

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	EBI/EMI, I ² C, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	65
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	3.8К х 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f85j50-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Din Nome	Pin Number	Pin	Buffer	Description
Pin Name	80-TQFP	Туре	Туре	Description
				PORTF is a bidirectional I/O port.
RF2/PMA5/AN7/C2INB RF2 PMA5 AN7 C2INB	18	I/O O I I	ST — Analog Analog	Digital I/O. Parallel Master Port address. Analog input 7. Comparator 2 input B.
RF3/D- RF3 D-	17	I/O I/O	ST —	Digital I/O. Analog input 8.
RF4/D+ RF4 D+	16	I/O I/O	ST —	Digital I/O. Analog input 9.
RF5/PMD2/AN10/ C1INB/CVREF RF5 PMD2 ⁽⁷⁾ AN10 C1INB CVREF	15	I/O I/O I I O	ST TTL Analog Analog Analog	Digital I/O. Parallel Master Port address. Analog input 10. Comparator 1 input B. Comparator reference voltage output.
RF6/PMD1/AN11/C1INA RF6 PMD1 ⁽⁷⁾ AN11 C1INA	14	I/O I/O I	ST TTL Analog Analog	Digital I/O. Parallel Master Port address. Analog input 11. Comparator 1 input A.
RF7/PMD0/SS1/C1OUT RF7 PMD0 ⁽⁷⁾ SS1 C1OUT	13	I/O I/O I O	ST TTL TTL —	Digital I/O. Parallel Master Port address. SPI slave select input. Comparator 1 output.
Legend: IIL = IIL compatible input CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels Analog = Analog input				

TABLE 1-4: PIC18F8XJ5X PINOUT I/O DESCRIPTIONS (CONTINUED)

- Analog Analog input
 - 0 = Output
- OD = Open-Drain (no P diode to VDD)

Note 1: Alternate assignment for ECCP2/P2A when CCP2MX Configuration bit is cleared (Extended Microcontroller mode).

2: Default assignment for ECCP2/P2A for all devices in all operating modes (CCP2MX is set).

3: Default assignments for P1B/P1C/P3B/P3C (ECCPMX Configuration bit is set).

4: Alternate assignment for ECCP2/P2A when CCP2MX is cleared (Microcontroller mode).

5: Alternate assignments for P1B/P1C/P3B/P3C (ECCPMX Configuration bit is cleared).

6: Pin placement when PMPMX = 1.

7: Pin placement when PMPMX = 0.

8: RA7 and RA6 will be disabled if OSC1 and OSC2 are used for the clock function.

L

Р

= Input

= Power

3.0 POWER-MANAGED MODES

The PIC18F87J10 family devices provide the ability to manage power consumption by simply managing clocking to the CPU and the peripherals. In general, a lower clock frequency and a reduction in the number of circuits being clocked constitutes lower consumed power. For the sake of managing power in an application, there are three primary modes of operation:

- Run mode
- Idle mode
- · Sleep mode

These modes define which portions of the device are clocked and at what speed. The Run and Idle modes may use any of the three available clock sources (primary, secondary or internal oscillator block); the Sleep mode does not use a clock source.

The power-managed modes include several power-saving features offered on previous PIC[®] devices. One is the clock switching feature, offered in other PIC18 devices, allowing the controller to use the Timer1 oscillator in place of the primary oscillator. Also included is the Sleep mode, offered by all PIC devices, where all device clocks are stopped.

3.1 Selecting Power-Managed Modes

Selecting a power-managed mode requires two decisions: if the CPU is to be clocked or not and which clock source is to be used. The IDLEN bit (OSCCON<7>) controls CPU clocking, while the SCS1:SCS0 bits (OSCCON<1:0>) select the clock source. The individual modes, bit settings, clock sources and affected modules are summarized in Table 3-1.

3.1.1 CLOCK SOURCES

The SCS1:SCS0 bits allow the selection of one of three clock sources for power-managed modes. They are:

- The primary clock source, as defined by the FOSC2:FOSC0 Configuration bits
- The Timer1 clock (provided by the secondary oscillator)
- The postscaled internal clock (derived from the internal oscillator block)

3.1.2 ENTERING POWER-MANAGED MODES

Switching from one power-managed mode to another begins by loading the OSCCON register. The SCS1:SCS0 bits select the clock source and determine which Run or Idle mode is to be used. Changing these bits causes an immediate switch to the new clock source, assuming that it is running. The switch may also be subject to clock transition delays. These are discussed in Section 3.1.3 "Clock Transitions and Status Indicators" and subsequent sections.

Entry to the power-managed Idle or Sleep modes is triggered by the execution of a SLEEP instruction. The actual mode that results depends on the status of the IDLEN bit.

Depending on the current mode and the mode being switched to, a change to a power-managed mode does not always require setting all of these bits. Many transitions may be done by changing the oscillator select bits, or changing the IDLEN bit, prior to issuing a SLEEP instruction. If the IDLEN bit is already configured correctly, it may only be necessary to perform a SLEEP instruction to switch to the desired mode.

Marda	osc	CON<7,1:0>	Module Clocking			
wode	IDLEN ⁽¹⁾ SCS1:SCS0 C		CPU	Peripherals	Available Clock and Oscillator Source	
Sleep	0	N/A	Off	Off	None – All clocks are disabled	
PRI_RUN	N/A	00	Clocked	Clocked	Primary clock source (defined by FOSC2:FOSC0); this is the normal full-power execution mode	
SEC_RUN	N/A	01	Clocked	Clocked	Secondary – Timer1 oscillator	
RC_RUN	N/A	11	Clocked	Clocked	Postscaled internal clock	
PRI_IDLE	1	00	Off	Clocked	Primary clock source (defined by FOSC2:FOSC0)	
SEC_IDLE	1	01	Off	Clocked	Secondary – Timer1 oscillator	
RC_IDLE	1	11	Off	Clocked	Postscaled internal clock	

TABLE 3-1: POWER-MANAGED MODES

Note 1: IDLEN reflects its value when the **SLEEP** instruction is executed.

3.1.3 CLOCK TRANSITIONS AND STATUS INDICATORS

The length of the transition between clock sources is the sum of two cycles of the old clock source and three to four cycles of the new clock source. This formula assumes that the new clock source is stable.

Two bits indicate the current clock source and its status: OSTS (OSCCON<3>) and T1RUN (T1CON<6>). In general, only one of these bits will be set while in a given power-managed mode. When the OSTS bit is set, the primary clock is providing the device clock. When the T1RUN bit is set, the Timer1 oscillator is providing the clock. If neither of these bits is set, INTRC is clocking the device.

