

Welcome to **E-XFL.COM**

Understanding Embedded - CPLDs (Complex Programmable Logic Devices)

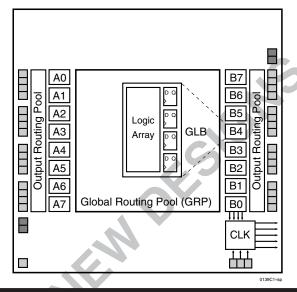
Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixed-function ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

Applications of Embedded - CPLDs

Details	
Product Status	Obsolete
Programmable Type	In System Programmable
Delay Time tpd(1) Max	7.5 ns
Voltage Supply - Internal	4.75V ~ 5.25V
Number of Logic Elements/Blocks	16
Number of Macrocells	64
Number of Gates	2000
Number of I/O	32
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/isplsi-1016e-125ltn44

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


ispLSI® 1016E

In-System Programmable High Density PLD

Features

- HIGH-DENSITY PROGRAMMABLE LOGIC
- 2000 PLD Gates
- 32 I/O Pins, Four Dedicated Inputs
- 96 Registers
- High-Speed Global Interconnect
- Wide Input Gating for Fast Counters, State Machines, Address Decoders, etc.
- Small Logic Block Size for Random Logic
- HIGH-PERFORMANCE E²CMOS® TECHNOLOGY
- fmax = 125 MHz Maximum Operating Frequency
- tpd = 7.5 ns Propagation Delay
- TTL Compatible Inputs and Outputs
- Electrically Erasable and Reprogrammable
- Non-Volatile
- 100% Tested at Time of Manufacture
- Unused Product Term Shutdown Saves Power
- IN-SYSTEM PROGRAMMABLE
- In-System Programmable (ISP™) 5V Only
- Increased Manufacturing Yields, Reduced Time-to-Market and Improved Product Quality
- Reprogram Soldered Device for Faster Prototyping
- OFFERS THE EASE OF USE AND FAST SYSTEM SPEED OF PLDs WITH THE DENSITY AND FLEXIBILITY OF FIELD PROGRAMMABLE GATE ARRAYS
- Complete Programmable Device Can Combine Glue Logic and Structured Designs
- Enhanced Pin Locking Capability
- Three Dedicated Clock Input Pins
- Synchronous and Asynchronous Clocks
- Programmable Output Slew Rate Control to Minimize Switching Noise
- Flexible Pin Placement
- Optimized Global Routing Pool Provides Global Interconnectivity
- Lead-Free Package Options

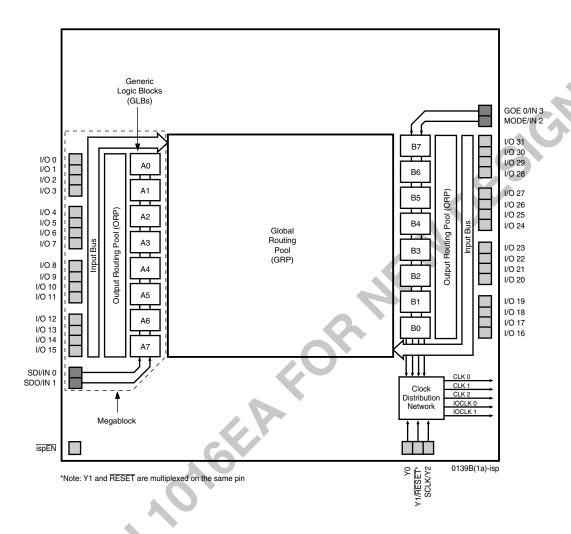
Functional Block Diagram

Description

The ispLSI 1016E is a High Density Programmable Logic Device containing 96 Registers, 32 Universal I/O pins, four Dedicated Input pins, three Dedicated Clock Input pins, one Global OE input pin and a Global Routing Pool (GRP). The GRP provides complete interconnectivity between all of these elements. The ispLSI 1016E offers 5V non-volatile in-system programmability of the logic, as well as the interconnect to provide truly reconfigurable systems. A functional superset of the ispLSI 1016 architecture, the ispLSI 1016E device adds a new global output enable pin.

