
E. Aralog Devices Inc./Maxim Integrated - MAXQ7667AACM/V+T Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Not For New Designs
Core Processor	-
Core Size	16-Bit
Speed	16MHz
Connectivity	LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	16
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 16
Voltage - Supply (Vcc/Vdd)	2.25V ~ 2.75V
Data Converters	A/D 5x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/analog-devices/maxq7667aacm-v-t

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

ABSOLUTE MAXIMUM RATINGS

DVDDIO, GATE5, REG3P3, REG2P5 to

DGND	0.3V to +6.0V
AVDD to AGND	0.3V to +4.0V
DVDD to DGND	0.3V to +3.0V
DVDDIO to DVDD	0.3V to +6.0V
AVDD to DVDD	0.3V to +4.0V
AGND to DGND	0.3V to +0.3V
Digital Inputs/Outputs to DGND	0.3V to (V _{DVDDIO} + 0.3V)

nalog Inputs/Outputs to AGND0.3V to (V _{AVDD} + 0.3V))
(IN, XOUT to DGND)
Iaximum Current into Any Pin50mA	L.
Continuous Power Dissipation ($T_A = +70^{\circ}C$)	
48-Pin LQFP (derate 21.7mW/°C above +70°C)1739.1mW	1
Dperating Temperature Range40°C to +125°C	;
Storage Temperature Range60°C to +150°C	
ead Temperature (soldering, 10s)+300°C	;

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(V_{DVDDIO} = +5V, V_{AVDD} = +3.3V; V_{DVDD} = +2.5V$, system clock $(f_{SYSCLK}) = 16MHz$, burst frequency $(f_{BURST}) =$ bandpass frequency $(f_{BPF}) = 50$ kHz, CREFBG = CREF = 1µF in parallel with 0.01µF, f_{ADCCLK} = 2MHz (SAR data rate = 125ksps), T_A = T_{MIN} to T_{MAX}, unless otherwise specified. Typical values are at T_A = +25°C.)

PARAMETER	SYMBOL	CONDI	TIONS	MIN	ТҮР	MAX	UNITS
ECHO INPUT (Low-Noise Am	plifier and s	Sigma-Delta ADC)	·				
Input-Referred Noise		VGA gain adjust =	1.55µV _{P-P} /LSB		5.6		
(Note 1)		VGA gain adjust = ().1µV _{P-P} /LSB		0.7		- μV _{RMS}
Minimum Detectoble Cignel		VGA gain adjust = ⁻	1.55µV _{P-P} /LSB		80		
Minimum Detectable Signal		VGA gain adjust = 0).1µV _{P-P} /LSB		10		- μV _{P-P}
Operating Input Range		VGA gain adjust = unclipped	1.55µV _{P-P} /LSB,		100		– mV _{P-P}
Operating input hange		VGA gain adjust = (unclipped	D.1µV _{P-P} /LSB,		6.7		11146-b
Programmable Gain		From echo input to bandpass filter in	VGA gain adjust = 1.55µV _{P-P} /LSB		1.55		– μV _{P-P} /LSB
Frogrammable Gain		reply to input	VGA gain adjust = 0.1µV _{P-P} /LSB		0.1		μνρ-ρ/μορ
Programmable-Gain Adjust Resolution		(Note 2)			10		%
LNA Bandwidth					150		kHz
ADC Sampling Rate					80 x f _{BPF}		kHz
ADC Output Data Rate					10 x f _{BPF}		kHz
ADC Output Data Resolution					16		Bits
Echo-Input Resistance	R _{IN}	For each echo inpu	t		14		kΩ
Echo-Input Capacitance					14		рF
Echo-Input DC Bias Voltage					V _{AVDD} /2		V
Maximum Overvoltage Recovery Time		Recover from 2V _{P-P}	input		10		μs

ELECTRICAL CHARACTERISTICS (continued)

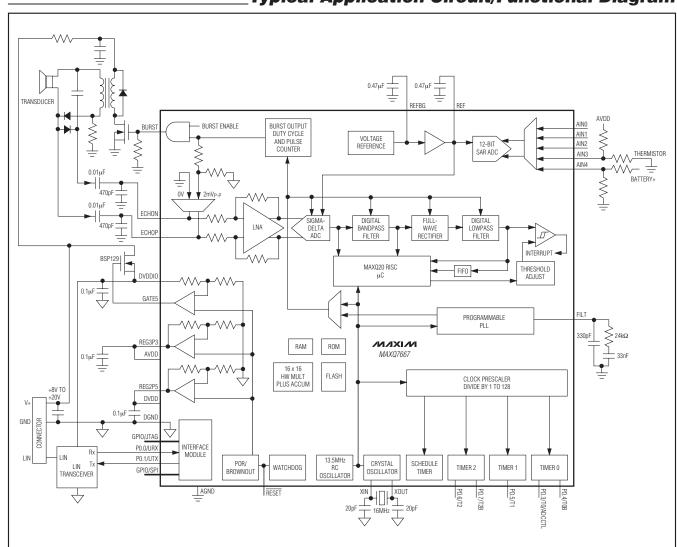
 $(V_{DVDDIO} = +5V, V_{AVDD} = +3.3V; V_{DVDD} = +2.5V$, system clock $(f_{SYSCLK}) = 16MHz$, burst frequency $(f_{BURST}) =$ bandpass frequency $(f_{BPF}) = 50kHz$, $C_{REFBG} = C_{REF} = 1\mu$ F in parallel with 0.01μ F, $f_{ADCCLK} = 2MHz$ (SAR data rate = 125ksps), $T_A = T_{MIN}$ to T_{MAX} , unless otherwise specified. Typical values are at $T_A = +25^{\circ}$ C.)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	МАХ	UNITS
BANDPASS FILTER			-			
Center Frequency	fBPF		25		100	kHz
Passband Width		-3dB		0.14 x f _{BPF}		kHz
Minimum Stopband Rejection		One decade away from center frequency		-60		dB
Output Data Rate				10 x f _{BPF}		ksps
Output Data Resolution				16		Bits
LOWPASS FILTER						
Corner Frequency	fLPF	-3dB		0.1 x f _{BPF}		kHz
Rolloff				40		dB/Decade
Output Data Rate				5 x f _{BPF}		ksps
Output Data Resolution				16		Bits
SAR ADC		·	·			
Resolution		Measurement	12			Bits
Resolution		No missing codes	11			DIIS
Integral Nonlinearity		Tested at 125ksps		±1	±2	LSB
Differential Nonlinearity		Tested at 125ksps	-2		+2	LSB
Offset Error				±1	±3	mV
Offset-Error Drift				±5		µV/°C
Gain Error					±1	%
Gain-Error Temperature Coefficient				±0.4		ppmFS/°C
Input-Referred Noise		At ADC inputs		400		μVrms
Differential Innut Dance		Unipolar	0		V _{REF}	v
Differential Input Range		Bipolar	-V _{REF} /2		+V _{REF} /2	
Absolute Input Range			0		VAVDD	V
Input Leakage Current				±0.1		μA
Conversion Time		13 ADCCLK cycles at 2MHz			6.5	μs
Input Capacitance				14		pF
Track-and-Hold Acquisition Time		Three ADCCLK cycles at 2MHz			1.5	μs
Turn-On Time		Eight ADCCLK cycles at 2MHz			4	μs
Conversion Clock	fadcclk		0.5		4	MHz
Conversion Rate		$f_{ADCCLK} = 4MHz$ (not production tested)			250	ksps

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{DVDDIO} = +5V, V_{AVDD} = +3.3V; V_{DVDD} = +2.5V$, system clock $(f_{SYSCLK}) = 16MHz$, burst frequency $(f_{BURST}) = bandpass$ frequency $(f_{BPF}) = 50$ kHz, $C_{REFBG} = C_{REF} = 1\mu$ F in parallel with 0.01 μ F, $f_{ADCCLK} = 2$ MHz (SAR data rate = 125ksps), $T_A = T_{MIN}$ to T_{MAX} , unless otherwise specified. Typical values are at $T_A = +25^{\circ}$ C.)

