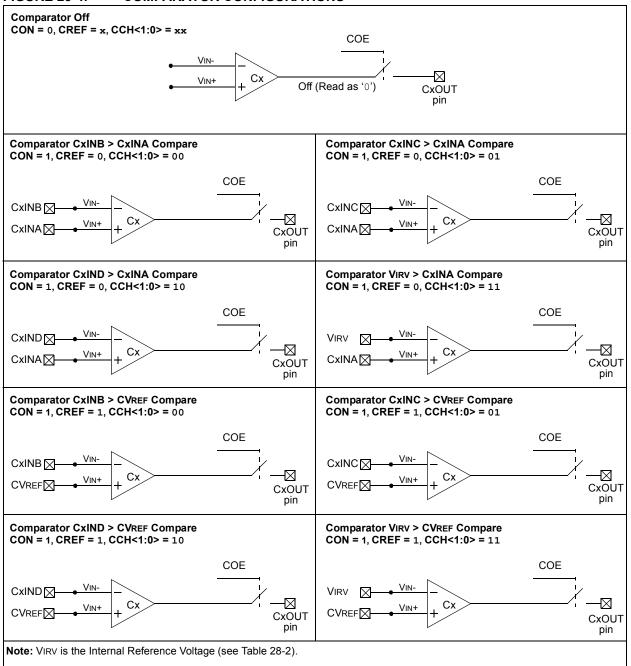
- 1. The user generates a Start condition by setting the Start Enable bit, SEN (SSPxCON2<0>).
- SSPxIF is set. The MSSP module will wait the required start time before any other operation takes place.
- 3. The user loads the SSPxBUF with the slave address to transmit.
- 4. Address is shifted out the SDAx pin until all 8 bits are transmitted.
- 5. The MSSP module shifts in the ACK bit from the slave device and writes its value into the SSPxCON2 register (SSPxCON2<6>).
- The MSSP module generates an interrupt at the end of the ninth clock cycle by setting the SSPxIF bit.
- 7. The user loads the SSPxBUF with eight bits of data.
- 8. Data is shifted out the SDAx pin until all 8 bits are transmitted.
- The MSSP module shifts in the ACK bit from the slave device and writes its value into the SSPxCON2 register (SSPxCON2<6>).
- 10. The MSSP module generates an interrupt at the end of the ninth clock cycle by setting the SSPxIF bit.
- 11. The user generates a Stop condition by setting the Stop Enable bit, PEN (SSPxCON2<2>).
- 12. Interrupt is generated once the Stop condition is complete.

22.5.2 USB INTERRUPT ENABLE REGISTER (UIE)

The USB Interrupt Enable register (Register 22-8) contains the enable bits for the USB status interrupt sources. Setting any of these bits will enable the respective interrupt source in the UIR register.

The values in this register only affect the propagation of an interrupt condition to the microcontroller's interrupt logic. The flag bits are still set by their interrupt conditions, allowing them to be polled and serviced without actually generating an interrupt.

REGISTER 22-8: UIE: USB INTERRUPT ENABLE REGISTER


U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	SOFIE	STALLIE	IDLEIE	TRNIE	ACTVIE	UERRIE	URSTIE
bit 7							bit 0

Legend:					
R = Readable bit W = Writable bit		U = Unimplemented bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 7	Unimplemented: Read as '0'
bit 6	SOFIE: Start-of-Frame Token Interrupt Enable bit
	 1 = Start-of-Frame token interrupt enabled 0 = Start-of-Frame token interrupt disabled
bit 5	STALLIE: STALL Handshake Interrupt Enable bit
	1 = STALL interrupt enabled
	0 = STALL interrupt disabled
bit 4	IDLEIE: Idle Detect Interrupt Enable bit
	1 = Idle detect interrupt enabled
	0 = Idle detect interrupt disabled
bit 3	TRNIE: Transaction Complete Interrupt Enable bit
	1 = Transaction interrupt enabled
	0 = Transaction interrupt disabled
bit 2	ACTVIE: Bus Activity Detect Interrupt Enable bit
	1 = Bus activity detect interrupt enabled
	0 = Bus activity detect interrupt disabled
bit 1	UERRIE: USB Error Interrupt Enable bit
	1 = USB error interrupt enabled
	0 = USB error interrupt disabled
bit 0	URSTIE: USB Reset Interrupt Enable bit
	1 = USB Reset interrupt enabled
	0 = USB Reset interrupt disabled

