

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

E·XFI

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	276480
Number of I/O	119
Number of Gates	1500000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	256-LBGA
Supplier Device Package	256-FPBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/afs1500-1fg256

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 2-19 • Flash Memory Block Pin Names (continued)

Interface Name	Width	Direction	Description
STATUS[1:0]	2	Out	Status of the last operation completed:
			00: Successful completion
			01: Read-/Unprotect-Page: single error detected and corrected
			Write: operation addressed a write-protected page Erase-Page: protection violation Program: Page Buffer is unmodified Protection violation
			10: Read-/Unprotect-Page: two or more errors detected
			11: Write: attempt to write to another page before programming current page
			Erase-Page/Program: page write count has exceeded the 10-year retention threshold
UNPROTECTPAGE	1	In	When asserted, the page addressed is copied into the Page Buffer and the Page Buffer is made writable.
WD[31:0]	32	In	Write data
WEN	1	In	When asserted, stores WD in the page buffer.

All flash memory block input signals are active high, except for RESET.

DINA and DINB

These are the input data signals, and they are nine bits wide. Not all nine bits are valid in all configurations. When a data width less than nine is specified, unused high-order signals must be grounded (Table 2-29).

DOUTA and DOUTB

These are the nine-bit output data signals. Not all nine bits are valid in all configurations. As with DINA and DINB, high-order bits may not be used (Table 2-29). The output data on unused pins is undefined.

Table 2-29 • Unused/Used Input and Output Data Pins for Various Supported Bus Widths

D×W	DINx/E	DOUTx
	Unused	Used
4k×1	[8:1]	[0]
2k×2	[8:2]	[1:0]
1k×4	[8:4]	[3:0]
512×9	None	[8:0]

Note: The "x" in DINx and DOUTx implies A or B.

SRAM Characteristics

Timing Waveforms

Figure 2-51 • RAM Read for Pipelined Output. Applicable to both RAM4K9 and RAM512x18.

Table 2-36 • Analog Block Pin Description (continued)

Signal Name	Number of Bits	Direction	Function	Location of Details
GDON0 to GDON9	10	Input	Control to power MOS – 1 per quad	Analog Quad
TMSTB0 to TMSTB9	10	Input	Temperature monitor strobe – 1 per quad; active high	Analog Quad
DAVOUTO, DACOUTO, DATOUTO	30	Output	Digital outputs – 3 per quad	Analog Quad
to DAVOUT9, DACOUT9, DATOUT9				
DENAV0, DENAC0, DENAT0 to DENAV9, DENAC9, DENAT9	30	Input	Digital input enables – 3 per quad	Analog Quad
AV0	1	Input	Analog Quad 0	Analog Quad
AC0	1	Input		Analog Quad
AG0	1	Output		Analog Quad
AT0	1	Input		Analog Quad
ATRETURN01	1	Input	Temperature monitor return shared by Analog Quads 0 and 1	Analog Quad
AV1	1	Input	Analog Quad 1	Analog Quad
AC1	1	Input		Analog Quad
AG1	1	Output		Analog Quad
AT1	1	Input		Analog Quad
AV2	1	Input	Analog Quad 2	Analog Quad
AC2	1	Input		Analog Quad
AG2	1	Output		Analog Quad
AT2	1	Input		Analog Quad
ATRETURN23	1	Input	Temperature monitor return shared by Analog Quads 2 and 3	Analog Quad
AV3	1	Input	Analog Quad 3	Analog Quad
AC3	1	Input		Analog Quad
AG3	1	Output		Analog Quad
AT3	1	Input		Analog Quad
AV4	1	Input	Analog Quad 4	Analog Quad
AC4	1	Input		Analog Quad
AG4	1	Output		Analog Quad
AT4	1	Input		Analog Quad
ATRETURN45	1	Input	Temperature monitor return shared by Analog Quads 4 and 5	Analog Quad
AV5	1	Input	Analog Quad 5	Analog Quad
AC5	1	Input		Analog Quad
AG5	1	Output		Analog Quad
AT5	1	Input		Analog Quad
AV6	1	Input	Analog Quad 6	Analog Quad
AC6	1	Input		Analog Quad

Offset Error

Offset error indicates how well the actual transfer function matches the ideal transfer function at a single point. For an ideal ADC, the first transition occurs at 0.5 LSB above zero. The offset voltage is measured by applying an analog input such that the ADC outputs all zeroes and increases until the first transition occurs (Figure 2-86).