The basic unit of logic on the ispLSI 1016E device is the Generic Logic Block (GLB). The GLBs are labeled A0, A1...B7 (see Figure 1). There are a total of 16 GLBs in the ispLSI 1016E device. Each GLB has 18 inputs, a programmable AND/OR/Exclusive OR array, and four outputs which can be configured to be either combinatorial or registered. Inputs to the GLB come from the GRP and dedicated inputs. All of the GLB outputs are brought back into the GRP so that they can be connected to the inputs of any other GLB on the device.

Copyright © 2006 Lattice Semiconductor Corp. All brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.


Tel. (503) 268-8000; 1-800-LATTICE; FAX (503) 268-8556; http://www.latticesemi.com 1016e 09

LATTICE SEMICONDUCTOR CORP., 5555 Northeast Moore Ct., Hillsboro, Oregon 97124, U.S.A.

Functional Block Diagram

Figure 1. ispLSI 1016E Functional Block Diagram

The device also has 32 I/O cells, each of which is directly connected to an I/O pin. Each I/O cell can be individually programmed to be a combinatorial input, registered input, latched input, output or bi-directional I/O pin with 3-state control. The signal levels are TTL compatible voltages and the output drivers can source 4 mA or sink 8 mA. Each output can be programmed independently for fast or slow output slew rate to minimize overall output switching noise.

Eight GLBs, 16 I/O cells, two dedicated inputs and one ORP are connected together to make a Megablock (see Figure 1). The outputs of the eight GLBs are connected to a set of 16 universal I/O cells by the ORP. Each ispLSI 1016E device contains two Megablocks.

The GRP has, as its inputs, the outputs from all of the GLBs and all of the inputs from the bi-directional I/O cells. All of these signals are made available to the inputs of the GLBs. Delays through the GRP have been equalized to minimize timing skew.

Clocks in the ispLSI 1016E device are selected using the Clock Distribution Network. Three dedicated clock pins (Y0, Y1 and Y2) are brought into the distribution network, and five clock outputs (CLK 0, CLK 1, CLK 2, IOCLK 0 and IOCLK 1) are provided to route clocks to the GLBs and I/O cells. The Clock Distribution Network can also be driven from a special clock GLB (B0 on the ispLSI 1016E device). The logic of this GLB allows the user to create an internal clock from a combination of internal signals within the device.

Absolute Maximum Ratings 1

Supply Voltage V_{CC} -0.5 to +7.0V

Input Voltage Applied.....-2.5 to V_{CC} +1.0V

Off-State Output Voltage Applied -2.5 to V_{CC} +1.0V

Storage Temperature-65 to 150°C

Case Temp. with Power Applied-55 to 125°C

Max. Junction Temp. (T_J) with Power Applied ... 150°C

DC Recommended Operating Conditions

SYMBOL	PARAMETER				MAX.	UNITS
Vcc	Cupply Voltogo	Commercial	$T_A = 0$ °C to + 70°C	4.75	5.25	V
VCC	Supply Voltage	Industrial	$T_A = -40^{\circ}C \text{ to} + 85^{\circ}C$	4.5	5.5	V
V IL	Input Low Voltage			0	0.8	V
V IH	Input High Voltage			2.0	V _{cc} +1	V

Table 2-0005/1016E

Capacitance (T_A=25°C, f=1.0 MHz)

SYMBOL	PARAMETER	TYPICAL	UNITS	TEST CONDITIONS
C ₁	Dedicated Input, I/O, Y1, Y2, Y3, Clock Capacitance (Commercial/Industrial)	8	pf	$V_{CC} = 5.0V, V_{PIN} = 2.0V$
C ₂	Y0 Clock Capacitance	12	pf	$V_{CC} = 5.0V, V_{PIN} = 2.0V$

Table 2-0006/1016E

Data Retention Specifications

PARAMETER	MINIMUM	MAXIMUM	UNITS
Data Retention	20	_	Years
Erase/Reprogram Cycles	10000	_	Cycles

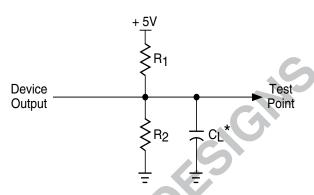
Table 2-0008/1016E

^{1.} Stresses above those listed under the "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation of the device at these or at any other conditions above those indicated in the operational sections of this specification is not implied (while programming, follow the programming specifications).