PARAMETER	SYMBOL	со	NDITIONS	MIN	ТҮР	МАХ	UNITS
+2.5V LINEAR REGULATOR	(REG2P5)			1			•
REG2P5 Output Voltage				2.38		2.62	V
Load Current						50	mA
Output Short-Circuit Current		REG2P5 shorted	d to DGND		100		mA
POWER REQUIREMENTS							
		DVDD		2.25	2.5	2.75	
Supply Voltage Range		AVDD		3.00	3.3	3.6	V
		DVDDIO		4.5	5.0	5.5	
		All analog funct	tions enabled		12	18	mA
		All analog funct	tions disabled		3	10	μA
			LNA		2.4		
			Sigma-delta ADC		12		mA
			SAR ADC, 250ksps, f _{ADCCLK} = 4MHz		600		
			PLL		300		
AVDD Supply Current		Incremental AVDD supply current	Supply voltage supervisors		3		μA
		current	Internal voltage reference		220		
			Reference buffer		300		
			Bias (any AVDD module enabled)		1.5		mA
DVDD Supply Current			1		11		mA
DVDDIO Supply Current					2.5		mA
DIGITAL INPUTS (GPIO, UAR	RT, JTAG, SI	PI™)					
Input High Voltage				V _{DVDDIO} - 1			V
Input Low Voltage						0.8	V
Input Hysteresis		V _{DVDDIO} = 5.0V	,		500		mV
Input Leakage Current		Digital input vo DVDDIO, pullup	ltage = DGND or disabled		±0.01	±1	μA
Pullup/Pulldown Resistance		Pulled up to DV down to DGND	DDIO internally, pulled internally		150		kΩ
Input Capacitance					15		рF



Pin Description

PIN	NAME	FUNCTION
1	P1.3/TCK	Port 1 Data 3/JTAG Serial Clock Input. P1.3 is a general-purpose digital I/O. TCK is the JTAG serial test clock input. Refer to the <i>MAXQ7667 User's Guide</i> Sections 5 and 11.
2	P1.4/MOSI	Port 1 Data 4/SPI Serial Data Output. P1.4 is a general-purpose digital I/O. MOSI is the master output, slave input for the SPI interface. Refer to the <i>MAXQ7667 User's Guide</i> Sections 5 and 9.
3	P1.5/MISO	Port 1 Data 5/SPI Serial Data Input. P1.5 is a general-purpose digital I/O. MISO is the master input, slave output for the SPI interface. Refer to the <i>MAXQ7667 User's Guide</i> Sections 5 and 9.
4	P1.6/SCLK	Port 1 Data 6/SPI Serial Clock Output. P1.6 is a general-purpose digital I/O. SCLK is the serial clock for the SPI interface. SCLK is an input when operating as a slave and an output when operating as a master. Refer to the <i>MAXQ7667 User's Guide</i> Sections 5 and 9.
5	P1.7/SYNC/SS	Port 1 Data 7/Schedule Timer Sync Input/SPI Slave Select. P1.7 is a general-purpose digital I/O. A rising edge on the SYNC input resets the schedule timer. In SPI slave mode, SS is the SPI slave-select input. In SPI master mode, use SS or a GPIO to manually select an external slave. Refer to the <i>MAXQ7667 User's Guide</i> Sections 5, 7, and 9.
6, 19, 42	DVDD	Digital Supply Voltage. Connect DVDD directly to a +2.5V external source or to REG2P5 output for single supply operation. Bypass DVDD to DGND with a 0.1μ F capacitor as close as possible to the device. Connect all DVDD nodes together.
7, 18, 43	DGND	Digital Ground. Connect all DGND nodes together. Connect to AGND at a single point.
8, 17, 44	DVDDIO	Digital I/O Supply Voltage. DVDDIO powers all digital I/Os except for XIN and XOUT. Bypass DVDDIO to DGND with a 0.1μ F capacitor as close as possible to the device. Connect all DVDDIO nodes together.
9	P0.0/URX	Port 0 Data 0/UART Receive Data Input. P0.0 is a general-purpose digital I/O. URX is a UART or LIN data receive input. Refer to the <i>MAXQ7667 User's Guide</i> Sections 5 and 8.
10	P0.1/UTX	Port 0 Data 1/UART Transmit Data Output. P0.1 is a general-purpose digital I/O. UTX is a UART or LIN data transmit output. Refer to the <i>MAXQ7667 User's Guide</i> Sections 5 and 8.
11	P0.2/TXEN	Port 0 Data 2/UART Transmit Output. P0.2 is a general-purpose digital I/O. TXEN asserts low when the UART is transmitting. Use TXEN to enable an external LIN/UART transceiver. Refer to the <i>MAXQ7667 User's Guide</i> Sections 5 and 8.
12	P0.3/T0/ ADCCTL	Port 0 Data 3/Timer 0 I/O/ADC Control Input. P0.3 is a general-purpose digital I/O. T0 is the primary Type 2 timer/counter 0 output or input. ADCCTL is a sampling/conversion trigger input for the SAR ADC. Refer to the <i>MAXQ7667 User's Guide</i> Sections 5, 6, and 14.
13	P0.4/T0B	Port 0 Data 4/Timer 0B I/O/Comparator Output. P0.4 is a general-purpose digital I/O. T0B is the secondary Type 2 timer/counter 0 output or input. Refer to the <i>MAXQ7667 User's Guide</i> Sections 5 and 6.
14	P0.5/T1	Port 0 Data 5/Timer 1 I/O. P0.5 is a general-purpose digital I/O. T1 is the primary Type 2 timer/counter 1 output or input. Refer to the <i>MAXQ7667 User's Guide</i> Sections 5 and 6.
15	P0.6/T2	Port 0 Data 6/Timer 2 I/O. P0.6 is a general-purpose digital I/O. T2 is the primary Type 2 timer/counter 2 output or input. Refer to the <i>MAXQ7667 User's Guide</i> Sections 5 and 6.
16	P0.7/T2B	Port 0 Data 7/Timer 2B I/O. P0.7 is a general-purpose digital I/O. T2B is the secondary Type 2 timer/counter 2 output or input. Refer to the <i>MAXQ7667 User's Guide</i> Sections 5 and 6.
20	XIN	Crystal Oscillator Input. Connect an external crystal or resonator between XIN and XOUT. When using an external clock source drive XIN with 2.5V level clock while leaving XOUT unconnected. Connect XIN to DGND when an external clock source is not used.