Figure 2-86 • Offset Error

Resolution

ADC resolution is the number of bits used to represent an analog input signal. To more accurately replicate the analog signal, resolution needs to be increased.

Sampling Rate

Sampling rate or sample frequency, specified in samples per second (sps), is the rate at which an ADC acquires (samples) the analog input.

SNR – Signal-to-Noise Ratio

SNR is the ratio of the amplitude of the desired signal to the amplitude of the noise signals at a given point in time. For a waveform perfectly reconstructed from digital samples, the theoretical maximum SNR (EQ 14) is the ratio of the full-scale analog input (RMS value) to the RMS quantization error (residual error). The ideal, theoretical minimum ADC noise is caused by quantization error only and results directly from the ADC's resolution (N bits):

$$SNR_{dB[MAX]} = 6.02_{dB} \times N + 1.76_{dB}$$

EQ 14

SINAD – Signal-to-Noise and Distortion

SINAD is the ratio of the rms amplitude to the mean value of the root-sum-square of the all other spectral components, including harmonics, but excluding DC. SINAD is a good indication of the overall dynamic performance of an ADC because it includes all components which make up noise and distortion.

Total Harmonic Distortion

THD measures the distortion content of a signal, and is specified in decibels relative to the carrier (dBc). THD is the ratio of the RMS sum of the selected harmonics of the input signal to the fundamental itself. Only harmonics within the Nyquist limit are included in the measurement.

Figure 2-90 • Input Setup Time

Standard Conversion

Notes:

1. Refer to EQ 20 on page 2-109 for the calculation on the sample time, t_{SAMPLE} .

2. See EQ 23 on page 2-109 for calculation of the conversion time, t_{CONV} .

3. Minimum time to issue an ADCSTART after DATAVALID is 1 SYSCLK period

Figure 2-91 • Standard Conversion Status Signal Timing Diagram

Timing Characteristics

Table 2-55 • Analog Configuration Multiplexer (ACM) TimingCommercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{CLKQACM}	Clock-to-Q of the ACM	19.73	22.48	26.42	ns
t _{SUDACM}	Data Setup time for the ACM	4.39	5.00	5.88	ns
t _{HDACM}	Data Hold time for the ACM	0.00	0.00	0.00	ns
t _{SUAACM}	Address Setup time for the ACM	4.73	5.38	6.33	ns
t _{HAACM}	Address Hold time for the ACM	0.00	0.00	0.00	ns
t _{SUEACM}	Enable Setup time for the ACM	3.93	4.48	5.27	ns
t _{HEACM}	Enable Hold time for the ACM	0.00	0.00	0.00	ns
t _{MPWARACM}	Asynchronous Reset Minimum Pulse Width for the ACM	10.00	10.00	10.00	ns
t _{REMARACM}	Asynchronous Reset Removal time for the ACM	12.98	14.79	17.38	ns
t _{RECARACM}	Asynchronous Reset Recovery time for the ACM	12.98	14.79	17.38	ns
t _{MPWCLKACM}	Clock Minimum Pulse Width for the ACM	45.00	45.00	45.00	ns
t _{FMAXCLKACM}	lock Maximum Frequency for the ACM	10.00	10.00	10.00	MHz