Note: Executing a SLEEP instruction does not necessarily place the device into Sleep mode. It acts as the trigger to place the controller into either the Sleep mode, or one of the Idle modes, depending on the setting of the IDLEN bit.

3.1.4 MULTIPLE SLEEP COMMANDS

The power-managed mode that is invoked with the SLEEP instruction is determined by the setting of the IDLEN bit at the time the instruction is executed. If another SLEEP instruction is executed, the device will enter the power-managed mode specified by IDLEN at that time. If IDLEN has changed, the device will enter the new power-managed mode specified by the new setting.

3.2 Run Modes

In the Run modes, clocks to both the core and peripherals are active. The difference between these modes is the clock source.

3.2.1 PRI_RUN MODE

The PRI_RUN mode is the normal, full-power execution mode of the microcontroller. This is also the default mode upon a device Reset unless Two-Speed Start-up is enabled (see **Section 25.4 "Two-Speed Start-up"** for details). In this mode, the OSTS bit is set. (see **Section 2.4.1 "Oscillator Control Register"**).

3.2.2 SEC_RUN MODE

The SEC_RUN mode is the compatible mode to the "clock switching" feature offered in other PIC18 devices. In this mode, the CPU and peripherals are clocked from the Timer1 oscillator. This gives users the option of lower power consumption while still using a high-accuracy clock source.

SEC_RUN mode is entered by setting the SCS1:SCS0 bits to '01'. The device clock source is switched to the Timer1 oscillator (see Figure 3-1), the primary oscillator is shut down, the T1RUN bit (T1CON<6>) is set and the OSTS bit is cleared.

4.2 Master Clear (MCLR)

The MCLR pin provides a method for triggering a hard external Reset of the device. A Reset is generated by holding the pin low. PIC18 extended microcontroller devices have a noise filter in the MCLR Reset path which detects and ignores small pulses.

The $\overline{\text{MCLR}}$ pin is not driven low by any internal Resets, including the WDT.

4.3 Power-on Reset (POR)

A Power-on Reset condition is generated on-chip whenever VDD rises above a certain threshold. This allows the device to start in the initialized state when VDD is adequate for operation.

To take advantage of the POR circuitry, tie the $\overline{\text{MCLR}}$ pin through a resistor (1 k Ω to 10 k Ω) to VDD. This will eliminate external RC components usually needed to create a Power-on Reset delay. A minimum rise rate for VDD is specified (parameter D004). For a slow rise time, see Figure 4-2.

When the device starts normal operation (i.e., exits the Reset condition), device operating parameters (voltage, frequency, temperature, etc.) must be met to ensure operation. If these conditions are not met, the device must be held in Reset until the operating conditions are met.

POR events are captured by the POR bit (RCON<1>). The state of the bit is set to '0' whenever a Power-on Reset occurs; it does not change for any other Reset event. POR is not reset to '1' by any hardware event. To capture multiple events, the user manually resets the bit to '1' in software following any Power-on Reset.

4.4 Brown-out Reset (BOR)

The PIC18F87J10 family of devices incorporates a simple BOR function when the internal regulator is enabled (ENVREG pin is tied to VDD). Any drop of VDD below VBOR (parameter D005) for greater than time TBOR (parameter 35) will reset the device. A Reset may or may not occur if VDD falls below VBOR for less than TBOR. The chip will remain in Brown-out Reset until VDD rises above VBOR.

Once a BOR has occurred, the Power-up Timer will keep the chip in Reset for TPWRT (parameter 33). If VDD drops below VBOR while the Power-up Timer is running, the chip will go back into a Brown-out Reset and the Power-up Timer will be initialized. Once VDD rises above VBOR, the Power-up Timer will execute the additional time delay.

FIGURE 4-2:

EXTERNAL POWER-ON RESET CIRCUIT (FOR SLOW VDD POWER-UP)

4.4.1 DETECTING BOR

The BOR bit always resets to '0' on any Brown-out Reset or Power-on Reset event. This makes it difficult to determine if a Brown-out Reset event has occurred just by reading the state of BOR alone. A more reliable method is to simultaneously check the state of both POR and BOR. This assumes that the POR bit is reset to '1' in software immediately after any Power-on Reset event. If BOR is '0' while POR is '1', it can be reliably assumed that a Brown-out Reset event has occurred.

If the voltage regulator is disabled, Brown-out Reset functionality is disabled. In this case, the BOR bit cannot be used to determine a Brown-out Reset event. The BOR bit is still cleared by a Power-on Reset event.

4.5 Configuration Mismatch (CM)

The Configuration Mismatch (CM) Reset is designed to detect and attempt to recover from random, memory corrupting events. These include Electrostatic Discharge (ESD) events, which can cause widespread single-bit changes throughout the device, and result in catastrophic failure.

In PIC18FXXJ Flash devices, the device Configuration registers (located in the configuration memory space) are continuously monitored during operation by comparing their values to complimentary shadow registers. If a mismatch is detected between the two sets of registers, a CM Reset automatically occurs. These events are captured by the \overline{CM} bit (RCON<5>). The state of the bit is set to '0' whenever a CM event occurs; it does not change for any other Reset event.

