

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	EBI/EMI, I ² C, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	65
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f86j50-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

64/80-Pin High-Performance, 1-Mbit Flash USB Microcontrollers with nanoWatt Technology

Universal Serial Bus Features:

- USB V2.0 Compliant SIE
- Low Speed (1.5 Mb/s) and Full Speed (12 Mb/s)
- Supports Control, Interrupt, Isochronous and Bulk Transfers
- Supports up to 32 Endpoints (16 bidirectional)
- 3.9-Kbyte Dual Access RAM for USB
- On-Chip USB Transceiver

Flexible Oscillator Structure:

- High-Precision PLL for USB
- Two External Clock modes, up to 48 MHz
- Internal 31 kHz Oscillator, Tunable Internal Oscillator, 31 kHz to 8 MHz
- Secondary Oscillator using Timer1 @ 32 kHz
- Fail-Safe Clock Monitor:
 - Allows for safe shutdown if any clock stops

Peripheral Highlights:

- High-Current Sink/Source 25 mA/25mA (PORTB and PORTC)
- Four Programmable External Interrupts
- · Four Input Change Interrupts
- Two Capture/Compare/PWM (CCP) modules
- Three Enhanced Capture/Compare/PWM (ECCP) modules:
 - One, two or four PWM outputs
 - Selectable polarity
 - Programmable dead time
 - Auto-shutdown and auto-restart
- Two Master Synchronous Serial Port (MSSP) modules supporting 3-Wire SPI (all 4 modes) and I²C[™] Master and Slave modes
- 8-Bit Parallel Master Port/Enhanced Parallel Slave Port with 16 Address Lines
- Dual Analog Comparators with Input Multiplexing

Peripheral Highlights (continued):

- 10-Bit, up to 12-Channel Analog-to-Digital (A/D) Converter module:
 - Auto-acquisition capability
 - Conversion available during Sleep
- Two Enhanced USART modules:
 - Supports RS-485, RS-232 and LIN 1.2
 - Auto-wake-up on Start bit
 - Auto-Baud Detect

External Memory Bus (80-pin devices only):

- · Address Capability of up to 2 Mbytes
- · 8-Bit or 16-Bit Interface
- · 12-Bit, 16-Bit and 20-Bit Addressing modes

Special Microcontroller Features:

- 5.5V Tolerant Inputs (digital-only pins)
- · Low-Power, High-Speed CMOS Flash Technology
- C Compiler Optimized Architecture for Re-Entrant Code
- Power Management Features:
 - Run: CPU on, peripherals on
 - Idle: CPU off, peripherals on
 - Sleep: CPU off, peripherals off
- · Priority Levels for Interrupts
- Self-Programmable under Software Control
- 8 x 8 Single-Cycle Hardware Multiplier
- Extended Watchdog Timer (WDT):
- Programmable period from 4 ms to 131s
- Single-Supply In-Circuit Serial Programming[™] (ICSP[™]) via Two Pins
- In-Circuit Debug (ICD) with 3 Breakpoints via Two Pins
- Operating Voltage Range of 2.0V to 3.6V
- On-Chip 2.5V Regulator
- Flash Program Memory of 10000 Erase/Write Cycles and 20-Year Data Retention

Features	PIC18F65J50	PIC18F66J50	PIC18F66J55	PIC18F67J50
Operating Frequency	DC – 48 MHz	DC – 48 MHz	DC – 48 MHz	DC – 48 MHz
Program Memory (Bytes)	32K	64K	96K	128K
Program Memory (Instructions)	16384	32768	49152	65536
Data Memory (Bytes)	3904	3904	3904	3904
Interrupt Sources		3	60	
I/O Ports	Ports A, B, C, D, E, F, G			
Timers		5		
Capture/Compare/PWM Modules	2			
Enhanced Capture/ Compare/PWM Modules	3			
Serial Communications	MSSP (2), Enhanced USART (2), USB			
Parallel Communications (PMP)		Y	es	
10-Bit Analog-to-Digital Module		8 Input (Channels	
Resets (and Delays)	POR, BOR, RES	POR, BOR, RESET Instruction, Stack Full, Stack Underflow, MCLR, WDT (PWRT, OST)		
Instruction Set	75 Instru	75 Instructions, 83 with Extended Instruction Set Enabled		
Packages		64-Pin TQFP		

TABLE 1-1: DEVICE FEATURES FOR THE PIC18F6XJ5X (64-PIN DEVICES)

TABLE 1-2: DEVICE FEATURES FOR THE PIC18F8XJ5X (80-PIN DEVICES)

Features	PIC18F85J50	PIC18F86J50	PIC18F86J55	PIC18F87J50	
Operating Frequency	DC – 48 MHz	DC – 48 MHz	DC – 48 MHz	DC – 48 MHz	
Program Memory (Bytes)	32K	64K	96K	128K	
Program Memory (Instructions)	16384	32768	49152	65536	
Data Memory (Bytes)	3904	3904	3904	3904	
Interrupt Sources			60		
I/O Ports		Ports A, B, C,	D, E, F, G, H, J		
Timers		5			
Capture/Compare/PWM Modules		2			
Enhanced Capture/ Compare/PWM Modules	3				
Serial Communications	MSSP (2), Enhanced USART (2), USB				
Parallel Communications (PMP)		Y	es		
10-Bit Analog-to-Digital Module		12 Input Channels			
Resets (and Delays)	POR, BOR, RES	POR, BOR, RESET Instruction, Stack Full, Stack Underflow, MCLR, WDT (PWRT, OST)			
Instruction Set	75 Instructions, 83 with Extended Instruction Set Enabled				
Packages		80-Pin TQFP			

Pin Number	Fill Buller Description		Description		
64-TQFP	Туре	Туре	Description		
			PORTD is a bidirectional I/O port.		
58					
	I/O		Digital I/O.		
	I/O	TTL	Parallel Master Port data.		
55					
	I/O		Digital I/O.		
	I/O	IIL	Parallel Master Port data.		
54					
	-		Digital I/O.		
	1/0	IIL	Parallel Master Port data.		
53		OT			
			Digital I/O. Parallel Master Port data.		
50	1/0	116			
52	1/0	ет	Digital I/O.		
	-		Parallel Master Port data.		
	0	_	SPI data out.		
51					
01	I/O	ST	Digital I/O.		
	I/O	TTL	Parallel Master Port data.		
	I		SPI data in.		
	I/O	ST	I ² C™ data I/O.		
50					
	-		Digital I/O.		
			Parallel Master Port data. Synchronous serial clock input/output for SPI mode.		
			Synchronous serial clock input/output for I ² C mode.		
49					
	I/O	ST	Digital I/O.		
	I/O	TTL	Parallel Master Port data.		
	Ι	TTL	SPI slave select input.		
			CMOS = CMOS compatible input or output		
Trigger input w	Analog = Analog input				
I= InputO= OutputP= PowerOD= Open-Drain (no P diode to VDD)					
	64-TQFP 58 55 54 53 52 51 50 49 mpatible input	64-TQFP Type 58 I/O 55 I/O 55 I/O 55 I/O 55 I/O 55 I/O 54 I/O 53 I/O 52 I/O 51 I/O 1/O I/O 50 I/O 1/O I/O 50 I/O 1/O I/O 49 I/O 1/O <	64-TQFP Type Builter 58 I/O ST 55 I/O ST 55 I/O ST 55 I/O ST 54 I/O ST 53 I/O ST 53 I/O ST 52 I/O ST 51 I/O ST 1/O ST TTL 52 I/O ST 1/O ST TTL 52 I/O ST 1/O ST TTL 51 I/O ST 1/O ST ST 49		

TABLE 1-3: PIC18F6XJ5X PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Default assignment for ECCP2/P2A when CCP2MX Configuration bit is set.

2: Alternate assignment for ECCP2/P2A when CCP2MX Configuration bit is cleared.

3: RA7 and RA6 will be disabled if OSC1 and OSC2 are used for the clock function.

Example 8-3 shows the sequence to do a 16 x 16 unsigned multiplication. Equation 8-1 shows the algorithm that is used. The 32-bit result is stored in four registers (RES3:RES0).