Fusion Family of Mixed Signal FPGAs

Table 2-98 • I/O Short Currents IOSH/IOSL

	Drive Strength	IOSH (mA)*	IOSL (mA)*
Applicable to Pro I/O Banks			
3.3 V LVTTL / 3.3 V LVCMOS	4 mA	25	27
	8 mA	51	54
	12 mA	103	109
	16 mA	132	127
	24 mA	268	181
2.5 V LVCMOS	4 mA	16	18
	8 mA	32	37
	12 mA	65	74
	16 mA	83	87
	24 mA	169	124
1.8 V LVCMOS	2 mA	9	11
	4 mA	17	22
	6 mA	35	44
	8 mA	45	51
	12 mA	91	74
	16 mA	91	74
1.5 V LVCMOS	2 mA	13	16
	4 mA	25	33
	6 mA	32	39
	8 mA	66	55
	12 mA	66	55
Applicable to Advanced I/O Banks			
3.3 V LVTTL / 3.3 V LVCMOS	2 mA	25	27
	4 mA	25	27
	6 mA	51	54
	8 mA	51	54
	12 mA	103	109
	16 mA	132	127
	24 mA	268	181
3.3 V LVCMOS	2 mA	25	27
	4 mA	25	27
	6 mA	51	54
	8 mA	51	54
	12 mA	103	109
	16 mA	132	127
	24 mA	268	181

Note: $^{*}T_{J} = 100^{\circ}C$

Table 2-109 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew Commercial Temperature Range Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Standard I/Os

Drive	Speed										
Strength	Grade	^t DOUT	τ _{DP}	τ _{DIN}	τ _{PY}	^t EOUT	۲ _{ZL}	τ _{ZH}	τ _{LZ}	τ _{HZ}	Units
2 mA	Std.	0.66	7.07	0.04	1.00	0.43	7.20	6.23	2.07	2.15	ns
	-1	0.56	6.01	0.04	0.85	0.36	6.12	5.30	1.76	1.83	ns
	-2 ²	0.49	5.28	0.03	0.75	0.32	5.37	4.65	1.55	1.60	ns
4 mA	Std.	0.66	7.07	0.04	1.00	0.43	7.20	6.23	2.07	2.15	ns
	-1	0.56	6.01	0.04	0.85	0.36	6.12	5.30	1.76	1.83	ns
	-2	0.49	5.28	0.03	0.75	0.32	5.37	4.65	1.55	1.60	ns
6 mA	Std.	0.66	4.41	0.04	1.00	0.43	4.49	3.75	2.39	2.69	ns
	-1	0.56	3.75	0.04	0.85	0.36	3.82	3.19	2.04	2.29	ns
	-2	0.49	3.29	0.03	0.75	0.32	3.36	2.80	1.79	2.01	ns
8 mA	Std.	0.66	4.41	0.04	1.00	0.43	4.49	3.75	2.39	2.69	ns
	-1	0.56	3.75	0.04	0.85	0.36	3.82	3.19	2.04	2.29	ns
	-2	0.49	3.29	0.03	0.75	0.32	3.36	2.80	1.79	2.01	ns

Table 2-117 • 2.5 V LVCMOS High Slew
Commercial Temperature Range Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V,
Worst-Case VCCI = 2.3 V
Applicable to Standard I/Os

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{zL}	t _{zH}	t _{LZ}	t _{HZ}	Units
2 mA	Std.	0.66	8.20	0.04	1.29	0.43	7.24	8.20	2.03	1.91	ns
	-1	0.56	6.98	0.04	1.10	0.36	6.16	6.98	1.73	1.62	ns
	-2	0.49	6.13	0.03	0.96	0.32	5.41	6.13	1.52	1.43	ns
4 mA	Std.	0.66	8.20	0.04	1.29	0.43	7.24	8.20	2.03	1.91	ns
	-1	0.56	6.98	0.04	1.10	0.36	6.16	6.98	1.73	1.62	ns
	-2	0.49	6.13	0.03	0.96	0.32	5.41	6.13	1.52	1.43	ns
6 mA	Std.	0.66	4.77	0.04	1.29	0.43	4.55	4.77	2.38	2.55	ns
	-1	0.56	4.05	0.04	1.10	0.36	3.87	4.05	2.03	2.17	ns
	-2	0.49	3.56	0.03	0.96	0.32	3.40	3.56	1.78	1.91	ns
8 mA	Std.	0.66	4.77	0.04	1.29	0.43	4.55	4.77	2.38	2.55	ns
	-1	0.56	4.05	0.04	1.10	0.36	3.87	4.05	2.03	2.17	ns
	-2	0.49	3.56	0.03	0.96	0.32	3.40	3.56	1.78	1.91	ns