MAXQ7667

Typical Application Circuit/Functional Diagram

Detailed Features

Smart Analog Peripherals
 Dedicated Ultrasonic Burst Generator
 Echo Receiving Path

Low-Noise Amplifier

Time Variable Gain Amplifier

16-Bit Sigma-Delta ADC

Digital Bandpass Filter

Full-Wave Rectifier and Digital Lowpass Filter 8-Deep, 16-Bit Wide FIFO Simplifies Real-Time Processing

Magnitude Comparator

5-Channel, 12-Bit SAR ADC with 250ksps Sampling Rate

Internal Bandgap Voltage Reference for the ADCs (Also Accepts External Voltage Reference)

• Timer/Digital I/O Peripherals

SPI Interface

Three 16-Bit (or Six 8-Bit) Programmable Type 2 Timers/Counters

16-Bit Schedule Timer

Programmable Watchdog Timer

16 General-Purpose Digital I/Os with Multipurpose Capability

 High-Performance, Low-Power, 16-Bit RISC Core 1MHz–16MHz Operation, Approaching 1MIPS per 1MHz

Low Power (< 2.5mA/MIPS, DVDD = +2.5V)

16-Bit Instruction Word, 16-Bit Data Bus

33 Instructions (Most Require Only One Clock Cycle)

16-Level Hardware Stack

Three Independent Data Pointers with Automatic Increment/Decrement

- Program and Data Memory Internal 32KB Program Flash Internal 4KB Data RAM Internal 8KB Utility ROM
- Crystal/Clock Module
 1MHz–16MHz External Crystal Oscillator
 13.5MHz Internal RC Oscillator
 External Clock Source Operation
- 16 x 16 Hardware Multiplier with 48-Bit Accumulator, Single Clock Cycle Operation
- Power-Management Module Power-On Reset (POR)

Power-Supply Supervisor/Brownout Detection for All Supplies

On-Chip +5V, +3.3V, and +2.5V Regulators for Single Supply Operation

- JTAG Interface
 Extensive Debug and Emulation Support In-System Test Capability
 Flash-Memory-Program Download
- ♦ UART

Synchronous and Asynchronous Transfers Independent Baud-Rate Generator 2-Wire Interface Transmit and Receive FIFOs

+ LIN

Supports LIN 1.3, LIN 2.0, and SAE J2602 Automatic Baud-Rate Detection and LIN Frame Synchronization

Up to 64 Bytes Frame Length Automatic Calculation of Standard (LIN 1.3) and Enhanced (LIN 2.0) Checksums

- 7mm x 7mm, 48-Pin LQFP Package
- ♦ -40°C to +125°C Operating Temperature Range

Echo Receive Path

Low-Noise Amplifier (LNA)

The LNA provides a 40V/V fixed gain to the input signal. The differential inputs of the LNA are ECHOP and ECHON. For proper biasing of the LNA, AC-couple the transducer or any external circuitry to ECHOP and ECHON. For a single-ended input signal, AC-couple the signal to ECHOP with a 0.01μ F capacitor and connect ECHON to AGND through a 0.01μ F capacitor placed as close as possible to the signal source. The outputs of the LNA connect to the inputs of a 16-bit sigma-delta ADC and can connect internally to the AINO and AIN1 inputs of the SAR ADC for external monitoring (Figure 2).

An analog multiplexer located at the input of the LNA selects one of three possible signals for processing by the echo receive path; the normal echo signal AC-coupled to the ECHOP and ECHON inputs, 0V signal, or a 2mVP-P internally generated signal (Figure 2). The 2mVP-P square-wave signal, with frequency and duty cycle matching the burst signal, allows the echo receive chain to process a simulated echo.

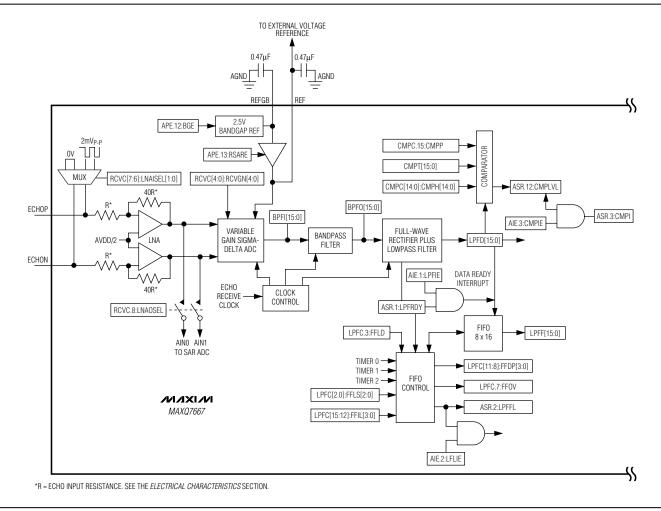


Figure 2. Echo Receive Path

Diagnostic Signals

Sigma-Delta ADC

The MAXQ7667 features a 16-bit sigma-delta ADC with an analog gain adjustable from 38dB to 60dB (including the fixed LNA gain) with a maximum gain step of 12.5% (typical). Gain changes settle within one ADC conversion. Use software to create a virtual time variable gain amplifier. A digital bandpass and lowpass filters remove switching glitches and DC offset at the output of the ADC.

In a typical application, the software sets the gain to a low value when the burst is first sent and increases the gain as the time from when the burst was sent increases. As a result, strong echoes from nearby objects are processed without clipping while small signals from distant objects are processed with the maximum gain. The ADC samples the amplified echo signal from the LNA at 80 times the burst output frequency. The ADC provides conversion results at a data rate equal to 10 times the burst output frequency. The ADC conversion results also load to an 8-deep first-in-first-out (FIFO) at the native data rate or a separate time base without loading the CPU.

Digital Bandpass Filter

The digital bandpass filter has a center frequency that tracks the burst output frequency. The bandpass width is 14% of the center frequency. The bandpass filter provides the 16-bit output data at a data rate equal to 10 times the burst output frequency.

Full-Wave Rectifier

The full-wave rectifier detects the envelope of the digital bandwidth filter output to generate a DC output proportional to the peak-to-peak amplitude of the input signal. Full-wave rectification allows the digital lowpass filter to respond faster without excessive ripple.