EQUATION 8-1: 16 x 16 UNSIGNED MULTIPLICATION ALGORITHM

RES3:RES0	=	into into into into into into into into
	=	$(ARG1H \bullet ARG2H \bullet 2^{16}) +$
		$(ARG1H \bullet ARG2L \bullet 2^8) +$
		$(ARG1L \bullet ARG2H \bullet 2^8) +$
		$(ARG1L \bullet ARG2L)$

EXAMPLE 8-3: 16 x 16 UNSIGNED

MULTIPLY ROUTINE

	MOVF	ARG1L, W	
	MULWF	ARG2L	; ARG1L * ARG2L->
			; PRODH:PRODL
	MOVFF	PRODH, RES1	;
	MOVFF	PRODL, RESO	;
;			
	MOVF	ARG1H, W	
	MULWF	ARG2H	; ARG1H * ARG2H->
			; PRODH:PRODL
	MOVFF	PRODH, RES3	;
	MOVFF	PRODL, RES2	;
;			
	MOVF	ARG1L, W	
	MULWF	ARG2H	; ARG1L * ARG2H->
			; PRODH:PRODL
	MOVF	PRODL, W	;
	ADDWF	RES1, F	; Add cross
	MOVF	PRODH, W	; products
	ADDWFC	RES2, F	;
	CLRF	WREG	;
	ADDWFC	RES3, F	;
;			
	MOVF	ARG1H, W	;
	MULWF	ARG2L	; ARG1H * ARG2L->
			; PRODH:PRODL
	MOVF	PRODL, W	;
	ADDWF	RES1, F	; Add cross
	MOVF	PRODH, W	; products
	ADDWFC	RES2, F	;
	CLRF	WREG	;
	ADDWFC	RES3, F	;

Example 8-4 shows the sequence to do a 16 x 16 signed multiply. Equation 8-2 shows the algorithm used. The 32-bit result is stored in four registers (RES3:RES0). To account for the sign bits of the arguments, the MSb for each argument pair is tested and the appropriate subtractions are done.

EQUATION 8-2: 16 x 16 SIGNED MULTIPLICATION ALGORITHM

RES3:RES0 = ARG1H:ARG1L • ARG2H:ARG2L
$= (ARG1H \bullet ARG2H \bullet 2^{16}) +$
$(ARG1H \bullet ARG2L \bullet 2^8) +$
$(ARG1L \bullet ARG2H \bullet 2^8) +$
$(ARG1L \bullet ARG2L) +$
$(-1 \bullet ARG2H < 7 > \bullet ARG1H: ARG1L \bullet 2^{16}) +$
$(-1 \bullet ARG1H < 7 > \bullet ARG2H:ARG2L \bullet 2^{16})$

EXAMPLE 8-4: 16 x 16 SIGNED MULTIPLY ROUTINE

		MOE	
	MOVF	ARG1L, W	
	MULWF	ARG2L	; ARG1L * ARG2L ->
			; PRODH:PRODL
	MOVFF	PRODH, RES1	
	MOVFF	PRODL, RESO	
;	110 11 1	110001, 11000	,
'	MOVF	ARG1H, W	
			- ADC111 + ADC211 >
	MULWF	ARGZI	; ARG1H * ARG2H ->
			; PRODH:PRODL
	MOVFF		
	MOVFF	PRODL, RES2	;
;			
	MOVF	ARG1L, W	
	MULWF	ARG2H	; ARG1L * ARG2H ->
			; PRODH:PRODL
	MOVF	PRODL, W	;
	ADDWF	RES1, F	; Add cross
	MOVF	PRODH, W	; products
	ADDWFC	RES2, F	;
	CLRF	WREG	;
	ADDWFC	RES3, F	;
;			
	MOVF	ARG1H, W	;
	MULWF		; ARG1H * ARG2L ->
	110 1111	III(021)	; PRODH:PRODL
	MOVF	PRODL, W	
	ADDWF		; ; Add cross
	MOVE	PRODH, W	; products
		RES2, F	
	CLRF	WREG	;
		RES3, F	;
	ADDWEC	RESS, F	;
;			
			; ARG2H:ARG2L neg?
	BRA	SIGN_ARG1	; no, check ARG1
		ARG1L, W	;
	SUBWF	RES2	;
	MOVF	ARG1H, W	;
	SUBWFB	RES3	
;			
SIG	N_ARG1		
	BTFSS	ARG1H, 7	; ARG1H:ARG1L neg?
	BRA	CONT_CODE	; no, done
	MOVF	ARG2L, W	;
	SUBWF	RES2	;
	MOVF	ARG2H, W	;
	SUBWFB		
;			
	IT CODE		
	:		

9.0 INTERRUPTS

Members of the PIC18F87J10 family of devices have multiple interrupt sources and an interrupt priority feature that allows most interrupt sources to be assigned a high-priority level or a low-priority level. The high-priority interrupt vector is at 0008h and the low-priority interrupt vector is at 0018h. High-priority interrupt events will interrupt any low-priority interrupts that may be in progress.

There are thirteen registers which are used to control interrupt operation. These registers are:

- RCON
- INTCON
- INTCON2
- INTCON3
- PIR1, PIR2, PIR3
- PIE1, PIE2, PIE3
- IPR1, IPR2, IPR3

It is recommended that the Microchip header files supplied with MPLAB[®] IDE be used for the symbolic bit names in these registers. This allows the assembler/compiler to automatically take care of the placement of these bits within the specified register.

In general, interrupt sources have three bits to control their operation. They are:

- Flag bit to indicate that an interrupt event occurred
- Enable bit that allows program execution to branch to the interrupt vector address when the flag bit is set
- **Priority bit** to select high priority or low priority

The interrupt priority feature is enabled by setting the IPEN bit (RCON<7>). When interrupt priority is enabled, there are two bits which enable interrupts globally. Setting the GIEH bit (INTCON<7>) enables all interrupts that have the priority bit set (high priority). Setting the GIEL bit (INTCON<6>) enables all interrupts that have the priority bit cleared (low priority). When the interrupt flag, enable bit and appropriate global interrupt enable bit are set, the interrupt will vector immediately to address 0008h or 0018h, depending on the priority bit setting. Individual interrupts can be disabled through their corresponding enable bits.

When the IPEN bit is cleared (default state), the interrupt priority feature is disabled and interrupts are compatible with PIC[®] mid-range devices. In Compatibility mode, the interrupt priority bits for each source have no effect. INTCON<6> is the PEIE bit which enables/disables all peripheral interrupt sources. INTCON<7> is the GIE bit which enables/disables all interrupt sources. All interrupts branch to address 0008h in Compatibility mode.

When an interrupt is responded to, the global interrupt enable bit is cleared to disable further interrupts. If the IPEN bit is cleared, this is the GIE bit. If interrupt priority levels are used, this will be either the GIEH or GIEL bit. High-priority interrupt sources can interrupt a low-priority interrupt. Low-priority interrupts are not processed while high-priority interrupts are in progress.

The return address is pushed onto the stack and the PC is loaded with the interrupt vector address (0008h or 0018h). Once in the Interrupt Service Routine, the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bits must be cleared in software before re-enabling interrupts to avoid recursive interrupts.

The "return from interrupt" instruction, RETFIE, exits the interrupt routine and sets the GIE bit (GIEH or GIEL if priority levels are used) which re-enables interrupts.

For external interrupt events, such as the INTx pins or the PORTB input change interrupt, the interrupt latency will be three to four instruction cycles. The exact latency is the same for one or two-cycle instructions. Individual interrupt flag bits are set regardless of the status of their corresponding enable bit or the GIE bit.

Note: Do not use the MOVFF instruction to modify any of the interrupt control registers while any interrupt is enabled. Doing so may cause erratic microcontroller behavior.