Switching Test Conditions

Input Pulse Levels	GND t	o 3.0V
Input Rise and Fall Time	-125	≤ 2 ns
10% to 90%	-100, -80	≤ 3 ns
Input Timing Reference Levels	1.5	5V
Output Timing Reference Levels	1.5	5V
Output Load	See Fi	gure 2

3-state levels are measured 0.5V from steady-state active level.


Table 2-0003/1016E

Output Load Conditions (see Figure 2)

	TEST CONDITION	R1	R2	CL
Α		470Ω	390Ω	35pF
В	Active High	8	390Ω	35pF
Ь	Active Low	470Ω	390Ω	35pF
С	Active High to Z at V _{OH} -0.5V	8	390Ω	5pF
	Active Low to Z at V _{OL} +0.5V	470Ω	390Ω	5pF

Table 2-0004/1016E

Figure 2. Test Load

*CL includes Test Fixture and Probe Capacitance.

0213a

DC Electrical Characteristics

Over Recommended Operating Conditions

SYMBOL	PARAMETER	CONDITIO	N	MIN.	TYP.3	MAX.	UNITS
V OL	Output Low Voltage	I _{OL} = 8 mA	ı	ı	0.4	V	
V OH	Output High Voltage	I _{OH} = -4 mA		2.4	-	_	٧
IIL	Input or I/O Low Leakage Current	$0V \le V_{IN} \le V_{IL}(Max.)$		-	_	-10	μΑ
Iн	Input or I/O High Leakage Current	$3.5V \le V_{IN} \le V_{CC}$		ı	-	10	μΑ
IIL-isp	ispEN Input Low Leakage Current	$0V \leq V_{IN} \leq V_{IL}$		-	_	-150	μΑ
I IL-PU	I/O Active Pull-Up Current	$0V \leq V_{IN} \leq V_{IL}$		1	-	-150	μΑ
los ¹	Output Short Circuit Current	$V_{CC} = 5V, V_{OUT} = 0.5V$	I	ı	-200	mA	
ICC ^{2, 4}	Operating Power Supply Current	$V_{IL} = 0.5V, V_{IH} = 3.0V$	Commercial	. 1	90	_	mA
	Operating rewer cupply ourrent	f _{CLOCK} = 1 MHz	Industrial	_	90	_	mA

Table 2-0007/1016E

- 1. One output at a time for a maximum duration of one second. V_{OUT} = 0.5V was selected to avoid test problems by tester ground degradation. Characterized but not 100% tested.
- 2. Measured using four 16-bit counters.
- 3. Typical values are at V_{CC} = 5V and T_A = 25°C.
- 4. Maximum I_{CC} varies widely with specific device configuration and operating frequency. Refer to the Power Consumption section of this data sheet and Thermal Management section of the Lattice Semiconductor Data Book or CD-ROM to estimate maximum I_{CC}.