Voltage Referenced I/O Characteristics

3.3 V GTL

Gunning Transceiver Logic is a high-speed bus standard (JESD8-3). It provides a differential amplifier input buffer and an open-drain output buffer. The VCCI pin should be connected to 3.3 V.

3.3 V GTL		VIL	VIH		VOL	VOH	IOL	IOH	IOSL	IOSH	IIL¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
20 mA ³	-0.3	VREF – 0.05	VREF + 0.05	3.6	0.4	_	20	20	181	268	10	10

Table 2-138 • Minimum and Maximum DC Input and Output Levels

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

Figure 2-124 • AC Loading

Table 2-139 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	VTT (typ.) (V)	C _{LOAD} (pF)
VREF – 0.05	VREF + 0.05	0.8	0.8	1.2	10

Note: *Measuring point = Vtrip. See Table 2-90 on page 2-166 for a complete table of trip points.

Timing Characteristics

Table 2-140 • 3.3 V GTL

```
Commercial Temperature Range Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V, VREF = 0.8 V
```

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	0.66	2.08	0.04	2.93	0.43	2.04	2.08			4.27	4.31	ns
-1	0.56	1.77	0.04	2.50	0.36	1.73	1.77			3.63	3.67	ns
-2	0.49	1.55	0.03	2.19	0.32	1.52	1.55			3.19	3.22	ns

SSTL3 Class II

Stub-Speed Terminated Logic for 3.3 V memory bus standard (JESD8-8). Fusion devices support Class II. This provides a differential amplifier input buffer and a push-pull output buffer.

SSTL3 Class II	VIL		VIH		VOL	VOH	IOL	IOH	IOSL	IOSH	IIL ¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
21 mA	-0.3	VREF – 0.2	VREF + 0.2	3.6	0.5	VCCI – 0.9	21	21	109	103	10	10

Table 2-165 • Minimum and Maximum DC Input and Output Levels

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

Figure 2-133 • AC Loading

Table 2-166 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	VTT (typ.) (V)	C _{LOAD} (pF)
VREF – 0.2	VREF + 0.2	1.5	1.5	1.485	30

Note: *Measuring point = Vtrip. See Table 2-90 on page 2-166 for a complete table of trip points.

Timing Characteristics

Table 2-167 • SSTL3- Class II Commercial Temperature Range Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V, VREF = 1.5 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	0.66	2.07	0.04	1.25	0.43	2.10	1.67			4.34	3.91	ns
-1	0.56	1.76	0.04	1.06	0.36	1.79	1.42			3.69	3.32	ns
-2	0.49	1.54	0.03	0.93	0.32	1.57	1.25			3.24	2.92	ns