R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
INT2IP	INT1IP	INT3IE	INT2IE	INT1IE	INT3IF	INT2IF	INT1IF
bit 7			·		·		bit (
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7	INT2IP: INT2	External Interr	upt Priority bit				
	1 = High prio	ority					
	0 = Low prior	rity					
bit 6	INT1IP: INT1	External Interr	upt Priority bit				
	1 = High pric						
	0 = Low prior	•					
bit 5		External Interr	•				
		the INT3 extern					
L:1 4		the INT3 exter	•				
bit 4		External Interr	•				
		the INT2 exterr the INT2 exter					
bit 3		External Interr	•				
bit o		the INT1 extern	•				
		the INT1 exter					
bit 2	INT3IF: INT3	External Interro	upt Flag bit				
	1 = The INT	3 external interr	upt occurred (must be cleare	d in software)		
	0 = The INT3	3 external interr	upt did not oc	cur			
bit 1	INT2IF: INT2	External Interre	upt Flag bit				
	1 = The INT2 external interrupt occurred (must be cleared in software)						
	0 = The INT2	2 external interr	upt did not oc	cur			
bit 0	INT1IF: INT1 External Interrupt Flag bit						
				must be cleare	d in software)		
	0 = 1 he INT	l external interr	upt did not oc	cur			
Note: In	terrupt flag bits	are set when	an interrupt co	ondition occurs	regardless of	the state of its	correspondi

REGISTER 9-3: INTCON3: INTERRUPT CONTROL REGISTER 3

Note: Interrupt flag bits are set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the global interrupt enable bit. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt. This feature allows for software polling.

10.10 PORTJ, TRISJ and LATJ Registers

Note: PORTJ is available only on 80-pin devices.

PORTJ is an 8-bit wide, bidirectional port. All pins on PORTJ are digital only and tolerate voltages up to 5.5V.

All pins on PORTJ are implemented with Schmitt Trigger input buffers. Each pin is individually configurable as an input or output.

Note:	These pins are configured as digital inputs
	on any device Reset.

When the external memory interface is enabled, all of the PORTJ pins function as control outputs for the interface. This occurs automatically when the interface is enabled by clearing the EBDIS control bit (MEMCON<7>). The TRISJ bits are also overridden. Each of the PORTJ pins has a weak internal pull-up. The pull-ups are provided to keep the inputs at a known state for the external memory interface while powering up. A single control bit can turn off all the pull-ups. This is performed by clearing bit RJPU (PORTG<5>). The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on any device Reset.

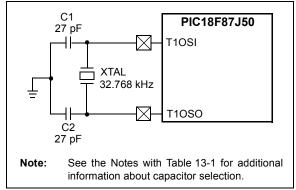
EXAMPLE 10-9: INITIALIZING PORTJ

CLRF	PORTJ	; Initialize PORTG by ; clearing output ; data latches
CLRF	LATJ	; Alternate method to clear ; output data latches
MOVLW	OCFh	; Value used to initialize ; data direction
MOVWF	TRISJ	; Set RJ3:RJ0 as inputs ; RJ5:RJ4 as output ; RJ7:RJ6 as inputs

13.2 Timer1 16-Bit Read/Write Mode

Timer1 can be configured for 16-bit reads and writes (see Figure 13-2). When the RD16 control bit, T1CON<7>, is set, the address for TMR1H is mapped to a buffer register for the high byte of Timer1. A read from TMR1L will load the contents of the high byte of Timer1 into the Timer1 High Byte Buffer register. This provides the user with the ability to accurately read all 16 bits of Timer1 without having to determine whether a read of the high byte, followed by a read of the low byte, has become invalid due to a rollover between reads.

A write to the high byte of Timer1 must also take place through the TMR1H Buffer register. The Timer1 high byte is updated with the contents of TMR1H when a write occurs to TMR1L. This allows a user to write all 16 bits to both the high and low bytes of Timer1 at once.


The high byte of Timer1 is not directly readable or writable in this mode. All reads and writes must take place through the Timer1 High Byte Buffer register. Writes to TMR1H do not clear the Timer1 prescaler. The prescaler is only cleared on writes to TMR1L.

13.3 Timer1 Oscillator

An on-chip crystal oscillator circuit is incorporated between pins T1OSI (input) and T1OSO (amplifier output). It is enabled by setting the Timer1 Oscillator Enable bit, T1OSCEN (T1CON<3>). The oscillator is a low-power circuit rated for 32 kHz crystals. It will continue to run during all power-managed modes. The circuit for a typical LP oscillator is shown in Figure 13-3. Table 13-1 shows the capacitor selection for the Timer1 oscillator.

The user must provide a software time delay to ensure proper start-up of the Timer1 oscillator.

FIGURE 13-3: EXTERNAL COMPONENTS FOR THE TIMER1 LP OSCILLATOR

TABLE 13-1: CAPACITOR SELECTION FOR THETIMEROSCILLATOR^(2,3,4)

Oscillator Type	Freq.	C1	C2				
LP	32 kHz 27 pF ⁽¹⁾		27 pF ⁽¹⁾				
s	te 1: Microchip suggests these values as a starting point in validating the oscillator circuit.						
c	Higher capacitance increases the stability of the oscillator but also increases the start-up time.						
t a	Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropriate values of external components.						
40.04							

13.3.1 USING TIMER1 AS A CLOCK SOURCE

The Timer1 oscillator is also available as a clock source in power-managed modes. By setting the clock select bits, SCS1:SCS0 (OSCCON<1:0>), to '01', the device switches to SEC_RUN mode; both the CPU and peripherals are clocked from the Timer1 oscillator. If the IDLEN bit (OSCCON<7>) is cleared and a SLEEP instruction is executed, the device enters SEC_IDLE mode. Additional details are available in **Section 3.0 "Power-Managed Modes"**.

Whenever the Timer1 oscillator is providing the clock source, the Timer1 system clock status flag, T1RUN (T1CON<6>), is set. This can be used to determine the controller's current clocking mode. It can also indicate the clock source being currently used by the Fail-Safe Clock Monitor. If the Clock Monitor is enabled and the Timer1 oscillator fails while providing the clock, polling the T1RUN bit will indicate whether the clock is being provided by the Timer1 oscillator or another source.

13.3.2 TIMER1 OSCILLATOR LAYOUT CONSIDERATIONS

The Timer1 oscillator circuit draws very little power during operation. Due to the low-power nature of the oscillator, it may also be sensitive to rapidly changing signals in close proximity.

The oscillator circuit, shown in Figure 13-3, should be located as close as possible to the microcontroller. There should be no circuits passing within the oscillator circuit boundaries other than Vss or VDD.

REGISTER 19-2: SSPxCON1: MSSPx CONTROL REGISTER 1 (SPI MODE)

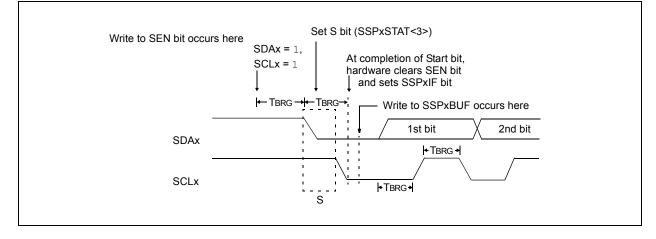
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WCOL	SSPOV ⁽¹⁾	SSPEN ⁽²⁾	CKP	SSPM3 ⁽³⁾	SSPM2 ⁽³⁾	SSPM1 ⁽³⁾	SSPM0 ⁽³⁾
bit 7							bit (
Laward							
Legend:	1.1. 1.9		•1			1 (0)	
R = Reada		W = Writable	DIC	-	nented bit, read		
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 7	WCOI : Write	e Collision Dete	rt bit				
				e it is still transm	nittina the previ	ous word (mus	t be cleared ir
	software)	•			5 - F		
	0 = No collis						
bit 6	SSPOV: Rec	eive Overflow I	ndicator bit ⁽¹⁾				
	SPI Slave mo						_
				BUF register is s			
				flow can only or ta, to avoid sett			
	0 = No overfl	•	ansmitting ua		ing overnow (ii		in soltware).
bit 5	SSPEN: Mas	ter Synchronou	s Serial Port I	Enable bit ⁽²⁾			
		•		Kx, SDOx, SDIx	and \overline{SSx} as so	erial port pins	
	0 = Disables	serial port and	configures the	ese pins as I/O p	oort pins		
bit 4	CKP: Clock F	Polarity Select b	it				
	1 = Idle state	for clock is a h	gh level				
	0 = Idle state	for clock is a lo	w level				
bit 3-0				rial Port Mode S			
				n, <u>SSx</u> pin contro		x can be used	as I/O pin
				n, SSx pin contro	ol enabled		
		Aaster mode, cl Aaster mode, cl					
		Aaster mode, cl					
		Aaster mode, cl		•			
Note 1:	In Master mode,	the overflow bit	is not set sind	ce each new rec	eption (and tra	nsmission) is ir	nitiated by
	writing to the SSI	PxBUF register.			·	-	-
о.	When enabled th	nia nin muat ha	nronorly confi	aurod og input a			

- 2: When enabled, this pin must be properly configured as input or output.
- **3:** Bit combinations not specifically listed here are either reserved or implemented in I^2C^{TM} mode only.