PIC18F87J50 FAMILY

FIGURE 23-4: COMPARATOR CONFIGURATIONS

23.7 Comparator Operation During Sleep

When a comparator is active and the device is placed in Sleep mode, the comparator remains active and the interrupt is functional, if enabled. This interrupt will wake-up the device from Sleep mode, when enabled. Each operational comparator will consume additional current. To minimize power consumption while in Sleep mode, turn off the comparators (CON = 0) before entering Sleep. If the device wakes up from Sleep, the contents of the CMxCON register are not affected.

23.8 Effects of a Reset

A device Reset forces the CMxCON registers to their Reset state. This forces both comparators and the voltage reference to the OFF state.

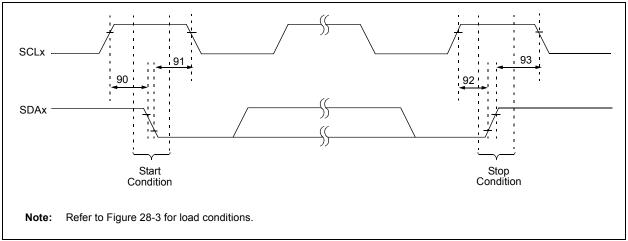
								1	1
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	61
PIR2	OSCFIF	CM2IF	CM1IF	USBIF	BCL1IF	LVDIF	TMR3IF	CCP2IF	64
PIE2	OSCFIE	CM2IE	CM1IE	USBIE	BCL1IE	LVDIE	TMR3IE	CCP2IE	64
IPR2	OSCFIP	CM2IP	CM1IP	USBIP	BCL1IP	LVDIP	TMR3IP	CCP2IP	64
CMxCON	CON	COE	CPOL	EVPOL1	EVPOL0	CREF	CCH1	CCH0	62
CVRCON ⁽¹⁾	CVREN	CVROE	CVRR	CVRSS	CVR3	CVR2	CVR1	CVR0	65
CMSTAT	_	—	_	—	—	—	COUT2	COUT1	65
ANCON1 ⁽¹⁾	PCFG15	PCFG14	PCFG13	PCFG12	PCFG11	PCFG10	_	—	63
ANCON0 ⁽¹⁾	PCFG7	—	_	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0	63
PORTA	_	—	RA5	RA4	RA3	RA2	RA1	_	65
TRISA	_	—	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	—	64
LATA	_	—	LATA5	LATA4	LATA3	LATA2	LATA1	LATA0	64
PORTC	RC7	RC6	RC5	RC4	RC3	RFC2	RFC1	RFC0	65
LATC	LATC7	LATC6	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	64
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	64
PORTF	RF7	RF6	RF5	RF4	RF3	RF2	_	—	65
LATF	LATF7	LATF6	LATF5	LATF4	LATF3	LATF2	_	_	64
TRISF	TRISF7	TRISF6	TRISF5	TRISF4	TRISF3	TRISF2	_		64
PORTH ⁽²⁾	RH7	RH6	RH5	RH4	RH3	RH2	RH1	RH0	65
TRISH ⁽²⁾	TRISH7	TRISH6	TRISH5	TRISH4	TRISH3	TRISH2	TRISH1	TRISH0	64

TABLE 23-3 :	REGISTERS ASSOCIATED WITH COMPARATOR MODULE
---------------------	--

Legend: — = unimplemented, read as '0'. Shaded cells are not used for A/D conversion.

Note 1: Configuration SFR, overlaps with default SFR at this address; available only when WDTCON<4> = 1.

2: This register is not implemented on 64-pin devices.


. OW (DVTE ADDDECC 200000L) NEIGAI .