External Timing Parameters

Over Recommended Operating Conditions

DADAMETED	TEST ⁴			-1	25	-1	00	-8	0	
PARAMETER	COND.	#	DESCRIPTION	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	UNITS
t pd1	Α	1	Data Prop. Delay, 4PT Bypass, ORP Bypass	1	7.5	_	10.0	_	15.0	ns
tpd2	Α	2	Data Prop. Delay, Worst Case Path	ı	10.0	_	13.0	_	18.5	ns
fmax	Α	3	Clk. Frequency with Int. Feedback ³	125	_	100	_	84.0	-	MHz
fmax (Ext.)	_	4	Clk. Frequency with Ext. Feedback $\left(\frac{1}{\tan 2 + \tan 1}\right)$	100	_	77.0	_	57.0	A -1	MHz
f max (Tog.)	_	5	Clk. Frequency, Max. Toggle $\left(\frac{1}{\text{twh + tw1}}\right)$	167	_	125	_	100	-	MHz
t su1	_	6	GLB Reg. Setup Time before Clk., 4 PT Bypass	5.0	_	7.0	-	8.5	_	ns
tco1	Α	7	GLB Reg. Clk. to Output Delay, ORP Bypass	ı	4.5	_	5.0		8.0	ns
t h1	-	8	GLB Reg. Hold Time after Clk., 4 PT Bypass	0.0	_	0.0	-	0.0	_	ns
tsu2	_	9	GLB Reg. Setup Time before Clk.	5.5	-	8.0) –	9.5	_	ns
tco2	_	10	GLB Reg. Clk. to Output Delay	I	5.5	_	6.0	_	9.5	ns
t h2	_	11	GLB Reg. Hold Time after Clk.	0.0	7	0.0	_	0.0	_	ns
t r1	Α	12	Ext. Reset Pin to Output Delay		10.0	_	13.5	_	17.0	ns
trw1	_	13	Ext. Reset Pulse Duration	5.0	_	6.5	_	10.0	_	ns
t ptoeen	В	14	Input to Output Enable	1	12.0	_	15.0	_	20.0	ns
t ptoedis	С	15	Input to Output Disable	ı	12.0	_	15.0	_	20.0	ns
t goeen	В	16	Global OE Output Enable	ı	7.0	_	9.0	_	10.5	ns
t goedis	С	17	Global OE Output Disable	ı	7.0	_	9.0	_	10.5	ns
t wh	-	18	Ext. Sync. Clk. Pulse Duration, High	3.0	_	4.0	_	5.0	_	ns
twl	-	19	Ext. Sync. Clk. Pulse Duration, Low	3.0	_	4.0	_	5.0	_	ns
t su3	_	20	I/O Reg. Setup Time before Ext. Sync. Clk. (Y2, Y3)	3.0	_	3.5	_	4.5	_	ns
t h3	_	21	I/O Reg. Hold Time after Ext. Sync. Clk. (Y2, Y3)	0.0	_	0.0	_	0.0	_	ns

1. Unless noted otherwise, all parameters use the GRP, 20 PTXOR path, ORP and Y0 clock.

Table 2-0030-16/125,100, 80

- 2. Refer to Timing Model in this data sheet for further details.
- 3. Standard 16-bit counter using GRP feedback.
- 4. Reference Switching Test Conditions Section.