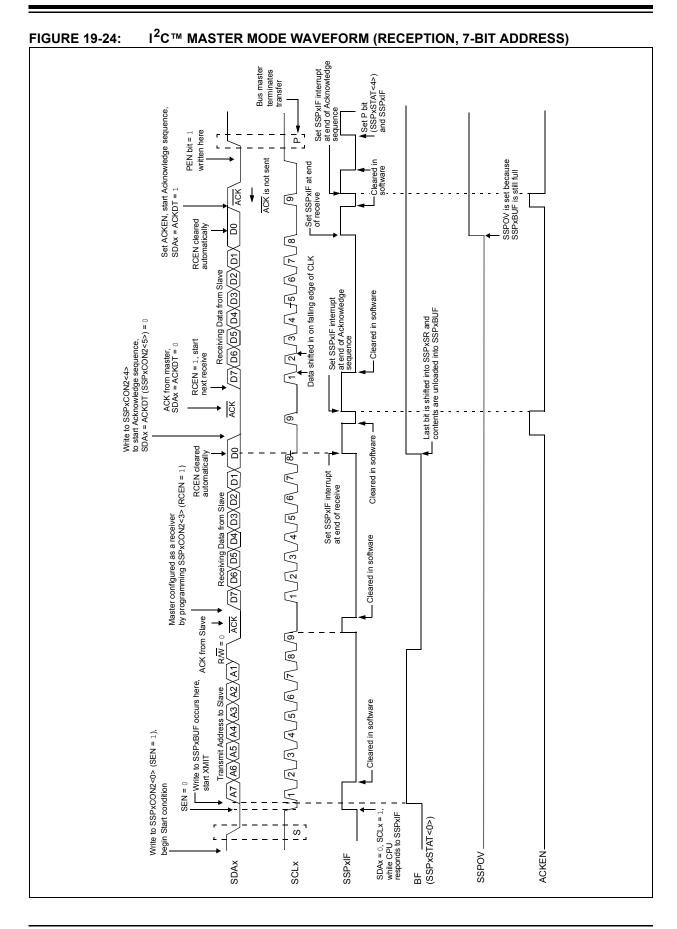
REGISTER 19-4: SSPxCON1: MSSPx CONTROL REGISTER 1 (I²C[™] MODE) R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 WCOL SSPEN⁽¹⁾ SSPM3⁽²⁾ SSPM2⁽²⁾ SSPM1⁽²⁾ SSPM0⁽²⁾ SSPOV CKP bit 7 bit 0 Legend: R = Readable bit U = Unimplemented bit, read as '0' W = Writable bit -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 7 WCOL: Write Collision Detect bit In Master Transmit mode: 1 = A write to the SSPxBUF register was attempted while the I²C conditions were not valid for a transmission to be started (must be cleared in software) 0 = No collisionIn Slave Transmit mode: 1 = The SSPxBUF register is written while it is still transmitting the previous word (must be cleared in software) 0 = No collision In Receive mode (Master or Slave modes): This is a "don't care" bit. SSPOV: Receive Overflow Indicator bit bit 6 In Receive mode: 1 = A byte is received while the SSPxBUF register is still holding the previous byte (must be cleared in software) 0 = No overflow In Transmit mode: This is a "don't care" bit in Transmit mode. bit 5 SSPEN: Master Synchronous Serial Port Enable bit⁽¹⁾ 1 = Enables the serial port and configures the SDAx and SCLx pins as the serial port pins 0 = Disables serial port and configures these pins as I/O port pins CKP: SCKx Release Control bit bit 4 In Slave mode: 1 = Releases clock 0 = Holds clock low (clock stretch), used to ensure data setup time In Master mode: Unused in this mode. bit 3-0 SSPM3:SSPM0: Master Synchronous Serial Port Mode Select bits⁽²⁾ 1111 = I^2C Slave mode, 10-bit address with Start and Stop bit interrupts enabled $1110 = I^2C$ Slave mode, 7-bit address with Start and Stop bit interrupts enabled $1011 = I^2C$ Firmware Controlled Master mode (Slave Idle) 1001 = Load SSPMSK register at SSPADD SFR address^(3,4) $1000 = I^2C$ Master mode, clock = Fosc/(4 * (SSPxADD + 1)) $0111 = I^2C$ Slave mode, 10-bit address $0110 = I^2C$ Slave mode, 7-bit address **Note 1:** When enabled, the SDAx and SCLx pins must be configured as inputs. 2: Bit combinations not specifically listed here are either reserved or implemented in SPI mode only. 3: When SSPM3:SSPM0 = 1001, any reads or writes to the SSPxADD SFR address actually accesses the SSPMSK register.

4: This mode is only available when 7-bit Address Masking mode is selected (MSSPMSK Configuration bit is '1').

19.4.8 I²C MASTER MODE START CONDITION TIMING


To initiate a Start condition, the user sets the Start Enable bit, SEN (SSPxCON2<0>). If the SDAx and SCLx pins are sampled high, the Baud Rate Generator is reloaded with the contents of SSPxADD<6:0> and starts its count. If SCLx and SDAx are both sampled high when the Baud Rate Generator times out (TBRG), the SDAx pin is driven low. The action of the SDAx being driven low while SCLx is high is the Start condition and causes the S bit (SSPxSTAT<3>) to be set. Following this, the Baud Rate Generator is reloaded with the contents of SSPxADD<6:0> and resumes its count. When the Baud Rate Generator times out (TBRG), the SEN bit (SSPxCON2<0>) will be automatically cleared by hardware. The Baud Rate Generator is suspended, leaving the SDAx line held low and the Start condition is complete.

Note: If, at the beginning of the Start condition, the SDAx and SCLx pins are already sampled low or if during the Start condition, the SCLx line is sampled low before the SDAx line is driven low, a bus collision occurs, the Bus Collision Interrupt Flag, BCLxIF, is set, the Start condition is aborted and the I²C module is reset into its Idle state.


19.4.8.1 WCOL Status Flag

If the user writes the SSPxBUF when a Start sequence is in progress, the WCOL bit is set and the contents of the buffer are unchanged (the write doesn't occur).

Note: Because queueing of events is not allowed, writing to the lower 5 bits of SSPxCON2 is disabled until the Start condition is complete.

FIGURE 19-21: FIRST START BIT TIMING

22.4.1.3 BDnSTAT Register (SIE Mode)

When the BD and its buffer are owned by the SIE, most of the bits in BDnSTAT take on a different meaning. The configuration is shown in Register 22-6. Once UOWN is set, any data or control settings previously written there by the user will be overwritten with data from the SIE.

The BDnSTAT register is updated by the SIE with the token Packet Identifier (PID) which is stored in BDnSTAT<5:3>. The transfer count in the corresponding BDnCNT register is updated. Values that overflow the 8-bit register carry over to the two most significant digits of the count, stored in BDnSTAT<1:0>.

22.4.2 BD BYTE COUNT

The byte count represents the total number of bytes that will be transmitted during an IN transfer. After an IN transfer, the SIE will return the number of bytes sent to the host.

For an OUT transfer, the byte count represents the maximum number of bytes that can be received and stored in USB RAM. After an OUT transfer, the SIE will return the actual number of bytes received. If the number of bytes received exceeds the corresponding byte count, the data packet will be rejected and a NAK handshake will be generated. When this happens, the byte count will not be updated.