REGISTER 9-5: PIR2: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 2

R/M_0	R/M/_0	R/M/-0	R////0	R/M/_0	R/M_0	R/M/_0	R/M/-0
	CM2IE	CM1IE		BCI 1IE			
bit 7	OWZI	OWITH	OODII	DOLIN	LVDII	TWINGI	bit 0
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7	OSCFIF: Osc	illator Fail Inter	rupt Flag bit				
	1 = Device o	scillator failed,	clock input has	s changed to IN	ITOSC (must b	be cleared in so	ftware)
h:4 0		lock operating	unt Elem hit				
DIT 6	CM2IF: Compare	parator 2 Interru	upt Flag bit	he cleared in s	offwara)		
	0 = Compara	itor input has n	ot changed		Jitwaie)		
bit 5	CM1IF: Comp	oarator 1 Interru	upt Flag bit				
	1 = Compara	tor input has cl	nanged (must	be cleared in so	oftware)		
	0 = Comparator input has not changed						
bit 4	USBIF: USB	Interrupt Flag b	bit				
	 1 = USB has requested an interrupt (must be cleared in software) 0 = No USB interrupt request 						
bit 3	BCL1IF: Bus	Collision Interr	upt Flag bit (M	SSP1 module)			
	 1 = A bus collision occurred (must be cleared in software) 0 = No bus collision occurred 						
bit 2	LVDIF: Low-Voltage Detect Interrupt Flag bit						
	 1 = A low-voltage condition occurred (must be cleared in software) 0 = Device VDDCORE voltage is above the regulator low-voltage trip point (above 2.45V))
bit 1	TMR3IF: TMF	R3 Overflow Int	errupt Flag bit				
	1 = TMR3 re 0 = TMR3 re	gister overflowe gister did not o	ed (must be cle verflow	eared in softwa	re)		
bit 0	CCP2IF: ECO	CP2 Interrupt Fl	ag bit				
	Capture mode 1 = A TMR1/ 0 = No TMR	<u>e:</u> TMR3 register 1/TMR3 registe	capture occuri r capture occu	red (must be cle rred	eared in softwa	are)	
	<u>Compare mod</u> 1 = A TMR1/ 0 = No TMR ²	<u>de:</u> TMR3 register 1/TMR3 registe	compare matc r compare ma	h occurred (mu tch occurred	ist be cleared	in software)	
	<u>PWM mode:</u> Unused in this	s mode.					

9.6 INTx Pin Interrupts

External interrupts on the RB0/INT0, RB1/INT1, RB2/INT2 and RB3/INT3 pins are edge-triggered. If the corresponding INTEDGx bit in the INTCON2 register is set (= 1), the interrupt is triggered by a rising edge; if the bit is clear, the trigger is on the falling edge. When a valid edge appears on the RBx/INTx pin, the corresponding flag bit, INTxIF, is set. This interrupt can be disabled by clearing the corresponding enable bit, INTxIE. Flag bit, INTxIF, must be cleared in software in the Interrupt Service Routine before re-enabling the interrupt.

All external interrupts (INT0, INT1, INT2 and INT3) can wake-up the processor from the power-managed modes if bit INTxIE was set prior to going into the power-managed modes. If the Global Interrupt Enable bit, GIE, is set, the processor will branch to the interrupt vector following wake-up.

Interrupt priority for INT1, INT2 and INT3 is determined by the value contained in the interrupt priority bits, INT1IP (INTCON3<6>), INT2IP (INTCON3<7>) and INT3IP (INTCON2<1>). There is no priority bit associated with INT0. It is always a high-priority interrupt source.

9.7 TMR0 Interrupt

In 8-bit mode (which is the default), an overflow in the TMR0 register (FFh \rightarrow 00h) will set flag bit, TMR0IF. In 16-bit mode, an overflow in the TMR0H:TMR0L register pair (FFFFh \rightarrow 0000h) will set TMR0IF. The interrupt can be enabled/disabled by setting/clearing enable bit, TMR0IE (INTCON<5>). Interrupt priority for Timer0 is determined by the value contained in the interrupt priority bit, TMR0IP (INTCON2<2>). See Section 12.0 "Timer0 Module" for further details on the Timer0 module.

9.8 PORTB Interrupt-on-Change

An input change on PORTB<7:4> sets flag bit, RBIF (INTCON<0>). The interrupt can be enabled/disabled by setting/clearing enable bit, RBIE (INTCON<3>). Interrupt priority for PORTB interrupt-on-change is determined by the value contained in the interrupt priority bit, RBIP (INTCON2<0>).

9.9 Context Saving During Interrupts

During interrupts, the return PC address is saved on the stack. Additionally, the WREG, STATUS and BSR registers are saved on the Fast Return Stack. If a fast return from interrupt is not used (see **Section 5.3 "Data Memory Organization"**), the user may need to save the WREG, STATUS and BSR registers on entry to the Interrupt Service Routine. Depending on the user's application, other registers may also need to be saved. Example 9-1 saves and restores the WREG, STATUS and BSR registers during an Interrupt Service Routine.

MOVWF MOVFF MOVFF ;	W_TEMP STATUS, STATUS_TEMP BSR, BSR_TEMP	; W_TEMP is in virtual bank ; STATUS_TEMP located anywhere ; BSR_TMEP located anywhere
; USER IS	SR CODE	
;		
MOVFF	BSR_TEMP, BSR	; Restore BSR
MOVF	W_TEMP, W	; Restore WREG
MOVFF	STATUS_TEMP, STATUS	; Restore STATUS

EXAMPLE 9-1: SAVING STATUS, WREG AND BSR REGISTERS IN RAM

Table 10-2 summarizes the output capabilities of the ports. Refer to the **"Absolute Maximum Ratings"** in **Section 28.0 "Electrical Characteristics"** for more details.

TABLE 10-2: C	DUTPUT C	DRIVE L	EVELS
---------------	----------	---------	-------

Port	Drive	Description
PORTA	Minimum	Intended for indication.
PORTF		
PORTG		
PORTH ⁽¹⁾		
PORTD	Medium	Sufficient drive levels for
PORTE		external memory interfacing
PORTJ ⁽¹⁾		as well as indication.
PORTB	High	Suitable for direct LED drive
PORTC		levels.

Note 1: These ports are not available on 64-pin devices.

10.1.3 PULL-UP CONFIGURATION

Four of the I/O ports (PORTB, PORTD, PORTE and PORTJ) implement configurable weak pull-ups on all pins. These are internal pull-ups that allow floating digital input signals to be pulled to a consistent level, without the use of external resistors.

The pull-ups are enabled with a single bit for each of the ports: RBPU (INTCON2<7>) for PORTB, and RDPU, REPU and RJPU (PORTG<7:5>) for the other ports.

Note:	RJPU is implemented on 80-pin devices
	only.

10.1.4 OPEN-DRAIN OUTPUTS

The output pins for several peripherals are also equipped with a configurable open-drain output option. This allows the peripherals to communicate with external digital logic operating at a higher voltage level, without the use of level translators.

The open-drain option is implemented on port pins specifically associated with the data and clock outputs of the EUSARTs, the MSSP modules (in SPI mode) and the CCP and ECCP modules. It is selectively enabled by setting the open-drain control bit for the corresponding module in the ODCON registers (Register 10-1, Register 10-2 and Register 10-3). Their configuration is discussed in more detail with the individual port where these peripherals are multiplexed.

The ODCON registers all reside in the SFR configuration space, and share the same SFR addresses as the Timer1 registers (see **Section 5.3.5.1 "Shared Address SFRs"** for more details). The ODCON registers are accessed by setting the ADSHR bit (WDTCON<4>).