Input Register

Figure 2-139 • Input Register Timing Diagram

Timing Characteristics

Table 2-176 • Input Data Register Propagation DelaysCommercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{ICLKQ}	Clock-to-Q of the Input Data Register	0.24	0.27	0.32	ns
t _{ISUD}	Data Setup Time for the Input Data Register	0.26	0.30	0.35	ns
t _{IHD}	Data Hold Time for the Input Data Register	0.00	0.00	0.00	ns
t _{ISUE}	Enable Setup Time for the Input Data Register	0.37	0.42	0.50	ns
t _{IHE}	Enable Hold Time for the Input Data Register	0.00	0.00	0.00	ns
t _{ICLR2Q}	Asynchronous Clear-to-Q of the Input Data Register	0.45	0.52	0.61	ns
t _{IPRE2Q}	Asynchronous Preset-to-Q of the Input Data Register	0.45	0.52	0.61	ns
t _{IREMCLR}	Asynchronous Clear Removal Time for the Input Data Register	0.00	0.00	0.00	ns
t _{IRECCLR}	Asynchronous Clear Recovery Time for the Input Data Register	0.22	0.25	0.30	ns
t _{IREMPRE}	Asynchronous Preset Removal Time for the Input Data Register	0.00	0.00	0.00	ns
t _{IRECPRE}	Asynchronous Preset Recovery Time for the Input Data Register	0.22	0.25	0.30	ns
t _{IWCLR}	Asynchronous Clear Minimum Pulse Width for the Input Data Register	0.22	0.25	0.30	ns
t _{IWPRE}	Asynchronous Preset Minimum Pulse Width for the Input Data Register	0.22	0.25	0.30	ns
t _{ICKMPWH}	Clock Minimum Pulse Width High for the Input Data Register	0.36	0.41	0.48	ns
t _{ICKMPWL}	Clock Minimum Pulse Width Low for the Input Data Register	0.32	0.37	0.43	ns

Output Register

Timing Characteristics

Table 2-177 • Output Data Register Propagation DelaysCommercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{OCLKQ}	Clock-to-Q of the Output Data Register	0.59	0.67	0.79	ns
tosud	Data Setup Time for the Output Data Register	0.31	0.36	0.42	ns
t _{OHD}	Data Hold Time for the Output Data Register	0.00	0.00	0.00	ns
tosue	Enable Setup Time for the Output Data Register	0.44	0.50	0.59	ns
t _{OHE}	Enable Hold Time for the Output Data Register	0.00	0.00	0.00	ns
t _{OCLR2Q}	Asynchronous Clear-to-Q of the Output Data Register	0.80	0.91	1.07	ns
t _{OPRE2Q}	Asynchronous Preset-to-Q of the Output Data Register	0.80	0.91	1.07	ns
t _{OREMCLR}	Asynchronous Clear Removal Time for the Output Data Register	0.00	0.00	0.00	ns
t _{ORECCLR}	Asynchronous Clear Recovery Time for the Output Data Register	0.22	0.25	0.30	ns
t _{OREMPRE}	Asynchronous Preset Removal Time for the Output Data Register	0.00	0.00	0.00	ns
t _{ORECPRE}	Asynchronous Preset Recovery Time for the Output Data Register	0.22	0.25	0.30	ns
t _{OWCLR}	Asynchronous Clear Minimum Pulse Width for the Output Data Register	0.22	0.25	0.30	ns
t _{OWPRE}	Asynchronous Preset Minimum Pulse Width for the Output Data Register	0.22	0.25	0.30	ns
t _{OCKMPWH}	Clock Minimum Pulse Width High for the Output Data Register	0.36	0.41	0.48	ns
t _{OCKMPWL}	Clock Minimum Pulse Width Low for the Output Data Register	0.32	0.37	0.43	ns

DC and Power Characteristics

Parameter	Description	Conditions	Temp.	Min	Тур	Мах	Unit
IPP	Programming supply	Non-programming mode,	T _J = 25°C		36	80	μA
	current	VPUMP = 3.63 V	T _J = 85°C		36	80	μA
			T _J = 100°C		36	80	μA
		Standby mode ⁵ or Sleep mode ⁶ , VPUMP = 0 V			0	0	μA
ICCNVM	Embedded NVM current	Reset asserted,	T _J = 25°C		22	80	μA
		VCCNVM = 1.575 V	T _J = 85°C		24	80	μA
			T _J = 100°C		25	80	μA
ICCPLL	1.5 V PLL quiescent current	Operational standby,	T _J = 25°C		130	200	μA
		VCCPLL = 1.575 V	T _J = 85°C		130	200	μA
			T _J = 100°C		130	200	μA

Table 3-9 • AFS600 Quiescent Supply Current Characteristics (continued)

Notes:

- 1. ICC is the 1.5 V power supplies, ICC and ICC15A.
- 2. ICC33A includes ICC33A, ICC33PMP, and ICCOSC.
- 3. ICCI includes all ICCI0, ICCI1, ICCI2, and ICCI4.
- 4. Operational standby is when the Fusion device is powered up, all blocks are used, no I/O is toggling, Voltage Regulator is loaded with 200 mA, VCC33PMP is ON, XTAL is ON, and ADC is ON.
- 5. XTAL is configured as high gain, VCC = VJTAG = VPUMP = 0 V.
- 6. Sleep Mode, VCC = VJTAG = VPUMP = 0 V.