The 10-bit byte count is distributed over two registers. The lower 8 bits of the count reside in the BDnCNT register. The upper two bits reside in BDnSTAT<1:0>. This represents a valid byte range of 0 to 1023.

22.4.3 BD ADDRESS VALIDATION

The BD Address register pair contains the starting RAM address location for the corresponding endpoint buffer. No mechanism is available in hardware to validate the BD address.

If the value of the BD address does not point to an address in the USB RAM, or if it points to an address within another endpoint's buffer, data is likely to be lost or overwritten. Similarly, overlapping a receive buffer (OUT endpoint) with a BD location in use can yield unexpected results. When developing USB applications, the user may want to consider the inclusion of software-based address validation in their code.

REGISTER 22-6: BDnSTAT: BUFFER DESCRIPTOR n STATUS REGISTER (BD0STAT THROUGH BD63STAT), SIE MODE (DATA RETURNED BY THE SIDE TO THE MCU)

R/W-x	U-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
UOWN	—	PID3	PID2	PID1	PID0	BC9	BC8
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	UOWN: USB Own bit 1 = The SIE owns the BD and its corresponding buffer
bit 6	Reserved: Not written by the SIE
bit 5-2	PID3:PID0: Packet Identifier bits The received token PID value of the last transfer (IN, OUT or SETUP transactions only).
bit 1-0	BC9:BC8: Byte Count 9 and 8 bits These bits are updated by the SIE to reflect the actual number of bytes received on an OUT transfer and the actual number of bytes transmitted on an IN transfer.

EQUATION 22-1: ESTIMATING USB TRANSCEIVER CURRENT CONSUMPTION

 $Ixcvr = \frac{(60 \text{ mA} \cdot \text{Vusb} \cdot \text{Pzero} \cdot \text{Pin} \cdot \text{Lcable})}{(3.3V \cdot 5m)} + IPULLUP$

Legend: VUSB – Voltage applied to the VUSB pin in volts. (Should be 3.0V to 3.6V.)

PZERO – Percentage (in decimal) of the IN traffic bits sent by the PIC® device that are a value of '0'.

PIN – Percentage (in decimal) of total bus bandwidth that is used for IN traffic.

LCABLE - Length (in meters) of the USB cable. The USB 2.0 specification requires that full-speed applications use cables no longer than 5m.

IPULLUP – Current which the nominal, 1.5 k Ω pull-up resistor (when enabled) must supply to the USB cable. On the host or hub end of the USB cable, 15 k Ω nominal resistors (14.25 k Ω to 24.8 k Ω) are present which pull both the D+ and D- lines to ground. During bus Idle conditions (such as between packets or during USB Suspend mode), this results in up to 218 μ A of quiescent current drawn at 3.3V.

IPULLUP is also dependant on bus traffic conditions and can be as high as 2.2 mA when the USB bandwidth is fully utilized (either IN or OUT traffic) for data that drives the lines to the "K" state most of the time.

EXAMPLE 22-2: CALCULATING USB TRANSCEIVER CURRENT[†]

For this example, the following assumptions are made about the application:

- 3.3V will be applied to VUSB and VDD, with the core voltage regulator enabled.
- This is a full-speed application that uses one interrupt IN endpoint that can send one packet of 64 bytes every 1 ms, with no restrictions on the values of the bytes being sent. The application may or may not have additional traffic on OUT endpoints.
- A regular USB "B" or "mini-B" connector will be used on the application circuit board.

In this case, PZERO = 100% = 1, because there should be no restriction on the value of the data moving through the IN endpoint. All 64 kBps of data could potentially be bytes of value, 00h. Since '0' bits cause toggling of the output state of the transceiver, they cause the USB transceiver to consume extra current charging/discharging the cable. In this case, 100% of the data bits sent can be of value '0'. This should be considered the "max" value, as normal data will consist of a fair mix of ones and zeros.

This application uses 64 kBps for IN traffic out of the total bus bandwidth of 1.5 MBps (12 Mbps), therefore:

$$Pin = \frac{64 \text{ kBps}}{1.5 \text{ MBps}} = 4.3\% = 0.043$$

Since a regular "B" or "mini-B" connector is used in this application, the end user may plug in any type of cable up to the maximum allowed 5 m length. Therefore, we use the worst-case length:

LCABLE = 5 meters

Assume IPULLUP = 2.2 mA. The actual value of IPULLUP will likely be closer to 218 μ A, but allow for the worst-case. USB bandwidth is shared between all the devices which are plugged into the root port (via hubs). If the application is plugged into a USB 1.1 hub that has other devices plugged into it, your device may see host to device traffic on the bus, even if it is not addressed to your device. Since any traffic, regardless of source, can increase the IPULLUP current above the base 218 μ A, it is safest to allow for the worst case of 2.2 mA.

Therefore:

IXCVR =
$$\frac{(60 \text{ mA} \cdot 3.3\text{V} \cdot 1 \cdot 0.043 \cdot 5\text{m})}{(3.3\text{V} \cdot 5\text{m})} + 2.2 \text{ mA} = 4.8 \text{ mA}$$

† The calculated value should be considered an approximation and additional guardband or application-specific product testing is recommended. The transceiver current is "in addition to" the rest of the current consumed by the PIC18F87J10 family device that is needed to run the core, drive the other I/O lines, power the various modules, etc.

CPFSGT	Compare f	with W, Skip	if f > W	CPF	SLT	Compare f	with W, Skip	if f < W	
Syntax:	CPFSGT	f {,a}		Synt	ax:	CPFSLT	{,a}		
Operands:	$0 \leq f \leq 255$				ands:	$0 \le f \le 255$			
	a ∈ [0,1]			·		a ∈ [0,1]			
Operation:	(f) - (W),			Oper	ation:	(f) - (W),			
	skip if (f) >					skip if (f) <	(W)		
Chatria Affa ata di		comparison)				(unsigned o	comparison)		
Status Affected:	None			Statu	is Affected:	None			
Encoding:	0110	010a ff		Enco	oding:	0110 000a ffff ffff			
Description:		the contents of to the contents	f data memory	Desc	cription:	Compares	he contents o	f data memory	
		an unsigned s					o the contents		
		•	eater than the			performing	an unsigned s	subtraction.	
		WREG, then					nts of 'f' are le		
		is discarded a					W, then the fe		
		istead, making	this a				s discarded a stead, makind		
	two-cycle ir	nstruction.				two-cycle in	, ,	j triis a	
	,	he Access Ba						nk in colocted	
	-		d to select the					nk is selected. d to select the	
	GPR bank	```				GPR bank			
		nd the extend		Word	ls.	1	. ,		
		Literal Offset A	ction operates	Cycle		1(2)			
		never f \leq 95 (5	0	Cyci		• •	cles if skip ar	nd followed	
	Section 26	.2.3 "Byte-Or	iented and				a 2-word instru		
		d Instruction		0 0	ycle Activity:				
		set Mode" for	details.		Q1	Q2	Q3	Q4	
Words:	1				Decode	Read	Process	No	
Cycles:	1(2)		a d fallanna d			register 'f'	Data	operation	
		cycles if skip a a 2-word instr		lf sk	ip:				
Q Cycle Activity:	by				Q1	Q2	Q3	Q4	
Q1	Q2	Q3	Q4		No	No	No	No	
Decode	Read	Process	No		operation	operation	operation	operation	
	register 'f'	Data	operation	lf sk		d by 2-word in		.	
lf skip:					Q1	Q2	Q3	Q4	
Q1	Q2	Q3	Q4		No operation	No operation	No operation	No operation	
No	No	No	No		No	No	No	No	
operation If skip and followe	operation	operation	operation		operation	operation	operation	operation	
Q1	Q2	Q3	Q4			1 1			
No	No	No	No	Exar	nple:	HERE	CPFSLT REG,	. 1	
operation	operation	operation	operation				:	_	
No	No	No	No			LESS	:		
operation	operation	operation	operation		Before Instruc	ction			
Example:					PC		dress (HERE)	
Example:	HERE NGREATER	CPFSGT RE	.G, U		W After Instructi	= ?			
	GREATER	:			If REG	< W;			
Before Instru	ction				PC		dress (LESS)	
PC		ldress (HERE)		lf REG PC	≥ W; = Ad	dress (NLES	S)	
W	= ?							- /	
After Instructi If REG									
PC	= Ad	dress (GREA	TER)						
lf REG PC	≤ W; = Ad	; dress (NGRE	א יידי די א						
P0	- Au	INGRE	/ / 111 1 / /						