When the open-drain option is required, the output pin must also be tied through an external pull-up resistor provided by the user to a higher voltage level, up to 5.5V (Figure 10-2). When a digital logic high signal is output, it is pulled up to the higher voltage level.

10.1.5 TTL INPUT BUFFER OPTION

Many of the digital I/O ports use Schmitt Trigger (ST) input buffers. While this form of buffering works well with many types of input, some applications may require TTL level signals to interface with external logic devices. This is particularly true with the EMB and the Parallel Master Port (PMP), which are particularly likely to be interfaced to TTL level logic or memory devices.

The inputs for the PMP can be optionally configured for TTL buffers with the PMPTTL bit in the PADCFG1 register (Register 10-4). Setting this bit configures all data and control input pins for the PMP to use TTL buffers. By default, these PMP inputs use the port's ST buffers.

As with the ODCON registers, the PADCFG1 register resides in the SFR configuration space; it shares the same memory address as the TMR2 register. PADCFG1 is accessed by setting the ADSHR bit (WDTCON<4>).

REGISTER 11-4: PMMODEL: PARALLEL PORT MODE REGISTER LOW BYTE

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WAITB1 ⁽¹⁾	WAITB0 ⁽¹⁾	WAITM3	WAITM2	WAITM1	WAITM0	WAITE1 ⁽¹⁾	WAITE0 ⁽¹⁾
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	oit	U = Unimplem	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown
bit 7-6	WAITB1:WAI	TB0: Data Setu	up to Read/Wri	te Wait State C	onfiguration bit	ts ⁽¹⁾	
	11 = Data wa	it of 4 Tcy; mul	tiplexed addre	ss phase of 4 T	ĊY		
	10 = Data wa	it of 3 TCY; mul	tiplexed addre	ss phase of 3 T	ĊY		
	01 = Data wa	it of 2 Tcy; mul	tiplexed addre	ss phase of 2 T	ĊY		
	00 = Data wa	it of 1 TCY; mul	tiplexed addre	ss phase of 1 T	ĊY		
it 5-2 WAITM3:WAITM0: Read to Byte Enable Strobe Wait State Configuration bits							
	1111 = Wait of additional 15 Tcy						
	0001 = Wait of additional 1 Tcy						
	0000 = No additional wait cycles (operation forced into one Tcy)						
bit 1-0 WAITE1:WAITE0: Data Hold After Strobe Wait State Configuration bits ⁽¹⁾							
	11 = Wait of 4 Tcy						
	10 = Wait of 3	3 Тсү					
	01 = Wait of 2	2 TCY					
	00 = Wait of 1 Tcy						

Note 1: WAITB and WAITE bits are ignored whenever WAITM3:WAITM0 = 0000.

REGISTER 11-5: PMEH: PARALLEL PORT ENABLE REGISTER HIGH BYTE

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PTEN15	PTEN14	PTEN13	PTEN12	PTEN11	PTEN10	PTEN9	PTEN8
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6	PTEN15:PTEN14: PMCSx Strobe Enable bits
	 1 = PMA15 and PMA14 function as either PMA<15:14> or PMCS2 and PMCS1 0 = PMA15 and PMA14 function as port I/O
bit 5-0	PTEN13:PTEN8: PMP Address Port Enable bits
	1 = PMA<13:8> function as PMP address lines0 = PMA<13:8> function as port I/O

13.1 Timer1 Operation

Timer1 can operate in one of these modes:

- Timer
- Synchronous Counter
- Asynchronous Counter

The operating mode is determined by the clock select bit, TMR1CS (T1CON<1>). When TMR1CS is cleared (= 0), Timer1 increments on every internal instruction

FIGURE 13-1: TIMER1 BLOCK DIAGRAM Timer1 Oscillator Timer1 Clock Input Qn/Off T1OSO/T13CKI 1 Synchronize Prescaler 0 Fosc/4 1, 2, 4, 8 F Detect Internal 0 Clock T1OSI 2 Sleep Input Timer1 T1OSCEN⁽¹⁾ TMR1CS On/Off T1CKPS1:T1CKPS0 T1SYNC TMR10N Set TMR Clear TMR1 TMR1L TMR1IF High Byte on Overflow (ECCPx Special Event Trigger)

Note 1: When enable bit, T1OSCEN, is cleared, the inverter and feedback resistor are turned off to eliminate power drain.

cycle (FOSC/4). When the bit is set, Timer1 increments on every rising edge of the Timer1 external clock input or the Timer1 oscillator, if enabled.

When Timer1 is enabled, the RC1/T1OSI and RC0/T1OSO/T13CKI pins become inputs. This means the values of TRISC<1:0> are ignored and the pins are read as '0'.

18.4.4 HALF-BRIDGE MODE

In the Half-Bridge Output mode, two pins are used as outputs to drive push-pull loads. The PWM output signal is output on the P1A pin, while the complementary PWM output signal is output on the P1B pin (Figure 18-4). This mode can be used for half-bridge applications, as shown in Figure 18-5, or for full-bridge applications, where four power switches are being modulated with two PWM signals.

In Half-Bridge Output mode, the programmable dead-band delay can be used to prevent shoot-through current in half-bridge power devices. The value of bits P1DC6:P1DC0 sets the number of instruction cycles before the output is driven active. If the value is greater than the duty cycle, the corresponding output remains inactive during the entire cycle. See **Section 18.4.6** "**Programmable Dead-Band Delay**" for more details on dead-band delay operations.

Since the P1A and P1B outputs are multiplexed with the PORTC<2> and PORTE<6> data latches, the TRISC<2> and TRISE<6> bits must be cleared to configure P1A and P1B as outputs.

FIGURE 18-4: HALF-BRIDGE PWM OUTPUT

FIGURE 18-5: EXAMPLES OF HALF-BRIDGE OUTPUT MODE APPLICATIONS

19.4 I²C Mode

The MSSP module in I²C mode fully implements all master and slave functions (including general call support), and provides interrupts on Start and Stop bits in hardware to determine a free bus (multi-master function). The MSSP module implements the standard mode specifications, as well as 7-bit and 10-bit addressing.

Two pins are used for data transfer:

- Serial Clock (SCLx) RC3/SCK1/SCL1 or RD6/SCK2/SCL2
- Serial Data (SDAx) RC4/SDI1/SDA1 or RD5/SDI2/SDA2

The user must configure these pins as inputs by setting the associated TRIS bits.