R/WO-1	R/WO-1	R/WO-1	U-0	R/WO-1	R/WO-1	R/WO-1	R/WO-1				
DEBUG	XINST	STVREN	_	PLLDIV2	PLLDIV1	PLLDIV0	WDTEN				
bit 7				·			bit C				
Legend:											
R = Readab	le bit	WO = Write-C	nce bit	U = Unimpler	nented bit, read	d as '0'					
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown				
bit 7	DEBUG: Ba	ckground Debug	iger Enable b	it							
	1 = Backgro	ound debugger d ound debugger d	isabled; RB6	and RB7 confi			pins				
bit 6	XINST: Exte	XINST: Extended Instruction Set Enable bit									
		 1 = Instruction set extension and Indexed Addressing mode enabled 0 = Instruction set extension and Indexed Addressing mode disabled (Legacy mode) 									
bit 5	STVREN: St	STVREN: Stack Overflow/Underflow Reset Enable bit									
	1 = Reset on stack overflow/underflow enabled										
		on stack overflov		isabled							
bit 4	•	nted: Read as '									
bit 3-1		PLLDIV2:PLLDIV0: Oscillator Selection bits									
		Divider must be selected to provide a 4 MHz input into the 96 MHz PLL 111 = No divide - oscillator used directly (4 MHz input)									
		lator divided by	•	• • • •							
		101 = Oscillator divided by 3 (12 MHz input)									
		100 = Oscillator divided by 4 (16 MHz input)									
		011 = Oscillator divided by 5 (20 MHz input)									
		 010 = Oscillator divided by 6 (24 MHz input) 001 = Oscillator divided by 10 (40 MHz input) 									
	000 = Oscillator divided by 10 (48 MHz input)										
bit 0		atchdog Timer E		. 7							
	1 = WDT er	-									
	 1 = WDT enabled 0 = WDT disabled (control is placed on SWDTEN bit) 										

PIC18F87J50 FAMILY

BTG	Bit Toggle f	BOV	Branch if Overflow			
Syntax:	BTG f, b {,a}	Syntax:	BOV n			
Operands:	$0 \le f \le 255$	Operands:	erands: $-128 \le n \le 127$			
	0 ≤ b < 7 a ∈ [0,1]	Operation:	if Overflow bit is '1', (PC) + 2 + 2n \rightarrow PC			
Operation:	$(\overline{f} < b >) \to f < b >$	Status Affected:	None			
Status Affected:	None	Encoding:	1110 0100 nnnn nnnn			
Encoding: Description:	0111 bbba ffff ffff Bit 'b' in data memory location 'f' is	Description:	If the Overflow bit is '1', then the program will branch. The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be			
	inverted. If 'a' is '0', the Access Bank is selected If 'a' is '1', the BSR is used to select th GPR bank (default).					
	If 'a' is '0' and the extended instruction set is enabled, this instruction operate in Indexed Literal Offset Addressing		PC + 2 + 2n. This instruction is then a two-cycle instruction.			
	mode whenever f ≤ 95 (5Fh). See Section 26.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexec Literal Offset Mode" for details.	Cycles: Q Cycle Activity: If Jump:	1(2)			
Words:	1	Q1	Q2 Q3 Q4			
Cycles:	1	Decode	Read literal Process Write to PC 'n' Data			
Q Cycle Activity:		No	No No No			
Q1	Q2 Q3 Q4	operation	operation operation operation			
Decode	Read Process Write	If No Jump:				
	register 'f' Data register 'f'	Q1	Q2 Q3 Q4			
Example:	BTG PORTC, 4, 0	Decode	Read literalProcessNo'n'Dataoperation			
Before Instruc PORTC After Instructio PORTC	= 0111 0101 [75h] on:	Example: Before Instruct PC After Instructi If Overfit PC If Overfit	= address (HERE) on ow = 1; = address (Jump)			

TABLE 28-24:	MSSPx I ² C™ BUS	START/STOP BITS	REQUIREMENTS
--------------	-----------------------------	-----------------	--------------

Param. No.	Symbol	Characte	eristic	Min	Max	Units	Conditions
90	Tsu:sta	Start Condition	100 kHz mode	2(Tosc)(BRG + 1)		ns	Only relevant for Repeated Start
		Setup Time	400 kHz mode	2(Tosc)(BRG + 1)	_		
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_		condition
91	THD:STA	Start Condition	100 kHz mode	2(Tosc)(BRG + 1)	_	ns	After this period, the first clock pulse is
		Hold Time	400 kHz mode	2(Tosc)(BRG + 1)	_		
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_		generated
92	Tsu:sto	Stop Condition	100 kHz mode	2(Tosc)(BRG + 1)	_	ns	
		Setup Time	400 kHz mode	2(Tosc)(BRG + 1)	_		
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_		
93	THD:STO	Stop Condition	100 kHz mode	2(Tosc)(BRG + 1)	_	ns	
		Hold Time	400 kHz mode	2(Tosc)(BRG + 1)	_		
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)			

Note 1: Maximum pin capacitance = 10 pF for all I^2C^{TM} pins.