Digital Lowpass Filter

The lowpass filter removes the ripple from the full-wave detector output. The output of the lowpass filter is available at a data rate equal to five times the burst output frequency. The corner frequency is 1/5 the burst frequency with approximately 40dB per decade rolloff. The 16-bit output data of the lowpass filter is stored in a FIFO register with a depth of eight samples. The MAXQ7667 allows data transfer from the lowpass filter

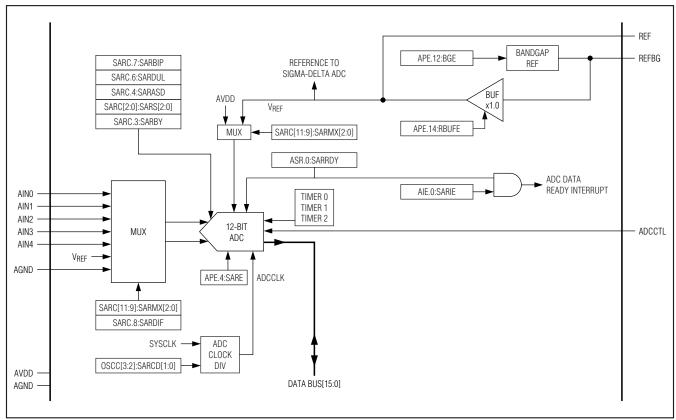


Figure 3. SAR ADC Block Diagram

MAXQ7667

SAR ADC Analog Input Track-and-Hold (T/H)

Figures 6 and 7 show the equivalent input circuit of the MAXQ7667 analog input architecture. During acquisition (track), a sampling capacitor charges to the positive input voltage at AINO–AIN4 in single-ended mode or AIN0 and AIN2 in differential mode while a second sampling capacitor connects to AGND in single-ended mode or AIN1 and AIN3 in differential mode. The ADC conversion start source and the ADC dual mode selection bits control the T/H timing.

Voltage Reference

The MAXQ7667 supports three possible voltage reference sources for ADC conversion; 2.5V internal buffered bandgap reference, external source, and AVDD. The internal 2.5V bandgap reference has high initial accuracy and temperature coefficient of typically less than 100ppm/°C. When operating in internal reference mode, either the buffered output of the internal reference or AVDD connects to the SAR ADC while the buffered output of the internal reference connects to the sigma-delta ADC. When operating in external reference mode, an external source ranging between 1V and VAVDD applied at either the REF or REFBG inputs pro-

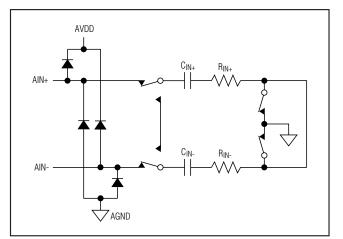


Figure 6. Equivalent Input Circuit (Track/Acquisition Mode)

vides the reference to the SAR ADC and sigma-delta ADC. Bypass REFBG and REF to AGND with a 0.47μ F capacitor for optimum performance. See Section 14 of the *MAXQ7667 User's Guide*.

Schedule Timer

The MAXQ7667's schedule timer provides general timekeeping and software synchronization to an external I/O. The schedule timer features include the following:

- 16-bit autoreload up-counter for the timer
- Programmable 16-bit alarm register
- Alarm interrupts
- Schedule timer incremented by a programmable system clock prescaler (1, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, 1/128)
- Schedule timer up-counter resettable through an external I/O pin, which allows synchronization of a schedule timer to an external event
- Wake-up alarm to pull the system clock from stopmode to normal operation

Figure 8 shows a simplified block diagram of the schedule timer.

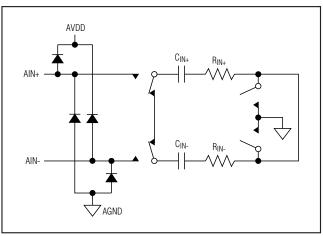


Figure 7. Equivalent Input Circuit (Hold/Conversion Mode)

Type 2 Timers/Counters

The MAXQ7667 includes three 16-bit timers/counters with programmable I/O (Figure 9). Each timer is a Type 2 timer implemented in the MAXQ[®] family. The Type 2 timer is an autoreload 16-bit timer/counter offering the following functions:

- 8-bit/16-bit timer/counter
- Up/down autoreload
- Counter function of external pulse
- Capture
- Compare

Clock Sources

The MAXQ7667 oscillator module supplies the system clock for the μ C core and all of the peripheral modules. The high-frequency oscillator operates with a 1MHz to 16MHz crystal. Use the internal RC oscillator as the system clock for applications that do not require precise timing. See Section 15 of the *MAXQ7667 User's Guide*.

The MAXQ7667 supports the following master clock sources:

• Internal high-frequency oscillator drives an external 1MHz–16MHz crystal or ceramic resonator

- Internal, fast-starting, 13.5MHz RC oscillator (default oscillator at startup and in the event the external crystal fails)
- External 4MHz-16MHz clock input

Crystal Selection

The MAXQ7667 requires a crystal with the following specifications:

Frequency: 1MHz-16MHz

CLOAD: 6pF (min)

Drive level: 5µW

Series resonance resistance: 30Ω (max)

Note: Quartz crystal vendors often specify series resonance resistance (R1). Series resonance resistance is the resistance observed when the resonator is in the series resonant condition. When a resonator is used in the parallel resonant mode with an external load capacitance, as is the case with the MAXQ7667 oscillator circuit, the effective resistance at the loaded frequency of oscillation is:

R1 x (1 + (CO/CLOAD))²

For typical shunt capacitance (CO) and load capacitance (C_{LOAD}) values, the effective resistance potentially exceeds R1 by a factor of 2.

MAXQ is a registered trademark of Maxim Integrated Products, Inc.