FIGURE 19-7: MSSPx BLOCK DIAGRAM (I²C[™] MODE) Internal Data Bus Read Write SSPxBUF reg SCLx \mathbb{X} Shift Clock SSPxSR reg imesSDAx LSb MSb Match Detect Addr Match Address Mask SSPxADD reg Set. Reset Start and S. P bits Stop bit Detect (SSPxSTAT reg) Note: Only port I/O names are used in this diagram for the sake of brevity. Refer to the text for a full list of multiplexed functions.

19.4.1 REGISTERS

The MSSP module has six registers for $\mathsf{I}^2\mathsf{C}$ operation. These are:

- MSSPx Control Register 1 (SSPxCON1)
- MSSPx Control Register 2 (SSPxCON2)
- MSSPx Status Register (SSPxSTAT)
- Serial Receive/Transmit Buffer Register (SSPxBUF)
- MSSPx Shift Register (SSPxSR) Not directly accessible
- MSSPx Address Register (SSPxADD)
- MSSPx 7-Bit Address Mask Register (SSPxMSK)

SSPxCON1, SSPxCON2 and SSPxSTAT are the control and status registers in I²C mode operation. The SSPxCON1 and SSPxCON2 registers are readable and writable. The lower 6 bits of the SSPxSTAT are read-only. The upper two bits of the SSPxSTAT are read/write.

SSPxSR is the shift register used for shifting data in or out. SSPxBUF is the buffer register to which data bytes are written to or read from.

SSPxADD contains the slave device address when the MSSP is configured in I^2C Slave mode. When the MSSP is configured in Master mode, the lower seven bits of SSPxADD act as the Baud Rate Generator reload value.

SSPxMSK holds the slave address mask value when

the module is configured for 7-bit Address Masking mode. While it is a separate register, it shares the same SFR address as SSPxADD; it is only accessible when the SSPM3:SSPM0 bits are specifically set to permit access. Additional details are provided in Section 19.4.3.4 "7-Bit Address Masking Mode".

In receive operations, SSPxSR and SSPxBUF together, create a double-buffered receiver. When SSPxSR receives a complete byte, it is transferred to SSPxBUF and the SSPxIF interrupt is set.

During transmission, the SSPxBUF is not double-buffered. A write to SSPxBUF will write to both SSPxBUF and SSPxSR.

19.4.3.2 Address Masking Modes

Masking an address bit causes that bit to become a "don't care". When one address bit is masked, two addresses will be Acknowledged and cause an interrupt. It is possible to mask more than one address bit at a time, which greatly expands the number of addresses Acknowledged.

The l^2C Slave behaves the same way whether address masking is used or not. However, when address masking is used, the l^2C slave can Acknowledge multiple addresses and cause interrupts. When this occurs, it is necessary to determine which address caused the interrupt by checking SSPxBUF.

The PIC18F87J10 family of devices is capable of using two different Address Masking modes in I²C Slave operation: 5-Bit Address Masking and 7-Bit Address Masking. The Masking mode is selected at device configuration using the MSSPMSK Configuration bit. The default device configuration is 7-bit Address Masking.

Both Masking modes, in turn, support address masking of 7-bit and 10-bit addresses. The combination of Masking modes and addresses provide different ranges of Acknowledgable addresses for each combination.

While both Masking modes function in roughly the same manner, the way they use address masks are different.

19.4.3.3 5-Bit Address Masking Mode

As the name implies, 5-Bit Address Masking mode uses an address mask of up to 5 bits to create a range of addresses to be Acknowledged, using bits 5 through

1 of the incoming address. This allows the module to Acknowledge up to 31 addresses when using 7-bit addressing, or 63 addresses with 10-bit addressing (see Example 19-2). This Masking mode is selected when the MSSPMSK Configuration bit is programmed ('0').

The address mask in this mode is stored is stored in the SSPxCON2 register, which stops functioning as a control register in I²C Slave mode (Register 19-6). In 7-Bit Address Masking mode, address mask bits, (SSPxCON2<5:1>), ADMSK<5:1> mask the corresponding address bits in the SSPxADD register. For any ADMSK bits that are set (ADMSK < n > = 1), the corresponding address bit is ianored (SSPxADD < n > = x). For the module to issue an address Acknowledge, it is sufficient to match only on addresses that do not have an active address mask.

In 10-Bit Address Masking mode, bits ADMSK<5:2> mask the corresponding address bits in the SSPxADD register. In addition, ADMSK1 simultaneously masks the two LSbs of the address (SSPxADD<1:0>). For any ADMSK bits that are active (ADMSK<n> = 1), the corresponding address bit is ignored (SPxADD<n> = x). Also note that although in 10-Bit Address Masking mode, the upper address bits reuse part of the SSPxADD register bits. The address mask bits do not interact with those bits; they only affect the lower address bits.

- Note 1: ADMSK1 masks the two Least Significant bits of the address.
 - 2: The two Most Significant bits of the address are not affected by address masking.

EXAMPLE 19-2: ADDRESS MASKING EXAMPLES IN 5-BIT MASKING MODE

7-Bit Addressing:

SSPADD<7:1>= A0h (1010000) (SSPADD<0> is assumed to be 0)

ADMSK<5:1> = 00111

Addresses Acknowledged: A0h, A2h, A4h, A6h, A8h, AAh, ACh, AEh

10-Bit Addressing:

SSPADD<7:0> = A0h (10100000) (The two MSb of the address are ignored in this example, since they are not affected by masking)

ADMSK<5:1> = 00111

Addresses Acknowledged: A0h, A1h, A2h, A3h, A4h, A5h, A6h, A7h, A8h, A9h, AAh, ABh, ACh, ADh, AEh, AFh

FIGURE 19-11: I^2C^{TM} SLAVE MODE TIMING WITH SEN = 0 AND ADMSK<5:1> = 01001 (RECEPTION, 10-BIT ADDRESS)

20.1 Baud Rate Generator (BRG)

The BRG is a dedicated, 8-bit or 16-bit generator that supports both the Asynchronous and Synchronous modes of the EUSART. By default, the BRG operates in 8-bit mode; setting the BRG16 bit (BAUDCONx<3>) selects 16-bit mode.

The SPBRGHx:SPBRGx register pair controls the period of a free-running timer. In Asynchronous mode, bits BRGH (TXSTAx<2>) and BRG16 (BAUDCONx<3>) also control the baud rate. In Synchronous mode, BRGH is ignored. Table 20-1 shows the formula for computation of the baud rate for different EUSART modes which only apply in Master mode (internally generated clock).