INCF	SZ	Increment	Increment f, Skip if 0						
Synta	ax:	INCFSZ f	INCFSZ f {,d {,a}}						
Oper	ands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \\ a \in [0,1] \end{array}$	d ∈ [0,1]						
Oper	ation:	(f) + $1 \rightarrow de$ skip if result							
Statu	s Affected:	None							
Enco	ding:	0011	11da ff	ff ffff					
Desc	ription:	incremente placed in W	ts of register ' d. If 'd' is '0', t /. If 'd' is '1', tl < in register 'f'	he result is ne result is					
		which is alro and a NOP i	is '0', the nex eady fetched s executed in le instruction.						
			he BSR is use	nk is selected. ed to select the					
If 'a' is '0' and the extended instructi set is enabled, this instruction opera in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 26.2.3 "Byte-Oriented and Bit-Oriented Instructions in Index Literal Offset Mode" for details.									
Word	ls:	1							
Cycle	es:		cycles if skip a a 2-word inst						
QC	ycle Activity:	· ,							
	Q1	Q2	Q3	Q4					
	Decode	Read	Process	Write to					
16 - 1		register 'f'	Data	destination					
lf sk	ip: Q1	Q2	Q3	Q4					
ĺ	No	No	No	No					
	operation	operation	operation	operation					
lf sk	ip and followe	d by 2-word in	struction:						
,	Q1	Q2	Q3	Q4					
	No	No	No	No					
	operation	operation	operation	operation					
	No operation	No operation	No operation	No operation					
	operation	operation	operation	operation					
<u>Exan</u>	<u>nple:</u>	NZERO		NT, 1, 0					
	Before Instruc PC	tion = Address	(HERE)						
	After Instruction	on							
	CNT If CNT	= CNT + 7 = 0;	1						
	PC	= Address	(ZERO)						
	If CNT PC	≠ 0;= Address	(NZERO)						