Internal Timing Parameters¹

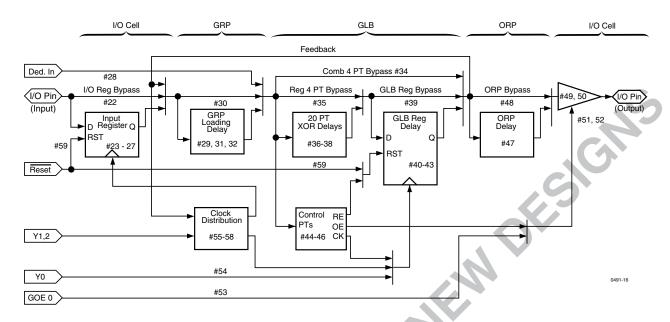
	# ²	DECORPTION	-1	25	-1	00	-8	80	
PARAMETER	#-	DESCRIPTION	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	UNITS
Inputs			•	•		•		•	•
tiobp	22	I/O Register Bypass	_	0.3	_	0.4	_	0.6	ns
t iolat	23	I/O Latch Delay	_	1.8	_	2.4	_	3.6	ns
t iosu	24	I/O Register Setup Time before Clock	3.0	_	3.5	_	4.5	4	ns
t ioh	25	I/O Register Hold Time after Clock	-0.3	_	-0.4	_	-0.6	3	ns
tioco	26	I/O Register Clock to Out Delay	_	4.0	_	5.0	4	7.5	ns
t ior	27	I/O Register Reset to Out Delay	_	4.0	_	5.0	5	7.5	ns
t din	28	Dedicated Input Delay	_	2.2	_	2.6		3.9	ns
GRP									
t grp1	29	GRP Delay, 1 GLB Load	_	1.8	-	1.9	_	2.9	ns
t grp4	30	GRP Delay, 4 GLB Loads	_	1.9	-	2.2	_	3.3	ns
t grp8	31	GRP Delay, 8 GLB Loads	-	2.1	-	2.5	_	3.8	ns
t grp16	32	GRP Delay, 16 GLB Loads	-	2.4	_	3.1	_	4.7	ns
GLB			1					•	
t 4ptbpc	34	4 Product Term Bypass Path Delay (Combinatorial)	_	3.9	_	5.7	_	8.1	ns
t 4ptbpr	35	4 Product Term Bypass Path Delay (Registered)	_	3.9	_	5.6	_	7.3	ns
t 1ptxor	36	1 Product Term/XOR Path Delay	_	4.4	_	6.1	_	7.1	ns
t 20ptxor	37	20 Product Term/XOR Path Delay	_	4.4	_	6.1	_	8.2	ns
t xoradj	38	XOR Adjacent Path Delay ³	_	4.4	_	6.6	_	8.3	ns
t gbp	39	GLB Register Bypass Delay	_	1.0	_	1.6	-	1.9	ns
t gsu	40	GLB Register Setup Time before Clock	0.2	_	0.2	_	-0.6	_	ns
t gh	41	GLB Register Hold Time after Clock	1.5	_	2.5	_	4.3	_	ns
tgco	42	GLB Register Clock to Output Delay	_	1.8	_	1.9	_	2.9	ns
t gro	43	GLB Register Reset to Output Delay	_	4.4	_	6.3	_	7.0	ns
t ptre	44	GLB Product Term Reset to Register Delay	_	3.5	_	5.1	_	7.2	ns
t ptoe	45	GLB Product Term Output Enable to I/O Cell Delay	_	5.5	_	7.1	_	9.7	ns
t ptck	46	GLB Product Term Clock Delay	3.2	3.5	4.8	5.3	6.8	7.5	ns
ORP									
t orp	47	ORP Delay	_	1.0	_	1.0	_	1.5	ns
torpbp	48	ORP Bypass Delay	-	0.0	_	0.0	_	0.0	ns

1. Internal Timing Parameters are not tested and are for reference only.

2. Refer to Timing Model in this data sheet for further details.

3. The XOR Adjacent path can only be used by Lattice hard macros.

Table 2-0036-16/125,100, 80



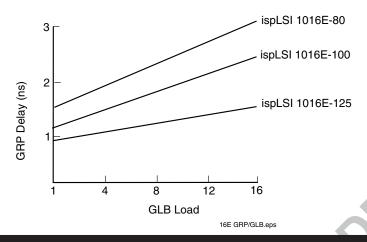
Internal Timing Parameters¹

PARAMETER	# ²	DESCRIPTION	-	25		00		30	١ ا
PANAIVIETEN	#	DESCRIPTION	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	١,
Outputs									
t ob	49	Output Buffer Delay	-	1.4	_	1.7	_	3.0	
t sl	50	Output Slew Limited Delay Adder	_	10.0	_	10.0	_	10.0	
t oen	51	I/O Cell OE to Output Enabled	_	4.3	_	5.3	_	6.4	
t odis	52	I/O Cell OE to Output Disabled	_	4.3	_	5.3	-	6.4	•
t goe	53	Global Output Enable	_	2.7	_	3.7	4	4.1	
Clocks									
t gy0	54	Clock Delay, Y0 to Global GLB Clock Line (Ref. clock)	1.3	1.3	1.4	1.4	2.1	2.1	
t gy1/2	55	Clock Delay, Y1 or Y2 to Global GLB Clock Line	2.3	2.7	2.4	2.9	3.6	4.4	
t gcp	56	Clock Delay, Clock GLB to Global GLB Clock Line	0.8	1.8	0.8	1.8	1.2	2.7	
t ioy1/2	57	Clock Delay, Y1 or Y2 to I/O Cell Global Clock Line	0.0	0.3	0.0	0.4	0.0	0.6	
tiocp	58	Clock Delay, Clock GLB to I/O Cell Global Clock Line	0.8	1.8	0.8	1.8	1.2	2.7	
Global Rese	et						-		
t gr	59	Global Reset to GLB and I/O Registers	12	3.2	_	4.5	_	5.5	
. Internal Timin 2. Refer to Timir		odel in this data sheet for further details.	7						
		odel in this data sheet for further details.	7						
2. Refer to Timir	ng Mo		7						