FIGURE 28-20: MSSPx I²C[™] BUS DATA TIMING

INDEX

Α

A/D	301
A/D Converter Interrupt, Configuring	
Acquisition Requirements	306
ADCAL Bit	309
ADRESH Register	
Analog Port Pins, Configuring	
Associated Registers	
Automatic Acquisition Time	
Calibration	
Configuring the Module	
Conversion Clock (TAD)	
Conversion Requirements	457
Conversion Status (GO/DONE Bit)	304
Conversions	308
Converter Characteristics	456
Operation in Power-Managed Modes	309
Special Event Trigger (ECCP)	
Use of the ECCP2 Trigger	
Absolute Maximum Ratings	
AC (Timing) Characteristics	
Load Conditions for Device Timing Specifications	
Parameter Symbology	
Temperature and Voltage Specifications	
Timing Conditions	
ACKSTAT	269
ACKSTAT Status Flag	269
ADCAL Bit	309
ADCON0 Register	
GO/DONE Bit	304
ADDFSR	
ADDLW	
ADDULNK	
ADDWFC	
ADRESL Register	304
Analog-to-Digital Converter. See A/D.	
ANDLW	
ANDWF	373
Assembler	
MPASM Assembler	416
Auto-Wake-up on Sync Break Character	
-	
В	
Baud Rate Generator	265
BC	
BCF	
BF	
51	
BF Status Flag	209
Block Diagrams	
16-Bit Byte Select Mode	
16-Bit Byte Write Mode	
16-Bit Word Write Mode	
8-Bit Multiplexed Address and Data Application	
8-Bit Multiplexed Modes	115
A/D	
Analog Input Model	
Baud Rate Generator	
Capture Mode Operation	
Comparator Analog Input Model	
	0+0

Comparator Voltage Reference Output Buffer Ex 347	ample
Compare Mode Operation	212
Connections for On-Chip Voltage Regulator	
Demultiplexed Addressing Mode	181
Device Clock	
Enhanced PWM	
EUSART Transmit	
EUSARTx Receive	
External Power-on Reset Circuit (Slow VDD Power	
57	1- 7
Fail-Safe Clock Monitor	
Fully Multiplexed Addressing Mode	
Generic I/O Port Operation	
Interrupt Logic	
LCD Control	
Legacy Parallel Slave Port	
MSSP (I ² C Mode)	
MSSP (SPI Mode)	
MSSPx (I ² C Master Mode)	
Multiplexed Addressing Application	
On-Chip Reset Circuit Parallel EEPROM (Up to 15-Bit Address, 16-Bit I	
189	Jala).
Parallel EEPROM (Up to 15-Bit Address, 8-Bit Da	ata)
189	
Parallel Master/Slave Connection Addressed Buf	
Parallel Master/Slave Connection Buffered	
Partially Multiplexed Addressing Application	
Partially Multiplexed Addressing Mode	
PIC18F6XJ5X (64-Pin)	
PIC18F8XJ5X (80-Pin)	
PMP Module	
PWM Operation (Simplified)	
Reads From Flash Program Memory Single Comparator	
Table Read Operation	
Table Write Operation	
Table Writes to Flash Program Memory	
Timer0 in 16-Bit Mode	
Timer0 in 8-Bit Mode	
Timer1	
Timer1 (16-Bit Read/Write Mode)	
Timer2	
Timer3	
Timer3 (16-Bit Read/Write Mode)	
Timer4	
USB Interrupt Logic	325
USB Peripheral and Options	311
Using the Open-Drain Output	138
Watchdog Timer	358
BN	374
BNC	375
BNN	
BNOV	
BNZ	376
BOR. See Brown-out Reset.	
BOV	
BRA	
Break Character (12-Bit) Transmit and Receive	294
BRG. See Baud Rate Generator.	
Brown-out Reset (BOR)	57
and On-Chip Voltage Regulator	361