Given the desired baud rate and FOSC, the nearest integer value for the SPBRGHx:SPBRGx registers can be calculated using the formulas in Table 20-1. From this, the error in baud rate can be determined. An example calculation is shown in Example 20-1. Typical baud rates and error values for the various Asynchronous modes are shown in Table 20-2. It may be advantageous to use the high baud rate (BRGH = 1) or the 16-bit BRG to reduce the baud rate error, or achieve a slow baud rate for a fast oscillator frequency.

Writing a new value to the SPBRGHx:SPBRGx registers causes the BRG timer to be reset (or cleared). This ensures the BRG does not wait for a timer overflow before outputting the new baud rate.

20.1.1 OPERATION IN POWER-MANAGED MODES

The device clock is used to generate the desired baud rate. When one of the power-managed modes is entered, the new clock source may be operating at a different frequency. This may require an adjustment to the value in the SPBRGx register pair.

20.1.2 SAMPLING

The data on the RXx pin (either RC7/RX1/DT1 or RG2/RX2/DT2) is sampled three times by a majority detect circuit to determine if a high or a low level is present at the RXx pin.

Configuration Bits				David Data Farmula		
SYNC	SYNC BRG16 E		BRG/EUSART Mode	Baud Rate Formula		
0	0	0	8-bit/Asynchronous	Fosc/[64 (n + 1)]		
0	0	1	8-bit/Asynchronous	$F_{000}/[16(p+1)]$		
0	1	0	16-bit/Asynchronous			
0	1	1	16-bit/Asynchronous			
1	0	х	8-bit/Synchronous	Fosc/[4 (n + 1)]		
1	1	х	16-bit/Synchronous			

TABLE 20-1: BAUD RATE FORMULAS

Legend: x = Don't care, n = value of SPBRGHx:SPBRGx register pair

20.2 EUSART Asynchronous Mode

The Asynchronous mode of operation is selected by clearing the SYNC bit (TXSTAx<4>). In this mode, the EUSART uses standard Non-Return-to-Zero (NRZ) format (one Start bit, eight or nine data bits and one Stop bit). The most common data format is 8 bits. An on-chip dedicated 8-bit/16-bit Baud Rate Generator can be used to derive standard baud rate frequencies from the oscillator.

The EUSART transmits and receives the LSb first. The EUSART's transmitter and receiver are functionally independent but use the same data format and baud rate. The Baud Rate Generator produces a clock, either x16 or x64 of the bit shift rate, depending on the BRGH and BRG16 bits (TXSTAx<2> and BAUDCONx<3>). Parity is not supported by the hardware but can be implemented in software and stored as the 9th data bit.

When operating in Asynchronous mode, the EUSART module consists of the following important elements:

- Baud Rate Generator
- Sampling Circuit
- Asynchronous Transmitter
- Asynchronous Receiver
- Auto-Wake-up on Sync Break Character
- 12-Bit Break Character Transmit
- Auto-Baud Rate Detection

20.2.1 EUSART ASYNCHRONOUS TRANSMITTER

The EUSART transmitter block diagram is shown in Figure 20-3. The heart of the transmitter is the Transmit (Serial) Shift Register (TSR). The Shift register obtains its data from the Read/Write Transmit Buffer register, TXREGx. The TXREGx register is loaded with data in software. The TSR register is not loaded until the Stop bit has been transmitted from the previous load. As soon as the Stop bit is transmitted, the TSR is loaded with new data from the TXREGx register (if available). Once the TXREGx register transfers the data to the TSR register (occurs in one TCY), the TXREGx register is empty and the TXxIF flag bit is set. This interrupt can be enabled or disabled by setting or clearing the interrupt enable bit, TXxIE. TXxIF will be set regardless of the state of TXxIE; it cannot be cleared in software. TXxIF is also not cleared immediately upon loading TXREGx, but becomes valid in the second instruction cycle following the load instruction. Polling TXxIF immediately following a load of TXREGx will return invalid results.

While TXxIF indicates the status of the TXREGx register; another bit, TRMT (TXSTAx<1>), shows the status of the TSR register. TRMT is a read-only bit which is set when the TSR register is empty. No interrupt logic is tied to this bit so the user has to poll this bit in order to determine if the TSR register is empty.

Note 1: The TSR register is not mapped in data memory, so it is not available to the user.2: Flag bit TXxIF is set when enable bit, TXEN, is set.

To set up an Asynchronous Transmission:

- 1. Initialize the SPBRGHx:SPBRGx registers for the appropriate baud rate. Set or clear the BRGH and BRG16 bits, as required, to achieve the desired baud rate.
- 2. Enable the asynchronous serial port by clearing bit SYNC and setting bit, SPEN.
- 3. If interrupts are desired, set enable bit, TXxIE.
- 4. If 9-bit transmission is desired, set transmit bit TX9. Can be used as address/data bit.
- 5. Enable the transmission by setting bit, TXEN, which will also set bit, TXxIF.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit, TX9D.
- 7. Load data to the TXREGx register (starts transmission).
- If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

FIGURE 20-3: EUSART TRANSMIT BLOCK DIAGRAM

FIGURE 20-5: ASYNCHRONOUS TRANSMISSION (BACK-TO-BACK)

TABLE 20-5: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	61
PIR1	PMPIF	ADIF	RC1IF	TX1IF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	64
PIE1	PMPIE	ADIE	RC1IE	TX1IE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	64
IPR1	PMPIP	ADIP	RC1IP	TX1IP	SSP1IP	CCP1IP	TMR2IP	TMR1IP	64
PIR3	SSP2IF	BCL2IF	RC2IF	TX2IF	TMR4IF	CCP5IF	CCP4IF	CCP3IF	64
PIE3	SSP2IE	BCL2IE	RC2IE	TX2IE	TMR4IE	CCP5IE	CCP4IE	CCP3IE	64
IPR3	SSP2IP	BCL2IP	RC2IP	TX2IP	TMR4IP	CCP5IP	CCP4IP	CCP3IP	64
RCSTAx	SPEN	SPEN RX9 SREN CREN ADDEN FERR OERR RX9D							63
TXREGx	EUSARTx	Transmit Re	gister						63
TXSTAx	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	63
BAUDCONx	ABDOVF	RCIDL	DTRXP	SCKP	BRG16	—	WUE	ABDEN	65
SPBRGHx	EUSARTx Baud Rate Generator Register High Byte								
SPBRGx	EUSARTx Baud Rate Generator Register Low Byte								65
ODCON2	—	—	—	—			U2OD	U10D	62