ispLSI 1016E Timing Model

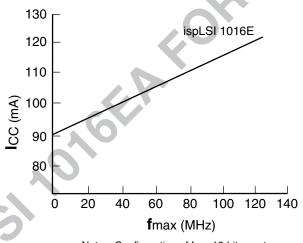
Derivations of tsu, th and tco from the Product Term Clock¹

```
\begin{array}{lll} \textbf{tsu} &=& \text{Logic} + \text{Reg su} - \text{Clock (min)} \\ &=& (\textbf{tiobp} + \textbf{tgrp4} + \textbf{t}20\text{ptxor}) + (\textbf{tgsu}) - (\textbf{tiobp} + \textbf{tgrp4} + \textbf{tptck(min)}) \\ &=& (\#22 + \#30 + \#37) + (\#40) - (\#22 + \#30 + \#46) \\ 1.4 \text{ ns} &=& (0.3 + 1.9 + 4.4) + (0.2) - (0.3 + 1.9 + 3.2) \\ \\ \textbf{th} &=& \text{Clock (max)} + \text{Reg h} - \text{Logic} \\ &=& (\textbf{tiobp} + \textbf{tgrp4} + \textbf{tptck(max)}) + (\textbf{tgh}) - (\textbf{tiobp} + \textbf{tgrp4} + \textbf{t}20\text{ptxor}) \\ &=& (\#22 + \#30 + \#46) + (\#41) - (\#22 + \#30 + \#37) \\ 0.6 \text{ ns} &=& (0.3 + 1.9 + 3.5) + (1.5) - (0.3 + 1.9 + 4.4) \\ \\ \textbf{tco} &=& \text{Clock (max)} + \text{Reg co} + \text{Output} \\ &=& (\textbf{tiobp} + \textbf{tgrp4} + \textbf{tptck(max)}) + (\textbf{tgco}) + (\textbf{torp} + \textbf{tob}) \\ &=& (\#22 + \#30 + \#46) + (\#42) + (\#47 + \#49) \\ 9.9 \text{ ns} &=& (0.3 + 1.9 + 3.5) + (1.8) + (1.0 + 1.4) \\ \end{array}
```


Derivations of tsu, th and tco from the Clock GLB¹

```
\begin{array}{lll} tsu & = & Logic + Reg \ su - Clock \ (min) \\ & = & (tiobp + tgrp4 + t20ptxor) + (tgsu) - (tgy0(min) + tgco + tgcp(min)) \\ & = & (\#22 + \#30 + \#37) + (\#40) - (\#54 + \#42 + \#56) \\ 2.9 \ ns & = & (0.3 + 1.9 + 4.4) + (0.2) - (1.3 + 1.8 + 0.8) \\ \\ th & = & Clock \ (max) + Reg \ h - Logic \\ & = & (tgy0(max) + tgco + tgcp(max)) + (tgh) - (tiobp + tgrp4 + t20ptxor) \\ & = & (\#54 + \#42 + \#56) + (\#41) - (\#22 + \#30 + \#37) \\ -0.2 \ ns & = & (1.3 + 1.8 + 1.8) + (1.5) - (0.3 + 1.9 + 4.4) \\ \\ tco & = & Clock \ (max) + Reg \ co + Output \\ & = & (tgy0(max) + tgco + tgcp(max)) + (tgco) + (torp + tob) \\ & = & (\#54 + \#42 + \#56) + (\#42) + (\#47 + \#49) \\ 9.1 \ ns & = & (1.3 + 1.8 + 1.8) + (1.8) + (1.0 + 1.4) \\ \end{array}
```

1. Calculations are based upon timing specifications for the ispLSI 1016E-125


Maximum GRP Delay vs GLB Loads

Power Consumption

Power consumption in the ispLSI 1016E device depends on two primary factors: the speed at which the device is operating and the number of Product Terms used. Figure 3 shows the relationship between power and operating speed.