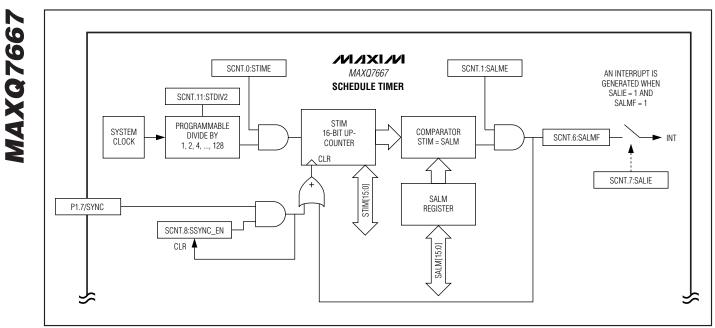


Figure 8. Schedule-Timer Module Block Diagram

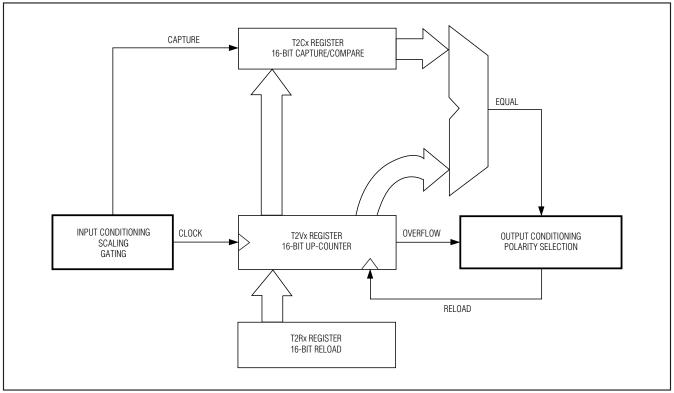


Figure 9. Type 2 Timer/Counter in 16-Bit Mode

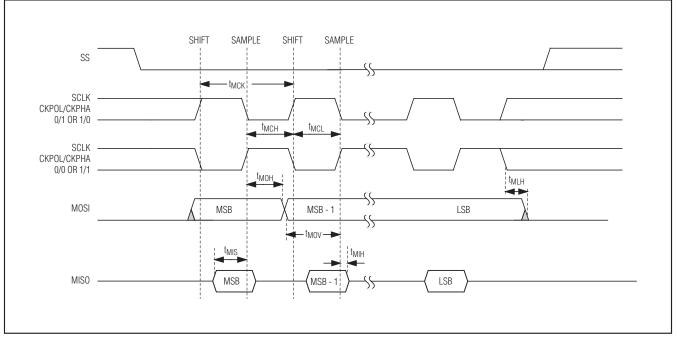


Figure 11. SPI Timing Diagram in Master Mode

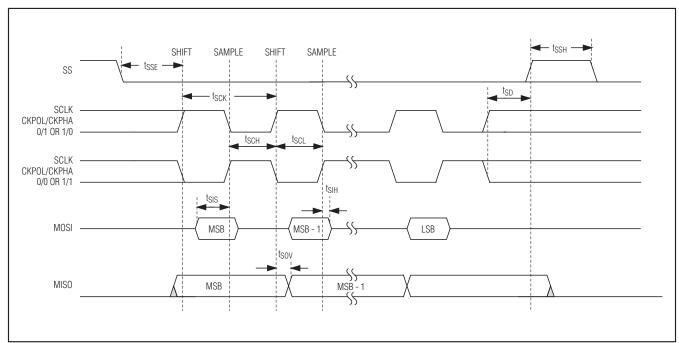


Figure 12. SPI Timing Diagram in Slave Mode

MAXQ7667

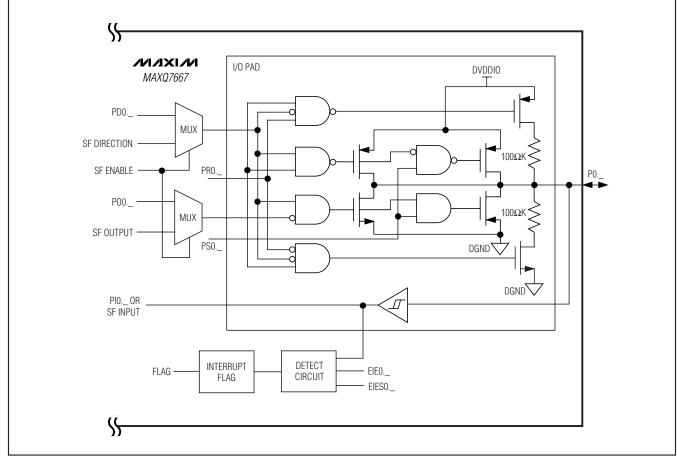


Figure 13. Port 0 Digital I/O Basic Circuitry. Port 1 Circuitry is the Same as Port 2.

Connect bypass capacitors at each power-supply input as close as possible to the device. Use a bypass capacitor less than 0.47μ F on DVDDIO. For most applications, 0.1μ F bypass capacitors are adequate.

Supply Brownout Monitor

Power supplies DVDD, AVDD, and DVDDIO each include a brownout monitor/supervisor that alerts the μ C when their corresponding supply voltages drop below the interrupt threshold. Activate each brownout monitor independently using the corresponding brownout enable bits: VDBE, VIBE, and VABE.

Reset

In reset mode, no instruction execution occurs and all inputs/outputs return to their default states. Code execution resumes at address 8000h (in the utility ROM) once the reset condition is removed. Four different sources reset the MAXQ7667: POR, watchdog timer reset, external reset, and internal system reset.

During normal operation, force RESET low for at least four system clock cycles for an external reset. Set the ROD bit in the SC register, while the SPE bit in the ICDF register is set, for an internal system reset. See Section 16 of the *MAXQ7667 User's Guide*.

Power-On Reset (POR)

The MAXQ7667 includes a DVDD voltage supervisor to control the μ C POR. On power-up, internal circuitry pulls RESET low and resets all the internal registers. RESET is held low for the duration of the power-on delay after VDVDD rises above the DVDD reset threshold. The internal RC oscillator starts up and software execution begins at the reset vector location 8000h immediately after the device exits POR while RESET is

Data Memory

memory. Access physical memory segments (other than the stack and register memories) as either program memory or data memory, but not both at once.

By default, the memory is arranged in a Harvard architecture, with separate address spaces for program and data memory. The configuration of program and data space depends on the current execution location.

- When executing code from flash memory, access the SRAM and utility ROM in data space.
- When executing code from SRAM, access the flash memory and utility ROM in data space.
- When executing code from the utility ROM, access the flash memory and SRAM in data space.

Utility ROM (see Section 18 of the MAXQ7667 User's Guide)

The utility ROM is a $4K \times 16$ block of internal ROM memory that defaults to a starting address of 8000h. The utility ROM consists of subroutines called from application software. The subroutines include:

- In-system programming (bootloader) over the JTAG or UART interface
- In-circuit debug routines
- Test routines (internal memory tests, memory loader, etc.)
- User-callable routines for in-application flash programming and code space table lookup

Following any reset, execution begins in the utility ROM. The ROM software determines whether the program execution immediately jumps to the start of the userapplication code (located at address 0000h) or to one of the special routines mentioned above. Call the routines within the utility ROM using the application software. Refer to the *MAXQ7667 User's Guide* for more information on the utility ROM contents.

Password protect in-system programming, in-application programming, and in-circuit debugging functions using a password-lock (PWL) bit. The PWL bit is implemented in the SC register. When the PWL bit is set to one (POR default), the password is required to access the utility ROM, including in-circuit debug and in-system programming routines that allow reading or writing of internal memory. When the PWL bit is cleared to zero, these utilities are fully accessible without the password. The password is automatically set to all ones following a mass erase. The 2K x 16 internal data SRAM maps into either program or data space. The contents of the SRAM are maintained during stop mode and across non-POR resets, as long as DVDD remains within the operating voltage range.

A data memory cycle requires only one system clock period to support fast internal execution. This allows a complete read or write operation on SRAM in one clock cycle. The MMU handles data memory mapping and access control. Read or write to the data memory with word or byte-wide commands.

Stack Memory

The MAXQ7667 provides a 16 x 16 hardware stack to support subroutine calls and system interrupts. A 16-bit wide internal hardware stack provides storage for program return addresses and general-purpose use. The stack is used automatically by the processor when the CALL, RET, and RETI instructions are executed and interrupts serviced.

Register Set

Sets of registers control most functions. These registers provide a working space for memory operations as well as configuring and addressing peripheral registers on the device. Registers are divided into two major types; system registers and peripheral registers. The register set common to most MAXQ-based devices, also known as the system registers, includes the ALU, accumulator registers, data pointers, interrupt vectors and control, and stack pointer. The peripheral registers define additional functionality. Tables 1 and 3 show the MAXQ7667 register set.