Syntax:INFSNZf {d {a}}Operands: $0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$ $0 \le f \le 255$ $d \in [0,1]$ Operation:(f) + 1 \rightarrow dest, skip if result $\neq 0$ Status Affected:NoneEncoding: 0100 $10da$ Description:The contents of register 'f are incremented. If 'd' is '0', the result is placed in W. If 'd' is '0', the result is placed back in register 'f (default).If the result is not '0', the next instruction which is already fetched is discarded and a NOP is executed instruction.If 'a' is '0', the Access Bank is selected. If 'a' is '0', the Access Bank is selected. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 26.2.3 "Byte-Oriented and Bit-Oriented Instruction.Words:1Cycles:1(2) Note:Note:3 cycles if skip and followed by a 2-word instruction.Q Cycle Activity:Q1Q1Q2Q3Q4No <th>-</th> <th>ax:</th> <th></th> <th colspan="6">rement f, Skip if not 0</th>	-	ax:		rement f, Skip if not 0					
$d \in [0,1]$ $a \in [0,1]$ $a \in [0,1]$ $a \in [0,1]$ $a \in [0,1]$ Operation: (f) + 1 \rightarrow dest, skip if result $\neq 0$ Status Affected: None Encoding: $0100 10da ffff ffff$ Description: The contents of register 'f' are incremented. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f' (default). If the result is not '0', the next instruction which is already fetched is discarded and a NoP is executed instead, making it a two-cycle instruction. If 'a' is '0', the Access Bank is selected. If 'a' is '0', the Access Bank is selected. If 'a' is '0' and the extended instruction operate in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 26.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details. Words: 1 Cycles: 1 Cycles: 1 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 No	Oner		INFSINZ T	{,d {,a}}					
$a \in [0,1]$ Operation: $(f) + 1 \rightarrow dest, skip if result \neq 0$ Status Affected: None Encoding: $\boxed{0100 10da ffff ffff}$ Description: The contents of register 'f' are incremented. If 'd' is '0', the result is placed back in register 'f' (default). If the result is not '0', the next instruction which is already fetched is discarded and a NOP is executed instead, making it a two-cycle instruction. If 'a' is '0', the Access Bank is selected if 'a' is '1', the BSR is used to select th GPR bank (default). If 'a' is '0' and the extended instruction set is enabled, this instruction operate in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 26.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details. Words: 1 Cycles: 1(2) Note: 3 cycles if skip and followed by a 2-word instruction. If skip: Q1 Q2 Q3 Q4 N0	open	ands:	$0 \leq f \leq 255$						
Operation: $(f) + 1 \rightarrow \text{dest}$, skip if result $\neq 0$ Status Affected:NoneEncoding: $\boxed{0100}$ 10 da ffffDescription:The contents of register 'f' are incremented. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f' (default). If the result is not '0', the next instruction which is already fetched is discarded and a NOP is executed instruction. If 'a' is '0', the Access Bank is selected instruction.If 'a' is '0', the Access Bank is selected instruction.If 'a' is '0' and the extended instruction set is enabled, this instruction operate in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 26.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.Words:1Cycles1(2) Note:Note:3 cycles if skip and followed by a 2-word instruction.Q 1Q2Q3Q4Q4Q1Q2Q3Q4Q1Q2Q3Q4Q1Q2Q3Q4Q1Q2Q3Q4Q1Q2Q2Q3Q4Q1Q2Q3Q4No <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>									
skip if result ≠ 0 Status Affected: None Encoding: 0100 10da ffff ffff Description: The contents of register 'f' are incremented. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f' (default). If the result is not '0', the next instruction which is already fetched is discarded and a NOP is executed instead, making it a two-cycle instruction. If 'a' is '0', the Access Bank is selected if 'a' is '1', the BSR is used to select the GPR bank (default). If 'a' is '0' and the extended instruction operate in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 26.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details. Words: 1 Cycles 1(2) Note: 3 cycles if skip and followed by a 2-word instruction. Q1 Q2 Q3 Q4 Decode Read Process Write to destination. If skip: Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Decode Read Process Write to destination. If skip: Q1 Q2 Q3 Q4 No No No No No									
Status Affected: None Encoding: 0100 10da ffff ffff Description: The contents of register 'f' are incremented. If 'd' is '0', the result is placed back in register 'f' (default). If the result is not '0', the next instruction which is already fetched is discarded and a NOP is executed instead, making it a two-cycle instruction. If 'a' is '0', the Access Bank is selected instead, making it a two-cycle instruction. If 'a' is '1', the BSR is used to select the GPR bank (default). If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 26.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details. Words: 1 Cycles: 1(2) Note: 3 cycles if skip and followed by a 2-word instruction. If skip: Q1 Q2 Q3 Q4 Decode Read Process Write to destination If skip and followed by 2-word instruction: Q1 Q2 Q3 Q4 No No No No No Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1	Opera	ation:	()						
Encoding: 0100 10da ffff ffff Description: The contents of register 'f' are incremented. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f' (default). If the result is not '0', the next instruction which is already fetched is discarded and a NOP is executed instead, making it a two-cycle instruction. If 'a' is '0', the Access Bank is selected. If 'a' is '0', the Access Bank is selected. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 26.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details. Words: 1 Cycles 1(2) Note: 3 cycles if skip and followed by a 2-word instruction. If skip: Q1 Q2 Q3 Q4 No No No No No If skip and followed by 2-word instruction: Q1 Q2 Q3 Q4	<u>.</u>	A. 65		[≠ 0					
Description: The contents of register 'f' are incremented. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f' (default). If the result is not '0', the next instruction which is already fetched is discarded and a NOP is executed instead, making it a two-cycle instruction. If 'a' is '0', the Access Bank is selected if 'a' is '1', the BSR is used to select the GPR bank (default). If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 26.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details. Words: 1 Cycles 1(2) Note: 3 cycles if skip and followed by a 2-word instruction. If skip: Q1 Q2 Q3 Q4 No No No No operation operation If skip and followed by 2-word instruction. Q1 Q2 Q3 Q4			None						
incremented. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f' (default). If the result is not '0', the next instruction which is already fetched is discarded and a NOP is executed instead, making it a two-cycle instruction. If 'a' is '0', the Access Bank is selected If 'a' is '1', the BSR is used to select the GPR bank (default). If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 26.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details. Words: 1 Cycles: 1(2) Note: 3 cycles if skip and followed by a 2-word instruction. Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Read Process Write to register 'f' Data destination If skip: Q1 Q2 Q3 Q4 No No No No No operation operation operation operation operation operation f skip and followed by 2-word instruction: Q1 Q2 Q3 Q4 No No No No No operation operation operation No No No No No	Enco	ding:							
If the result is not '0', the next instruction which is already fetched is discarded and a NOP is executed instead, making it a two-cycle instruction.If 'a' is '0', the Access Bank is selected If 'a' is '1', the BSR is used to select the GPR bank (default).If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 26.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.Words:1Cycles:1(2) Note:Note:3 cycles if skip and followed by a 2-word instruction.Q Cycle Activity:QQ1Q2Q3Q4No </td <td colspan="7">incremented. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is</td>	incremented. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is								
If 'a' is '1', the BSR is used to select the GPR bank (default). If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 26.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details. Words: 1 Cycles: 1(2) Note: 3 cycles if skip and followed by a 2-word instruction. Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Read register 'f' Data destination If skip: Q1 Q2 Q3 Q4 No No No operation operation If skip: Q1 Q2 Q3 Q4 No No No No operation If skip: Q1 Q2 Q3 Q4 No No No No operation If skip and followed by 2-word instruction: Q1 Q2 Q3 Q4 No No No No operation operation If skip and followed by 2-word instruction: Q1 Q2 Q3 Q4			If the result instruction v discarded a instead, ma	is not '0', the which is alread nd a NOP is e	next ly fetched is kecuted				
set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 26.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details. Words: 1 Cycles: 1 1 Cycles: 1 2 Q1 Q2 Q3 Q4 Decode Read Process Write to Q1 Q2 Q3 Q4 Decode Read Process Write to destination If skip:	If 'a' is '1', the BSR is used to sel								
Words: 1 Cycles: 1(2) Note: 3 cycles if skip and followed by a 2-word instruction. Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Read register 'f' Process Write to destination If skip: Q1 Q2 Q3 Q4 No No No No operation If skip and followed by 2-word instruction: Q1 Q2 Q3 Q4 No No No No operation operation If skip and followed by 2-word instruction: Q1 Q2 Q3 Q4 No No No No operation operation No No No No No operation No No No No No operation No No No No No No No No No No No No			set is enabl in Indexed I mode when Section 26 Bit-Oriente	ed, this instruc _iteral Offset A ever f ≤ 95 (5f .2.3 "Byte-Ori d Instruction	ction operates addressing Th). See ented and s in Indexed				
Cycles: 1(2) Note: 3 cycles if skip and followed by a 2-word instruction. Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Read register 'f' Process Write to destination If skip: Q1 Q2 Q3 Q4 No No No No operation If skip and followed by 2-word instruction: Q1 Q2 Q3 Q4 No No No operation operation operation If skip and followed by 2-word instruction: Q1 Q2 Q3 Q4 No No No No operation operation If skip and followed by 2-word instruction: Q1 Q2 Q3 Q4 No No No No operation operation No No No No No operation No No No No No operation									
Q1Q2Q3Q4DecodeRead register 'f'Process DataWrite to destinationIf skip:Q1Q2Q3Q4NoNoNoNo operationoperationoperationoperationoperationIf skip and followed by 2-word instruction:Q1Q2Q3Q4NoNoNoNo operationIf skip and followed by 2-word instruction:Q1Q2Q3Q4NoNoNo operationNoNoNoNoNoNoNoNo	Note: 3 cycles if skip and followed								
DecodeRead register 'f'Process DataWrite to destinationIf skip:Q1Q2Q3Q4NoNoNoNooperationoperationoperationoperationIf skip and followed by 2-word instruction:Q1Q2Q3Q4NoNoNoNoNooperationoperationoperationoperationIf skip and followed by 2-word instruction:Q1Q2Q3Q4NoNoNoNooperationNoNoNoNoNooperationNoNoNoNoNoNo	QC	•							
register 'f' Data destination If skip: Q1 Q2 Q3 Q4 No No No No operation operation If skip and followed by 2-word instruction: Q1 Q2 Q3 Q4 No No No operation operation operation Q1 Q2 Q3 Q4 No operation operation Q1 Q2 Q3 Q4 No No No No No No No No No operation operation operation No No No No No operation operation	г	Q1							
Q1 Q2 Q3 Q4 No No No No operation operation operation operation If skip and followed by 2-word instruction: Q1 Q2 Q3 Q4 No No No No operation operation Q1 Q2 Q3 Q4 No No No No operation Operation operation operation operation No No No No No No No No		Decode							
Q1Q2Q3Q4NoNoNoNooperationoperationoperationoperationIf skip and followed by 2-word instruction:Q1Q2Q3Q1Q2Q3Q4NoNoNoNooperationoperationoperationNoNoNoNoNoNoNoNoNoNo	الم ال	·	register f	Data	destination				
No operationNo operationNo operationIf skip and followed by 2-word instruction:Q1Q2Q3Q4NoNoNo operationNoNoNo operationNoNoNo operationNoNoNo	IT SKI	•	02	03	04				
operationoperationoperationIf skip and followed by 2-word instruction:Q1Q2Q3Q4NoNoNooperationoperationoperationNoNoNoNoNoNoNoNoNoNo	ſ								
If skip and followed by 2-word instruction: Q1 Q2 Q3 Q4 No No No No operation operation operation No No No No									
Q1Q2Q3Q4NoNoNoNooperationoperationoperationoperationNoNoNoNo	lf ski				oporation				
NoNoNooperationoperationoperationNoNoNo		•			Q4				
operationoperationoperationNoNoNo	[No			No				
					operation				
		No	No	No	No				
operation operation operation operation		operation	operation	operation	operation				
Example: HERE INFSNZ REG, 1, 0 ZERO NZERO	<u>Exam</u>	<u>iple:</u>	ZERO	INFSNZ REG	, 1 , 0				
Before Instruction PC = Address (HERE)		PC	= Address	(HERE)					
After Instruction				4					
REG = REG + 1		REG If REG	-	I					
If REG \neq 0;		PC	= Address	(NZERO)					
PC = Address (NZERO)		If REG	= 0;						

POP		Рор Тор о	f Return	Stack	¢					
Synta	ax:	POP								
Oper	ands:	None								
Oper	ration:	$(TOS) \rightarrow b$	(TOS) \rightarrow bit bucket							
Statu	is Affected:	None								
Enco	oding:	0000	0000	000	00	0110				
Desc	pription:	stack and i then becon was pushe This instruc the user to	The TOS value is pulled off the return stack and is discarded. The TOS value then becomes the previous value that was pushed onto the return stack. This instruction is provided to enable the user to properly manage the return stack to incorporate a software stack.							
Word	ds:	1								
Cycle	es:	1								
QC	ycle Activity:									
	Q1	Q2	Q	3		Q4				
	Decode	No operation	POP - valu			No eration				
Exan	nple:	POP GOTO	NEW							
	Before Instruc TOS Stack (1	tion level down)		0031A 014332						
	After Instructio TOS PC	n		014332 NEW	2h					

PUSH	Push Top o	of Return	n Stac	k					
Syntax:	PUSH	PUSH							
Operands:	None								
Operation:	$(PC + 2) \rightarrow$	TOS							
Status Affected:	None								
Encoding:	0000	0000	000	0	0101				
Description:	The PC + 2 the return s value is pus This instruc software sta then pushin	tack. The shed dow tion allov ack by m	e previ /n on t ws imp odifyin	ious T he sta leme ig TO	rOS ack. nting a S and				
Words:	1								
Cycles:	1								
Q Cycle Activity:									
Q1	Q2	Q3			Q4				
Decode	PUSH PC + 2 onto return stack	No operat			No eration				
Example:	PUSH								
Before Instruc TOS PC	ction	•	45Ah 124h						