Figure 3. Typical Device Power Consumption vs fmax

Notes: Configuration of four 16-bit counters Typical current at 5V, 25°C

ICC can be estimated for the ispLSI 1016E using the following equation:

 $I_{CC}(mA) = 23 + (\# \text{ of PTs} * 0.52) + (\# \text{ of nets} * \max \text{ freq} * 0.004)$

Where:

of PTs = Number of product terms used in design

of nets = Number of signals used in device

Max freq = Highest clock frequency to the device (in MHz)

The I_CC estimate is based on typical conditions (V_CC = 5.0V, room temperature) and an assumption of four GLB loads on average exists and the device is filled with four 16-bit counters. These values are for estimates only. Since the value of I_CC is sensitive to operating conditions and the program in the device, the actual I_CC should be verified.

0127B-16-80-isp/1016

Pin Description

NAME	PLCC PIN NUMBERS	TQFP PIN NUMBERS	DESCRIPTION
I/O 0 - I/O 3 I/O 4 - I/O 7 I/O 8 - I/O 11 I/O 12 - I/O 15 I/O 16 - I/O 19 I/O 20 - I/O 23 I/O 24 - I/O 27 I/O 28 - I/O 31	15, 16, 17, 18, 19, 20, 21, 22, 25, 26, 27, 28, 29, 30, 31, 32, 37, 38, 39, 40, 41, 42, 43, 44, 3, 4, 5, 6, 7, 8, 9, 10	9, 10, 11, 12, 13, 14, 15, 16, 19, 20, 21, 22, 23, 24, 25, 26, 31, 32, 33, 34, 35, 36, 37, 38, 41, 42, 43, 44, 1, 2, 3, 4	Input/Output Pins - These are the general purpose I/O pins used by the logic array.
GOE 0/IN 3 ²	2	40	This is a dual function pin. It can be used either as Global Output Enable for all I/O cells or it can be used as a dedicated input pin.
ispEN	13	7	Input - Dedicated in-system programming enable input pin. This pin is brought low to enable the programming mode. The MODE, SDI, SDO and SCLK controls become active.
SDI/IN 0 ¹	14	8	Input - This pin performs two functions. When ispEN is logic low, it functions as an input pin to load programming data into the device. It is a dedicated input pin when ispEN is logic high.SDI/INO also is used as one of the two control pins for the isp state machine.
MODE/IN 2 ¹	36	30	Input - This pin performs two functions. When ispEN is logic low, it functions as a pin to control the operation of the isp state machine. It is a dedicated input pin when ispEN is logic high.
SDO/IN 1 ¹	24	18	Output/Input - This pin performs two functions. When ispEN is logic low, it functions as an output pin to read serial shift register data. It is a dedicated input pin when ispEN is logic high.
SCLK/Y2 ¹	33	27	Input - This pin performs two functions. When <code>ispEN</code> is logic low, it functions as a clock pin for the Serial Shift Register. It is a dedicated clock input when <code>ispEN</code> is logic high. This clock input is brought into the Clock Distribution Network, and can optionally be routed to any GLB and/or I/O cell on the device.
Y0	11	5	Dedicated Clock input. This clock input is connected to one of the clock inputs of all the GLBs on the device.
Y1/RESET	35	29	This pin performs two functions: Dedicated clock input. This clock input is brought into the Clock Distribution Network, and can optionally be routed to any GLB and/or I/O cell on the device. Active Low (0) Reset pin which resets all of the GLB and I/O registers in the device.
GND	1, 23	17, 39	Ground (GND)
VCC	12, 34	6, 28	Vcc