Programming

Two different methods program the flash memory: insystem programming and in-application programming. Both methods afford great flexibility in system design as well as reduce the life-cycle cost of the embedded system. The MAXQ7667 password protects these features to prevent unauthorized access to code memory.

In-System Programming

An internal bootstrap loader reloads the device over a simple JTAG or UART interface allowing cost savings in system software upgrade. During power-up, the MAXQ7667 first checks for activity on the JTAG port. If no activity is present, the device checks if a password-protected program is present. If the password is set,

the application code executes. The application codes initiate reprogramming. If the password is not set, the MAXQ7667 monitors the UART for an autobaud character (0x0D). If this character is received, the device sets its serial baud rate and initiates a boot loader procedure. If 0x0D is not received after five seconds, the device begins execution of the application code.

The following bootloader functions are supported:

- Load
- Dump
- CRC
- Verify
- Erase

In-Application Programming

The in-application programming feature allows the μ C to modify its own flash program memory while simultaneously executing its application software. This allows on the fly software updates in mission-critical applications that cannot afford downtime. Erase and program the flash memory using the flash programming functions in the utility ROM. Refer to Section 18 of the *MAXQ7667 User's Guide* for a detailed description of the utility ROM functions.

Stop Mode

Power consumption reaches its minimum in stop mode (STOP = 1). In this mode, the external oscillator, internal RC oscillator, system clock, and all processing halts. Trigger an enabled external interrupt input or directly apply an external reset on RESET to exit stop mode. Upon exiting stop mode, the μ C either waits for the external high-frequency crystal to complete its warmup period or starts execution immediately from its internal RC oscillator while the crystal warms up.

Interrupts

Multiple interrupt sources quickly respond to internal and external events. The MAXQ architecture uses a single interrupt vector (IV) and single interrupt-service routine (ISR) design. Enable interrupts globally, individually, or by module. When an interrupt condition occurs, its individual flag is set even if the interrupt source is disabled at the local, module, or global level. Clear interrupt flags within the interrupt routine to avoid repeated false interrupts from the same source. Provide an adequate delay between the write to the flag and the RETI instruction using application software to allow time for the interrupt hardware to remove the internal interrupt condition. Asynchronous interrupt flags require a one-instruction delay and synchronous interrupt flags require a two-instruction delay.

When an enabled interrupt is detected, software jumps to a user-programmable interrupt vector location. The IV register defaults to 0000h on reset or power-up. Once software control transfers to the ISR, use the interrupt identification register (IIR) to determine if the source of the interrupt is a system register or peripheral register. The specified module identifies the specific interrupt source. The following interrupt sources are available:

- Watchdog interrupt
- External interrupts 0-7 on port 0 and port 1
- Timer 0 low compare, low overflow, capture/compare, and overflow interrupts
- Timer 1 low compare, low overflow, capture/compare, and overflow interrupts
- Timer 2 low compare, low overflow, and overflow interrupts
- Schedule timer alarm interrupt
- SPI data transfer complete, mode fault, write collision and receive overrun interrupts
- UART transmit, receive interrupts
- LIN mode master or slave interrupt
- SAR ADC data ready interrupt
- Echo envelope LPF output, FIFO full, and comparator interrupts
- Digital and I/O voltage brownout interrupts
- High-frequency oscillator failure interrupt

Table 1. System Register Map

MODULE NAME (BASE SPECIFIER) REGISTER INDEX AP (8h) A (9h) PFX (Bh) IP (Ch) SP (Dh) DPC (Eh) DP (Fh) AP IP 0h A[0] PFX[0] ____ ____ SP 1h APC PFX[1] A[1] ____ 2h ____ A[2] PFX[2] ____ IV ____ ____ 3h ____ ____ A[3] PFX[3] ____ OFFS DP[0] 4h PSF PFX[4] DPC **A**[4] ____ ____ ____ 5h IC PFX[5] GR A[5] ____ ____ IMR GRL 6h A[6] **PFX[6]** ____ LC[0] ____ 7h ____ **A**[7] PFX[7] LC[1] BΡ DP[1] _ 8h SC **A[8]** GRS ____ ____ ____ 9h ____ A[9] ____ ____ ____ GRH ____ Ah A[10] GRXL ____ ____ ____ ____ ____ Bh IIR A[11] FP ____ ____ ____ ____ Ch ____ A[12] ____ ____ ____ ____ ____ Dh A[13] ____ ____ ____ _ ____ ____ Eh CKCN A[14] ____ ____ ____ ____ _ Fh WDCN A[15] ____ ____ ____ ____ _

Note: Registers in italics are read-only. Registers in bold are 16-bit wide.

MAXQ7667

BEGICTER																
	15	14	13	12	Ħ	10	6	8	7	9	5	4	3	2	-	•
											Ι	I		AP (4 Bits)	Bits)	
									0	0	0	0	0	0	0	0
									CLR	SQI				MOD2	MOD1	MODO
									0	0	0	0	0	0	0	0
Ц О С									Z	S		GPF1	GPFO	N	U	ш
									-	0	0	0	0	0	0	0
Ċ											CGDS		I	Ι	SNI	IGE
 ک									0	0	0	0	0	0	0	0
									IMS		IM5	IM4	IM3	IM2	1M1	OMI
									0	0	0	0	0	0	0	0
C U									TAP		CDA1	CDA0		ROD	PWL	
)))									-	0	0	0	0	0	°*	0
₽									SII		115	114	113	112	Ħ	9
									0	0	0	0	0	0	0	0
									XTRC		RGMD	STOP	SWB	PMME	CD1	CDO
									°*	0	0	0	0	0	0	0
									POR	EWDI	WD1	WD0	WDIF	WTRF	EWT	RWT
									°*	°*	0	0	0	°*	°*	0
								A[n]	A[n] (16 Bits)							
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
								PFX[r	PFX[n] (16 Bits)							
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
₽) H	IP (16 Bits)							
=	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D														SP (4 I	Bits)	
5	0	0	0	0	0	0	0	0	0	0	0	0	-	-	-	-
IV.) ∧(IV (16 Bits)							
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10101								rc[0]	LC[0] (16 Bits)							
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10[1]								LC[1]	LC[1] (16 Bits)							
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table 2. System Register Bit and Reset Values