Legend: -= unimplemented locations read as '0'. Shaded cells are not used for asynchronous transmission.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	61
PIR1	PMPIF	ADIF	RC1IF	TX1IF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	64
PIE1	PMPIE	ADIE	RC1IE	TX1IE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	64
IPR1	PMPIP	ADIP	RC1IP	TX1IP	SSP1IP	CCP1IP	TMR2IP	TMR1IP	64
PIR3	SSP2IF	BCL2IF	RC2IF	TX2IF	TMR4IF	CCP5IF	CCP4IF	CCP3IF	64
PIE3	SSP2IE	BCL2IE	RC2IE	TX2IE	TMR4IE	CCP5IE	CCP4IE	CCP3IE	64
IPR3	SSP2IP BCL2IP RC2IP TX2IP TMR4IP CCP5IP CCP4IP CCP3IP					64			
RCSTAx	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	63
TXREGx	EUSARTx	Transmit Reg	gister						63
TXSTAx	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	63
BAUDCONx	ABDOVF	RCIDL	DTRXP	SCKP	BRG16	—	WUE	ABDEN	65
SPBRGHx	EUSARTx Baud Rate Generator Register High Byte								
SPBRGx	EUSARTx	Baud Rate G	Generator R	egister Low	Byte				65

TABLE 20-9: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION

Legend: — = unimplemented, read as '0'. Shaded cells are not used for synchronous slave transmission.

20.4.2 EUSART SYNCHRONOUS SLAVE RECEPTION

The operation of the Synchronous Master and Slave modes is identical, except in the case of Sleep, or any Idle mode and bit, SREN, which is a "don't care" in Slave mode.

If receive is enabled by setting the CREN bit prior to entering Sleep or any Idle mode, then a word may be received while in this low-power mode. Once the word is received, the RSR register will transfer the data to the RCREGx register. If the RCxIE enable bit is set, the interrupt generated will wake the chip from the low-power mode. If the global interrupt is enabled, the program will branch to the interrupt vector. To set up a Synchronous Slave Reception:

- Enable the synchronous master serial port by setting bits, SYNC and SPEN, and clearing bit, CSRC.
- 2. If interrupts are desired, set enable bit, RCxIE.
- 3. If 9-bit reception is desired, set bit, RX9.
- 4. To enable reception, set enable bit, CREN.
- Flag bit, RCxIF, will be set when reception is complete. An interrupt will be generated if enable bit, RCxIE, was set.
- 6. Read the RCSTAx register to get the 9th bit (if enabled) and determine if any error occurred during reception.
- 7. Read the 8-bit received data by reading the RCREGx register.
- 8. If any error occurred, clear the error by clearing bit, CREN.
- If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

BTF	SC	Bit Test File	it Test File, Skip if Clear		BTFSS	BTFSS		Bit Test File, Skip if Set			
Synta	ax:	BTFSC f, b	{,a}		Syntax		BTFSS f, b {	,a}			
Oper	ands:	$0 \leq f \leq 255$	Opera	nds:	$0 \le f \le 255$						
		$0 \le b \le 7$					0 ≤ b < 7				
		a ∈ [0,1]					a ∈ [0,1]				
Oper	ation:	skip if (f)	= 0		Operat	tion:	skip if (f)	= 1			
Statu	s Affected:	None			Status	Affected:	None				
Enco	ding:	1011	bbba ff	ff ffff	Encod	ing:	1010	bbba ff:	ff ffff		
Description:		If bit 'b' in re- instruction is the next instru- current instru- and a NOP is this a two-cy	gister 'f' is '0', s skipped. If bit ruction fetchec uction executio s executed inst rcle instruction	then the next 'b' is '0', then I during the on is discarded ead, making	Descri	ption:	If bit 'b' in register 'f' is '1', then the next instruction is skipped. If bit 'b' is '1', then the next instruction fetched during the current instruction execution is discarded and a NOP is executed instead, making this a two-cycle instruction.				
		lf 'a' is '0', th 'a' is '1', the GPR bank (o	e Access Banl BSR is used to default).	k is selected. If a select the				If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default).			
		If 'a' is '0' and is enabled, ti Indexed Lite whenever f ≤ Section 26.2 Bit-Oriented Literal Offse	d the extended his instruction ral Offset Addr ≤ 95 (5Fh). See 2.3 "Byte-Orie d Instructions et Mode" for d	instruction set operates in ressing mode ented and in Indexed etails.			If 'a' is '0' an set is enable Indexed Lite whenever f ≤ Section 26.2 Bit-Oriented Literal Offse	d the extended d, this instruction ral Offset Addro 5 (5Fh). See 2.3 "Byte-Orie I Instructions et Mode" for do	l instruction on operates in essing mode nted and in Indexed etails.		
Word	ls:	1			Words	:	1				
Cycle	oc.	1(2)			Cycles		1(2)				
0,00		Note: 3 cy by a	cles if skip and 2-word instruc	l followed ction.	0,000		Note: 3 cy by a	vcles if skip and a 2-word instru	d followed ction.		
QC	ycle Activity:				Q Cyc	cle Activity:					
	Q1	Q2	Q3	Q4	_	Q1	Q2	Q3	Q4		
	Decode	Read	Process	No		Decode	Read	Process	No		
الم ما		register 'f	Data	operation	الأعادانية		register 'f	Data	operation		
IT SK	ip:	02	02	01	IT SKIP	01	02	03	04		
	No	No	No	No	Г	No	No	No	No		
	operation	operation	operation	operation		operation	operation	operation	operation		
lf sk	ip and followed	by 2-word ins	truction:		lf skip	and followed	by 2-word ins	truction:			
	Q1	Q2	Q3	Q4	_	Q1	Q2	Q3	Q4		
	No	No	No	No		No	No	No	No		
	operation	operation	operation	operation	_	operation	operation	operation	operation		
	NO	NO	NO	NO		N0 operation	NO	NO	NO		
	operation	operation	operation	operation	L	operation	operation	operation	operation		
<u>Exan</u>	nple:	HERE B FALSE : TRUE :	IFSC FLAG	5, 1, 0	<u>Examp</u>	ole:	HERE B FALSE : TRUE :	IFSS FLAG	, 1, 0		
	Before Instruct	tion			В	efore Instruct	tion				
	PC	= add	ress (HERE)			PC	= add	ress (HERE)			
	If FI AG<	1> = 0 [.]			A	πer Instructio ۲ FI ۵C-	n 1> = ∩·				
	PC	= add	ress (TRUE)			PC	= add	ress (FALSE)			
	IT FLAG< PC	1> = 1; = add	ress (False)		If FLAG< PC	1> = 1; = add	ress (TRUE)			