1. Pins have dual function capability.

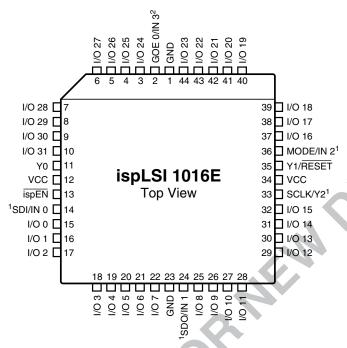
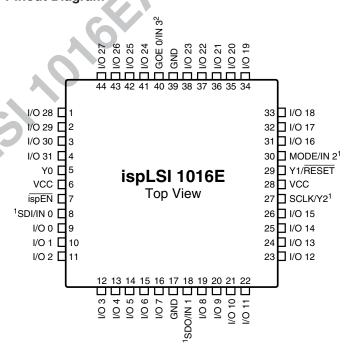

2. Pins have dual function capability which is software selectable.

Table 2-0002C-16-isp

Pin Configurations

ispLSI 1016E 44-Pin PLCC Pinout Diagram

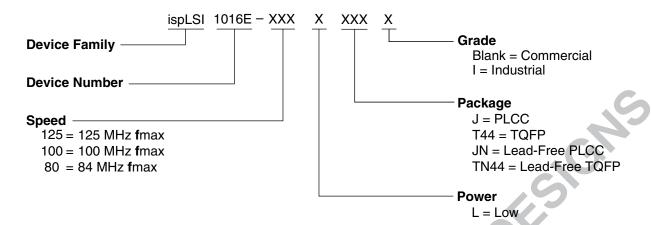


- 1. Pins have dual function capability.
- 2. Pins have dual function capability which is software selectable.

0123A-isp1016

ispLSI 1016E 44-Pin TQFP Pinout Diagram

ISE ISE


- 1. Pins have dual function capability.
- 2. Pins have dual function capability which is software selectable.

0851-16E/TQFP

Part Number Description

ispLSI 1016E Ordering Information

Conventional Packaging

COMMERCIAL

FAMILY	fmax (MHz)	tpd (ns)	ORDERING NUMBER	PACKAGE
	125	7.5	ispLSI 1016E-125LJ	44-Pin PLCC
	125	7.5	ispLSI 1016E-125LT44	44-Pin TQFP
ion! Cl	100	10	ispLSI 1016E-100LJ	44-Pin PLCC
ispLSI	100	10	ispLSI 1016E-100LT44	44-Pin TQFP
	84	15	ispLSI 1016E-80LJ	44-Pin PLCC
	84	15	ispLSI 1016E-80LT44	44-Pin TQFP

INDUSTRIAL

FAMILY	fmax (MHz)	tpd (ns)	ORDERING NUMBER	PACKAGE
ispLSI	84	15	ispLSI 1016E-80LJI	44-Pin PLCC
ishrai	84	15	ispLSI 1016E-80LT44I	44-Pin TQFP

Lead-Free Packaging

COMMERCIAL

FAMILY	fmax (MHz)	tpd (ns)	ORDERING NUMBER	PACKAGE
	125	7.5	ispLSI 1016E-125LJN	Lead-Free 44-Pin PLCC
	125	7.5	ispLSI 1016E-125LTN44	Lead-Free 44-Pin TQFP
ispLSI	100	10	ispLSI 1016E-100LJN	Lead-Free 44-Pin PLCC
ispLSi	100	10	ispLSI 1016E-100LTN44	Lead-Free 44-Pin TQFP
	84	15	ispLSI 1016E-80LJN	Lead-Free 44-Pin PLCC
	84	15	ispLSI 1016E-80LTN44	Lead-Free 44-Pin TQFP

INDUSTRIAL

FAMILY	fmax (MHz)	tpd (ns)	ORDERING NUMBER	PACKAGE
ispLSI	84	15	ispLSI 1016E-80LJNI	Lead-Free 44-Pin PLCC
	84	15	ispLSI 1016E-80LTN44I	Lead-Free 44-Pin TQFP

Revision	History
----------	---------

Date	Version	Change Summary
_	08	Previous Lattice release.
August 2006	09	Updated for lead-free package options.