16-Bit, RISC, Microcontroller-Based, Ultrasonic Distance-Measuring System

MAXQ7667

Table 4. Peripheral Register Bit Functions and Reset Values

								REGL	REGISTER BIT							
	15	14	13	12	1	10	6	8	7	9	ß	4	e	2	-	0
POO	c	0	c	c	c	c	c	c	P007	P006	- P005	P004	- P003	- P002	P001	P000
PO1		I							P017	P016	P015	PO14	PO13	P012	P011	PO10
)	0	0	0	0	0	0	0	0	[- Ļ	- i		- <u>i</u>	- j	- 1
EIFO	0	0	0	0	0	0	0	0	0	0 Eo		1E4	0 [2]	0 EZ	0	D EO
ĩ						•		-	IE7	IE6	E5	IE4	E3	E2	Ē	EO
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OId		I		I	I			Ι	P107	P106	P105	Pl04	P103	P102	P101	P100
2	0	0	0	0	0	0	0	0	ST	ST	ST	ST	ST	ST	ST	ST
EI FI	0	0	0	0	0	0	0	0	117	9114		P114	5113	2117	LT14	0117
	-	-	5	5	-	5	5	5	0	- O						
EIEO	-	-	<	<	0	<	c	c		C	CY3	5 C				
	>	>				>			EX7	EXe	EX5	EX4	EX3	EX3	EX1	EXD
EIE1	0	0	0	0	0	0	0	0			0	0	0	0	0	0
	1	I	I		1	1	1		PD07	PD06	PD05	PD04	PD03	PD02	PD01	PD00
004	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
104	Ι	I	Ι	I	Ι	I	I		PD17	PD16	PD15	PD14	PD13	PD12	PD11	PD10
-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EIESO	1	I	1	1	1	1	1	ŀ	117	IT6	IT5	IT4	1T3	112	IT1	ITO
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EIES1	0	0	0	0	0	0	0	0		9	۹ ۱۵	4	5			010
	>	-	>	-	>	>	-	>	DS07	PSOF	PSOF	DS04	DS03	0 BS00	D DS01	DSOD
PSO	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Č		1							PS17	PS16	PS15	PS14	PS13	PS12	PS11	PS10
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PRO	I	I	I	Ţ	1	1	1	I	PR07	PR06	PR05	PR04	PR03	PR02	PR01	PR00
2	0	0	0	0	0	0	0	0		-	-	-	-	-	-	-
PR1	4	0	0	0	4	((0	PR17	PR16	PR15	PR14	PR13	PR12	PR11	PR10
	0	5	5	5	0	-	0	0	- 2	NOW						
MCNT	0		c	<	0	<	0		5 -				3			200
	MA15	MA14	MA13	MA12	MA11	MA10	MAG	MAR	MA7	MAG	MA5	MA4	MA3	MA2	MA1	MAD
AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	MB15	MB14	MB13	MB12	MB11	MB10	MB9	MB8	MB7	MB6	MB5	MB4	MB3	MB2	MB1	MBO
NIN	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
MC2	MC215	MC214	MC213	MC212	MC211	MC210	MC29	MC28	MC27	MC26	MC25	MC24	MC23	MC22	MC21	MC20
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
MC1	MC115	MC114	MC113	MC112	MC111	MC110	MC19	MC18	MC17	MC16	MC15	MC14	MC13	MC12	MC11	MC10
	MC015	MC014	MC013	MC012	MC011	MC010	MC09	MCDB	MC07	MCOB	MCO5	MC04	MCO3	MC02	MCD1	MCDD
MCO	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
alao	SPIB15	SPIB14	SPIB13	SPIB12	SPIB11	SPIB10	SPIB9	SPIB8	SPIB7	SPIB6	SPIB5	SPIB4	SPIB3	SPIB2	SPIB1	SPIBO
5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SPICN	•	•	•		•	(•	(STBY	SPIC	ROVR	wcol	MODF	MODFE	MSTM	SPIEN
	0	0	o	0	0	0	0	0		0	0	0	0	0		0
SPICF	0	-	0	<	0	0	c	c		CHC 0		0	c			
	»	»	»	»	»	»	»	»	SPICK7	SPICK6	SPICK5	SPICK4	SPICK3	SPICK2	SPICK1	SPICKO
SPICK	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EONTI	I	I	Ι	Ι	I	1	1	I	FBUSY	I	I			FC2	FC1	FOO
	0	0	0	0	0	0	0	0	÷	0	0	0	0	0	0	0
MC1R	MC1R15	MC1R14	MC1R13	MC1R12	MC1R11	MC1R10	MC1R9	MC1R8	MC1R7	MC1R6	MC1R5	MC1R4	MC1R3	MC1R2	MC1R1	MC1R0
	U MC0R15	MC0R14	U MC0R13	MC0R12	MC0R11	MCOR10	MC0R9	MCDB8	MC0B7	MCOR6	MCOR5	MC0R4	MCOR3	MCDR2	U MCDR1	MCORD
MCOH	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