Parameter	arameter Description Conditions		Temp.	Min	Тур	Мах	Unit
ICC ¹	1.5 V quiescent current	Operational standby ⁴ ,	T _J = 25°C		4.8	10	mA
		VCC = 1.575 V	T _J = 85°C		8.2	30	mA
			T _J = 100°C		15	50	mA
		Standby mode ⁵ or Sleep mode ⁶ , VCC = 0 V			0	0	μA
ICC33 ²	3.3 V analog supplies	Operational standby ⁴ ,	T _J = 25°C		9.8	13	mA
	current	VCC33 = 3.63 V	T _J = 85°C		9.8	14	mA
			T _J = 100°C		10.8	15	mA
		Operational standby, only	T _J = 25°C		0.29	2	mA
		Analog Quad and –3.3 V output ON, VCC33 = 3.63 V	T _J = 85°C		0.31	2	mA
			T _J = 100°C		0.45	2	mA
		Standby mode ⁵ , VCC33 = 3.63V	T _J = 25°C		2.9	3.0	mA
			T _J = 85°C		2.9	3.1	mA
			T _J = 100°C		3.5	6	mA
		Sleep mode ⁶ , VCC33 = 3.63 V	T _J = 25°C		19	18	μA
			T _J = 85°C		19	20	μA
			T _J = 100°C		24	25	μA
ICCI ³	I/O quiescent current	Operational standby ⁶ ,	T _J = 25°C		266	437	μA
		VCCIX = 3.63 V	T _J = 85°C		266	437	μA
			T _J = 100°C		266	437	μΑ
IJTAG	JTAG I/O quiescent current	Operational standby ⁴ ,	T _J = 25°C		80	100	μA
		VJIAG = 3.63 V	T _J = 85°C		80	100	μΑ
			T _J = 100°C		80	100	μA
		Standby mode ⁵ or Sleep mode ⁶ , VJTAG = 0 V			0	0	μA

Table 3-10 • AFS250 Quiescent Supply Cu	urrent Characteristics
---	------------------------

Notes:

1. ICC is the 1.5 V power supplies, ICC, ICCPLL, ICC15A, ICCNVM.

2. ICC33A includes ICC33A, ICC33PMP, and ICCOSC.

3. ICCI includes all ICCI0, ICCI1, and ICCI2.

4. Operational standby is when the Fusion device is powered up, all blocks are used, no I/O is toggling, Voltage Regulator is loaded with 200 mA, VCC33PMP is ON, XTAL is ON, and ADC is ON.

5. XTAL is configured as high gain, VCC = VJTAG = VPUMP = 0 V.

6. Sleep Mode, VCC = VJTA G = VPUMP = 0 V.

Table 3-13 • Summary of I/O Output Buffer Power (per pin)—Default I/O Software Settings¹ (continued)

	C _{LOAD} (pF)	VCCI (V)	Static Power PDC8 (mW) ²	Dynamic Power PAC10 (µW/MHz) ³
Differential				
LVDS	-	2.5	7.74	88.92
LVPECL	_	3.3	19.54	166.52
Applicable to Standard I/O Bank	S			
Single-Ended				
3.3 V LVTTL / 3.3 V LVCMOS	35	3.3	-	431.08
2.5 V LVCMOS	35	2.5	-	247.36
1.8 V LVCMOS	35	1.8	-	128.46
1.5 V LVCMOS (JESD8-11)	35	1.5	-	89.46

Notes:

1. Dynamic power consumption is given for standard load and software-default drive strength and output slew.

2. PDC8 is the static power (where applicable) measured on VCCI.

3. PAC10 is the total dynamic power measured on VCC and VCCI.

Static Power Consumption of Various Internal Resources

Table 3-15 • Different Components Contributing to the Static Power Consumption in Fusion Devices

		Power		Device-Specific Static Contributions				
Parameter	Definition	Supply		AFS1500	AFS600	AFS250	AFS090	Units
PDC1	Core static power contribution in operating mode	VCC	1.5 V	18	7.5	4.50	3.00	mW
PDC2	Device static power contribution in standby mode	VCC33A	3.3 V		0.0	66		mW
PDC3	Device static power contribution in sleep mode	VCC33A	3.3 V	3.3 V 0.03				mW
PDC4	NVM static power contribution	VCC	1.5 V		1.1	19		mW
PDC5	Analog Block static power contribution of ADC	VCC33A	3.3 V		8.2	25		mW
PDC6	Analog Block static power contribution per Quad	VCC33A	3.3 V 3.3				mW	
PDC7	Static contribution per input pin – standard dependent contribution	VCCI	See Table 3-12 on page 3-18					
PDC8	Static contribution per input pin – standard dependent contribution	VCCI	See Table 3-13 on page 3-20					
PDC9	Static contribution for PLL	VCC	1.5 V 2.55				mW	

Power Calculation Methodology

This section describes a simplified method to estimate power consumption of an application. For more accurate and detailed power estimations, use the SmartPower tool in the Libero SoC software.

The power calculation methodology described below uses the following variables:

- The number of PLLs as well as the number and the frequency of each output clock generated
- · The number of combinatorial and sequential cells used in the design
- The internal clock frequencies
- · The number and the standard of I/O pins used in the design
- The number of RAM blocks used in the design
- The number of NVM blocks used in the design
- The number of Analog Quads used in the design
- Toggle rates of I/O pins as well as VersaTiles—guidelines are provided in Table 3-16 on page 3-27.
- Enable rates of output buffers—guidelines are provided for typical applications in Table 3-17 on page 3-27.
- Read rate and write rate to the RAM—guidelines are provided for typical applications in Table 3-17 on page 3-27.
- Read rate to the NVM blocks

The calculation should be repeated for each clock domain defined in the design.

Fusion Family of Mixed Signal FPGAs

	PQ208		PQ208				
Pin Number	AFS250 Function	AFS600 Function	Pin Number	AFS250 Function	AFS600 Function		
74	AV2	AV4	111	VCCNVM	VCCNVM		
75	AC2	AC4	112	VCC	VCC		
76	AG2	AG4	112	VCC	VCC		
77	AT2	AT4	113	VPUMP	VPUMP		
78	ATRTN1	ATRTN2	114	GNDQ	NC		
79	AT3	AT5	115	VCCIB1	ТСК		
80	AG3	AG5	116	ТСК	TDI		
81	AC3	AC5	117	TDI	TMS		
82	AV3	AV5	118	TMS	TDO		
83	AV4	AV6	119	TDO	TRST		
84	AC4	AC6	120	TRST	VJTAG		
85	AG4	AG6	121	VJTAG	IO57NDB2V0		
86	AT4	AT6	122	IO57NDB1V0	GDC2/IO57PDB2V0		
87	ATRTN2	ATRTN3	123	GDC2/IO57PDB1V0	IO56NDB2V0		
88	AT5	AT7	124	IO56NDB1V0	GDB2/IO56PDB2V0		
89	AG5	AG7	125	GDB2/IO56PDB1V0	IO55NDB2V0		
90	AC5	AC7	126	VCCIB1	GDA2/IO55PDB2V0		
91	AV5	AV7	127	GND	GDA0/IO54NDB2V0		
92	NC	AV8	128	IO55NDB1V0	GDA1/IO54PDB2V0		
93	NC	AC8	129	GDA2/IO55PDB1V0	VCCIB2		
94	NC	AG8	130	GDA0/IO54NDB1V0	GND		
95	NC	AT8	131	GDA1/IO54PDB1V0	VCC		
96	NC	ATRTN4	132	GDB0/IO53NDB1V0	GCA0/IO45NDB2V0		
97	NC	AT9	133	GDB1/IO53PDB1V0	GCA1/IO45PDB2V0		
98	NC	AG9	134	GDC0/IO52NDB1V0	GCB0/IO44NDB2V0		
99	NC	AC9	135	GDC1/IO52PDB1V0	GCB1/IO44PDB2V0		
100	NC	AV9	136	IO51NSB1V0	GCC0/IO43NDB2V		
101	GNDAQ	GNDAQ			0		
102	VCC33A	VCC33A	137	VCCIB1	GCC1/IO43PDB2V0		
103	ADCGNDREF	ADCGNDREF	138	GND	IO42NDB2V0		
104	VAREF	VAREF	139	VCC	IO42PDB2V0		
105	PUB	PUB	140	IO50NDB1V0	IO41NDB2V0		
106	VCC33A	VCC33A	141	IO50PDB1V0	GCC2/IO41PDB2V0		
107	GNDA	GNDA	142	GCA0/IO49NDB1V0	VCCIB2		
108	PTEM	PTEM	143	GCA1/IO49PDB1V0	GND		
109	PTBASE	PTBASE	144	GCB0/IO48NDB1V0	VCC		
110	GNDNVM	GNDNVM	145	GCB1/IO48PDB1V0	IO40NDB2V0		
ι		L]	146	GCC0/IO47NDB1V0	GCB2/IO40PDB2V0		