BTG	Bit Toggle f		BOV	Branch if C	Branch if Overflow			
Syntax:	BTG f, b {,a}		Syntax:	BOV n	BOV n			
Operands:	$0 \leq f \leq 255$		Operands:	-128 ≤ n ≤ ′	$-128 \le n \le 127$			
	0 ≤ b < 7 a ∈ [0,1]	< 7 ,1]		if Overflow (PC) + 2 + 2	if Overflow bit is '1', (PC) + 2 + 2n \rightarrow PC			
Operation:	$(\overline{f} \overline{f}) \to f \overline{f} $		Status Affected	: None				
Status Affected:	None		Encodina:	1110	0100 nn	nn nnnn		
Encoding:	0111 bbba ff	ff ffff	Description:	If the Overf	low bit is '1' t	hen the		
Description:	Bit 'b' in data memory loc inverted.	ation 'f' is	2000000000	program wi	The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be			
	If 'a' is '0', the Access Bai If 'a' is '1', the BSR is use GPR bank (default).	nk is selected. d to select the		added to the incremente				
	If 'a' is '0' and the extended	ed instruction		PC + 2 + 2r	PC + 2 + 2n. This instruction is then a			
	set is enabled, this instruction in Indexed Literal Offset A	ction operates Addressing	Words:	two-cycle if	1			
	mode whenever $f \le 95$ (5)	Fh). See	Cycles:	1(2)				
	Bit-Oriented Instruction	s in Indexed details.	Q Cycle Activi If Jump:	ty:				
Words [.]	1		Q1	Q2	Q3	Q4		
Cycles:	1		Decode	e Read literal	Process	Write to PC		
				'n'	Data			
	02 03	04	N0 operatio	n operation	N0 operation	N0 operation		
Decode	Read Process	Write	If No Jump:	opolation	oporation	oporation		
	register 'f' Data	register 'f'	Q1	Q2	Q3	Q4		
			Decode	e Read literal	Process	No		
Example:	BTG PORTC, 4, ()		'n'	Data	operation		
Before Instruc	ction:							
PORTC After Instructi	= 0111 0101 [75h]		Example:	HERE	BOV Jump)		
PORTC	= 0110 0101 [65h]		Before Ins	struction				
	0110 0101 [001]		PC After Instr	= ad	dress (HERE)		
				erflow = 1°				
			11 0 0	PC = ad	dress (Jump)		
			lf Ov	ertlow = 0; PC = ad	dress (HERE	+ 2)		

CPF	SGT	Compare f	with W, Skip	if f > W	CPF	SLT	Compare f	with W, Skip	′, Skip if f < W		
Synt	ax:	CPFSGT	f {,a}		Synta	ax:	CPFSLT	f {,a}			
Ope	ands:	$\begin{array}{l} 0 \leq f \leq 255 \\ a \in [0,1] \end{array}$			Oper	ands:	0 ≤ f ≤ 255 a ∈ [0,1]				
Ope	ation:	on: (f) – (W), skip if (f) > (W) (unsigned comparison)			Oper	ation:	(f) – (W), skip if (f) < (unsigned o	(f) - (W), skip if (f) < (W) (unsigned comparison)			
Statu	is Affected:	None			Statu	is Affected:	None	. ,			
Enco	oding:	ling: 0110 010a ffff ffff		Enco	Encodina:		0110 000a ffff ffff				
Description:		Compares f location 'f' t performing	he contents of o the contents an unsigned s	f data memory s of the W by subtraction.	Desc	Description:		Compares the contents of data memory location 'f' to the contents of W by			
		If the conte contents of instruction i executed in two-cycle ir	nts of 'f' are gr WREG, then t s discarded ar istead, making istruction.	eater than the the fetched nd a NOP is this a			If the contents of 'f' are less than the contents of W, then the fetched instruction is discarded and a NOP is executed instead, making this a two-cycle instruction.				
		If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default).					If 'a' is '0', t If 'a' is '1', t GPR bank	nk is selected. d to select the			
		If 'a' is '0' a set is enabl in Indexed mode when Section 26	If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 26.2.3 "Byte-Oriented and			Words: Cycles:		1 1(2) Note: 3 cycles if skip and followed by a 2-word instruction.			
		Bit-Oriente	d Instruction	s in Indexed	QC	vcle Activitv:					
		Literal Offs	set Mode" for	details.		Q1	Q2	Q3	Q4		
Word	ls:	1				Decode	Read	Process	No		
Cycl	es:	1(2) Note: 3 c	ycles if skip ar a 2-word instr	nd followed	lf sk	ip:	register 'f'	Data	operation		
QC	vcle Activitv:					Q1	Q2	Q3	Q4		
	Q1	Q2	Q3	Q4		No	No	No	No		
	Decode	Read	Process	No	lfek	in and followe	d by 2-word in	etruction:	operation		
		register 'f'	Data	operation	11 31				04		
It sk	.ip: 	02	02	04		No	No	No	No		
	No	Q2 No	No	Q4 No		operation	operation	operation	operation		
	operation	operation	operation	operation		No	No	No	No		
lf sk	ip and followe	d by 2-word in	struction:			operation	operation	operation	operation		
	Q1	Q2	Q3	Q4							
	No	No	No	No	Exan	nple:	HERE (CPFSLT REG,	1		
	operation	operation	operation	operation			NLESS	:			
	NO operation	NO operation	NO operation	NO			LESS	:			
<u>Exar</u>	nple:	HERE NGREATER GREATER	CPFSGT RE	G, 0		Before Instruct PC W After Instruction	tion = Ad = ? on < W [.]	dress (HERE)		
Before Instruction			PC	= Ad	dress (LESS)					
	PC	= Ad	dress (HERE)		If REG	≥ W; = ∆d	dress (NI.FQ	5)		
	W	= ?				10	r.u	CUTIN) COO	~ /		
	Atter Instructio	on									
	If REG PC PC PC	> W, = Ad ≤ W; = Ad	dress (GREA	TER) ATER)							