16-Bit, RISC, Microcontroller-Based, Ultrasonic Distance-Measuring System

34

								REGIS	REGISTER RIT							
REGISTER	15	14	13	12	=	10	6	8	7	9	5	4	e	2	-	0
SCNT			1		STDIV2	STDIV1	STDIV0	SSYNC_EN	SALIE	SALMF				1	SALME	STIME
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
STIM	STIM15	STIM14	STIM13	STIM12	STIM11	STIM10	STIM9	STIM8	STIM7	STIM6	STIM5	STIM4	STIM3	STIM2	STIM1	STIMO
	SALM15	SALM14	SALM13	SALM12	SALM11	SALM10	SALM9	SALMB	SALM7	SALM6	SALM5	SALM4	SALM3	SALM2	SALM1	SALMO
SALM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1					1				1				1	1	DPMG
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RCTRM	Ι	I	Ι	I		I	1	RCTRM8	RCTRM7	RCTRM6	RCTRM5	RCTRM4	RCTRM3	RCTRM2	RCTRM1	RCTRM0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DO	ID015	ID014	ID013	ID012	ID011	ID010	60QI	ID08	ID07	ID06	ID05	ID04	ID03	ID02	ID01	D00
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D1	D115	D114	D113	D112	D111	D110	D19	D18	1D17	D16	1D15	D14	D13	D12	D11	D10
	5	-	-	5	5	5	5	5	ET 0	TOCED			0 Cat		0	C OEN
T2CNA0	0	c	0		c	0	c	0	0	0	0	0	2	0	200	O CELA
o or		,					,		T2H07	T2H06	T2H05	T2H04	T2H03	T2H02	T2H01	T2H00
0HZI	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
									T2RH07	T2RH06	T2RH05	T2RH04	T2RH03	T2RH02	T2RH01	T2RH00
חבושאו	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
T2CH0	Ι								T2CH07	T2CH06	T2CH05	T2CH04	T2CH03	T2CH02	T2CH01	T2CH00
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
T2CNA1		1	1	1	1		1		ET2	T20E0	T2POL0	TR2L	TR2	CPRL2	SS2	G2EN
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
T2H1	<	<	<	<	<	<	<	c	12H1/	12H16	0112H	12H14	12H13	12H12	12H.1	12H10
							>	>	T2RH17	T2RH16	T2RH15	T2RH14	T2RH13	T2RH12	T2RH11	T2RH10
T2RH1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
FI LOCH	1	1	1	1					T2CH17	T2CH16	T2CH15	T2CH14	T2CH13	T2CH12	T2CH11	T2CH10
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
T2CNB0	I								ET2L	T20E1	T2POL1		TF2	TF2L	TCC2	TC2L
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
T2V0	T2V015	T2V014	T2V013	T2V012	T2V011	T2V010	T2V09	T2V08	T2V07	T2V06	T2V05	T2V04	T2V03	T2V02	T2V01	T2V00
	TORNIE	T2R014	T 2R013	T2B012	T2R011	TORNIO	TOBNG	U	T2B07	U TORNE	TOROF	TORA	TORN3	TOBOD	U T2R01	TORON
T2R0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
U U U U	T2C015	T2C014	T2C013	T2C012	T2C011	T2C010	T2C09	T2C08	T2C07	T2C06	T2C05	T2C04	T2C03	T2C02	T2C01	T2C00
007	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
T2CNB1	<	<	<	<	0	0	0	0	ET2L	120E1	12POL1	<	1F2	TF2L	TCC2	TC2L
	U T9//115	U T2V114	U T9V113	U T9//112	T2V111	T2V/110	T2V19	U T2V18	T2V17	U T2V16	U T2V15	U T2V/14	T2V13	U T9V12	U T2V/11	U T2V10
T2V1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13B1	T2R115	T2R114	T2R113	T2R112	T2R111	T2R110	T2R19	T2R18	T2R17	T2R16	T2R15	T2R14	T2R13	T2R12	T2R11	T2R10
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
T2C1	T2C115	12C114	12C113	12C112	12C111	12C110	12C19	12C18	12C17	12C16	12C15	T2C14	T2C13	12C12	12C11	12C10
	>		>	-	>	>	-	>	T2C1	TPDIV2	T2DIV1	TPDIVO	TOMD	005	OCEO	сл.
T2CFG0	0	0	0	0	0	0	0	0	0	0	0	0	0	. 0	0	0
T2CEG 1									T2C1	T2DIV2	T2DIV1	T2DIV0	T2MD	CCF1	CCF0	C/T2
5	0	_	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ICDT0	ICD1015	ICD1014	ICD1013	ICDI012	ICD1011	ICD1010		ICD108	ICD107	ICD106	ICD105	ICD104	1CD103	ICD102	ICDI01	
F CC	ICDT115	2	ICDT113	ICDT112	ICDT111	ICDT110	ICDT19	ICDT18	ICDT17	ICDT16	ICDT15	ICDT14	ICDT13	ICDT12	ICDT11	ICDT10
1001	DB		DB	DB	DB	DB	DB	DB	DB	DB	DB	DB	DB	DB	DB	DB
ICDC	I		I	I	I	I	1		DME	I	REGE	Ι	CMD3	CMD2	CMD1	CMD0
	0	0	0	0	0	0	0	0	DW	0	DW	0	DW	MD	DW	DW

Table 4. Peripheral Register Bit Functions and Reset Values (continued)

MAXQ7667

16-Bit, RISC, Microcontroller-Based, Ultrasonic Distance-Measuring System

CITOL								REGI	REGISTER BIT							
	15	14	13	12	7	10	6	8	7	9	ß	4	m	7	÷	•
La	BT15	BT14	BT 13	BT12	BT11	BT10	BT9	BT8	BT7	BT6	BT5	BT4	BT3	BT2	BT1	BTO
5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
aMT	TMR15	TMR14	TMR13	TMR12	TMR11	TMR10	TMR9	TMR8	TMR7	TMR6	TMR5	TMR4	TMR3	TMR2	TMR1	TMR0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	BSTT	BDS					ВРН9	BPH8	BPH7	BPH6	BPH5	BPH4	BPH3	BPH2	BPH1	BPHO
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NOFO	BDIV3	BDIV2	BDIV1	BDIVO	BPOL	BCKS	BTRI	BGT	BCTN7	BCTN6	BCTN5	BCTN4	BCTN3	BCTN2	BCTN1	BCTN0
	-	0	0	-	0	-	0	0	0	0	0	0	0	0	0	0
	I				SARMX2	SARMX1	SARMX0	SARDIF	SARBIP	SARDUL	SARRSEL	SARASD	SARBY	SARC2	SARC1	SARC0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		I						LNAOSEL	LNAISEL1	LNAISELO		RCVGN4	RCVGN3	RCVGN2	RCVGN1	RCVGN0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
						PLLC1	PLLC0	PLLF8	PLLF7	PLLF6	PLLF5	PLLF4	PLLF3	PLLF2	PLLF1	PLLFO
	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0
, II									XTIE	VIBIE	VDBIE	VABIE	CMPIE	LFLIE	LPFIE	SARIE
ļ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OdMO	CMPP	CMPH14	CMPH13	CMPH12	CMPH11	CMPH10	CMPH9	CMPH8	CMPH7	CMPH6	CMPH5	CMPH4	CMPH3	CMPH2	CMPH1	CMPH0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CMPT	CMPT15	CMPT14	CMPT13	CMPT12	CMPT11	CMPT10	CMPT9	CMPT8	CMPT7	CMPT6	CMPT5	CMPT4	CMPT3	CMPT2	CMPT1	CMPT0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ACP	VIOLVL	DVLVL	AVLVL	CMPLVL				XTRDY	XTI	VIBI	VDBI	VABI	CMPI	LPFFL	LPFRDY	SARRDY
Ē	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CAPD					SARD11	SARD10	SARD9	SARD8	SARD7	SARD6	SARD5	SARD4	SARD3	SARD2	SARD1	SARD0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	FFIL3	FFIL2	FFIL1	FFILO	FFDP3	FFDP2	FFDP1	FFDP0	FFOV				FFLD	FFLS2	FFLS1	FFLS0
2	0	0	0	0	0	0	0	0	0	0	0	0	0	-	÷	
													SARCD1	SARCD0	XTE	RCE
2000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EPEI	BPFI15	BPFI14	BPFI13	BPFI12	BPFI11	BPFI10	BPF19	BPF18	BPFI7	BPFI6	BPFI5	BPF14	BPF13	BPFI2	BPFI1	BPFIO
-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BPEO	BPFO15	BPFO14	BPFO13	BPFO12	BPFO11	BPFO10	BPFO9	BPFO8	BPFO7	BPFO6	BPFO5	BPFO4	BPFO3	BPFO2	BPFO1	BPFO0
5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	LPFD15	LPFD14	LPFD13	LPFD12	LPFD11	LPFD10	LPFD9	LPFD8	LPFD7	LPFD6	LPFD5	LPFD4	LPFD3	LPFD2	LPFD1	LPFD0
) -]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ШШ	LPFF15	LPFF14	LPFF13	LPFF12	LPFF11	LPFF10	LPFF9	LPFF8	LPFF7	LPFF6	LPFF5	LPFF4	LPFF3	LPFF2	LPFF1	LPFF0
-								NOT INITIALIZED	VITIALIZED							
APF		RBUFE	RSARE	BGE	LRIOPD	LRDPD	LRAPD	VIBE	VDPE	VDBE	VABE	SARE	PLLE	MDE	LNAE	BIASE

(continued
set Values (cont
ister Bit Functions and Reset Va
ns and
unctio
r Bit F
Register I
Peripheral
Table 4. P