28.2 DC Characteristics: Power-Down and Supply Current PIC18F87J50 Family (Industrial) (Continued)

PIC18F8 (Indu	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial								
Param Device No.		Тур	Max	Units		Conditions			
	Supply Current (IDD) Cont. ⁽²⁾								
	All devices	0.17	0.35	mA	-40°C				
		0.18	0.35	mA	+25°C	VDD = 2.0V, $VDDCORE = 2.0V(4)$			
		0.20	0.42	mA	+85°C	VBBOOKE 2.0V			
	All devices	0.29	0.52	mA	-40°C		Fosc = 1 MHz		
		0.31	0.52	mA	+25°C	VDD = 2.5V, $VDDCORE = 2.5V^{(4)}$	(PRI_RUN mode,		
		0.34	0.61	mA	+85°C	VBBOOKE 2.0V	EC oscillator)		
	All devices	0.59	1.1	mA	-40°C				
		0.44	0.85	mA	+25°C	VDD = 3.3V ⁽⁵⁾			
		0.42	0.85	mA	+85°C				
	All devices	0.70	1.25	mA	-40°C		Fosc = 4 MHz (PRI_RUN mode,		
		0.75	1.25	mA	+25°C	$V_{DD} = 2.0V,$ $V_{DDCORE} = 2.0V^{(4)}$			
		0.79	1.36	mA	+85°C	VBBOOKE 2.0V			
	All devices	1.10	1.7	mA	-40°C				
		1.10	1.7	mA	+25°C	VDD = 2.5V, $VDDCORE = 2.5V^{(4)}$			
		1.12	1.82	mA	+85°C	VBBOOKE 2.0V	EC oscillator)		
	All devices	1.55	1.95	mA	-40°C				
		1.47	1.89	mA	+25°C	VDD = 3.3V ⁽⁵⁾			
		1.54	1.92	mA	+85°C				
	All devices	9.9	14.8	mA	-40°C				
		9.5	14.8	mA	+25°C	VDD = 2.5V, $VDDCORE = 2.5V^{(4)}$			
		10.1	15.2	mA	+85°C		Fosc = 48 MHz (PRI RUN mode,		
	All devices	13.3	23.2	mA	-40°C		EC oscillator)		
		12.2	22.7	mA	+25°C	VDD = 3.3V ⁽⁵⁾	,		
		12.1	22.7	mA	+85°C				

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSs and all features that add delta current disabled (such as WDT, Timer1 oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption. All features that add delta current are disabled (USB module, WDT, etc.). The test conditions for all IDD measurements in active operation mode are:

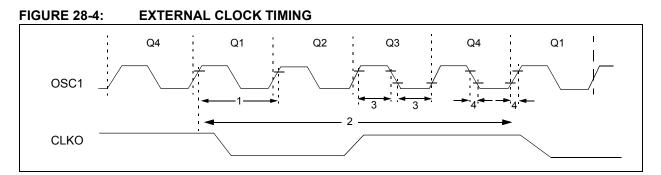
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

- MCLR = VDD; WDT disabled unless otherwise specified.
- 3: Standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.
- 4: Voltage regulator disabled (ENVREG = 0, tied to Vss).
- 5: Voltage regulator enabled (ENVREG = 1, tied to VDD), REGSLP = 1.
- 6: This is the module differential current when the USB module is enabled and clocked at 48 MHz, but with no USB cable attached. When the USB cable is attached or data is being transmitted, the current consumption may be much higher (see Section 22.6.4 "USB Transceiver Current Consumption"). During USB Suspend mode (USBEN = 1, SUSPND = 1, bus in Idle state), the USB module current will be dominated by the D+ or D- pull-up resistor. The integrated pull-up resistors use "resistor switching" according to the resistor_ecn supplement to the USB 2.0 specifications, and therefore, may be as low as 900Ω during Idle conditions.

28.2 DC Characteristics: Power-Down and Supply Current PIC18F87J50 Family (Industrial) (Continued)

	7J50 Family strial)	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial								
Param No.	Device	Тур	Max	Units	Conditions					
	Supply Current (IDD) Cont. ⁽²⁾									
	All devices	18	35	μA	-40°C					
		19	35	μA	+25°C	VDD = 2.0V, $VDDCORE = 2.0V^{(4)}$				
		28	49	μA	+85°C	VBBOOKE 2.0V				
	All devices	20	45	μA	-40°C		Fosc = 32 kHz ⁽³⁾ (SEC_RUN mode,			
		21	45	μA	+25°C	VDD = 2.5V, $VDDCORE = 2.5V^{(4)}$				
		32	61	μA	+85°C		Timer1 as clock)			
	All devices	0.06	0.11	mA	-40°C					
		0.07	0.11	mA	+25°C	VDD = 3.3V ⁽⁵⁾				
		0.09	0.15	mA	+85°C					
	All devices	14	28	μΑ	-40°C					
		15	28	μA	+25°C	VDD = 2.0V, $VDDCORE = 2.0V^{(4)}$				
		24	43	μA	+85°C					
	All devices	15	31	μA	-40°C		Fosc = 32 kHz ⁽³⁾			
		16	31	μA	+25°C	VDD = 2.5V, $VDDCORE = 2.5V^{(4)}$	(SEC_IDLE mode, Timer1 as clock)			
		27	50	μA	+85°C					
	All devices	0.05	0.10	mA	-40°C					
		0.06	0.10	mA	+25°C	VDD = 3.3V ⁽⁵⁾				
		0.08	0.14	mA	+85°C					

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or Vss and all features that add delta current disabled (such as WDT, Timer1 oscillator, BOR, etc.).


2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption. All features that add delta current are disabled (USB module, WDT, etc.). The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

MCLR = VDD; WDT disabled unless otherwise specified.

- 3: Standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.
- **4:** Voltage regulator disabled (ENVREG = 0, tied to Vss).
- 5: Voltage regulator enabled (ENVREG = 1, tied to VDD), REGSLP = 1.
- 6: This is the module differential current when the USB module is enabled and clocked at 48 MHz, but with no USB cable attached. When the USB cable is attached or data is being transmitted, the current consumption may be much higher (see Section 22.6.4 "USB Transceiver Current Consumption"). During USB Suspend mode (USBEN = 1, SUSPND = 1, bus in Idle state), the USB module current will be dominated by the D+ or D- pull-up resistor. The integrated pull-up resistors use "resistor switching" according to the resistor_ecn supplement to the USB 2.0 specifications, and therefore, may be as low as 900Ω during Idle conditions.

28.4.3 TIMING DIAGRAMS AND SPECIFICATIONS

TABLE 28-7: EXTERNAL CLOCK TIMING REQUIREMENTS

Param. No.	Symbol	Characteristic	Min	Мах	Units	Conditions
1A	Fosc	External CLKI Frequency ⁽¹⁾	DC	48	MHz	EC Oscillator mode
			DC	48		ECPLL Oscillator mode ⁽²⁾
		Oscillator Frequency ⁽¹⁾	4	25	MHz	HS Oscillator mode
			4	25		HSPLL Oscillator mode ⁽³⁾
1	Tosc	External CLKI Period ⁽¹⁾	20.8	_	ns	EC Oscillator mode
			20.8	—		ECPLL Oscillator mode ⁽²⁾
		Oscillator Period ⁽¹⁾	40.0	250	ns	HS Oscillator mode
			40.0	250		HSPLL Oscillator mode ⁽³⁾
2	Тсү	Instruction Cycle Time ⁽¹⁾	83.3	_	ns	Tcy = 4/Fosc, Industrial
3	TosL, TosH	External Clock in (OSC1) High or Low Time	10	_	ns	EC Oscillator mode
4	TosR, TosF	External Clock in (OSC1) Rise or Fall Time	—	7.5	ns	EC Oscillator mode

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period for all configurations except PLL. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKI pin. When an external clock input is used, the "max." cycle time limit is "DC" (no clock) for all devices.

2: In order to use the PLL, the external clock frequency must be either 4, 8, 12, 16, 20, 24, 40 or 48 MHz.

3: In order to use the PLL, the crystal/resonator must produce a frequency of either 4, 8, 12, 16, 20 or 24 MHz.