🌜 Microsemi.

Package Pin Assignments

FG676			FG676	FG676			
Pin Number	AFS1500 Function	Pin Number	AFS1500 Function	Pin Number	AFS1500 Function		
C9	IO07PDB0V1	D19	GBC1/IO40PDB1V2	F3	IO121NDB4V0		
C10	IO09PDB0V1	D20	GBA1/IO42PDB1V2	F4	GND		
C11	IO13NDB0V2	D21	GND	F5	IO123NDB4V0		
C12	IO13PDB0V2	D22	VCCPLB	F6	GAC2/IO123PDB4V0		
C13	IO24PDB1V0	D23	GND	F7	GAA2/IO125PDB4V0		
C14	IO26PDB1V0	D24	NC	F8	GAC0/IO03NDB0V0		
C15	IO27NDB1V1	D25	NC	F9	GAC1/IO03PDB0V0		
C16	IO27PDB1V1	D26	NC	F10	IO10NDB0V1		
C17	IO35NDB1V2	E1	GND	F11	IO10PDB0V1		
C18	IO35PDB1V2	E2	IO122NPB4V0	F12	IO14NDB0V2		
C19	GBC0/IO40NDB1V2	E3	IO121PDB4V0	F13	IO23NDB1V0		
C20	GBA0/IO42NDB1V2	E4	IO122PPB4V0	F14	IO23PDB1V0		
C21	IO43NDB1V2	E5	IO00NDB0V0	F15	IO32NPB1V1		
C22	IO43PDB1V2	E6	IO00PDB0V0	F16	IO34NDB1V1		
C23	NC	E7	VCCIB0	F17	IO34PDB1V1		
C24	GND	E8	IO05NDB0V1	F18	IO37PDB1V2		
C25	NC	E9	IO05PDB0V1	F19	GBB1/IO41PDB1V2		
C26	NC	E10	VCCIB0	F20	VCCIB2		
D1	NC	E11	IO11NDB0V1	F21	IO47PPB2V0		
D2	NC	E12	IO14PDB0V2	F22	IO44NDB2V0		
D3	NC	E13	VCCIB0	F23	GND		
D4	GND	E14	VCCIB1	F24	IO45NDB2V0		
D5	GAA0/IO01NDB0V0	E15	IO29NDB1V1	F25	VCCIB2		
D6	GND	E16	IO29PDB1V1	F26	NC		
D7	IO04NDB0V0	E17	VCCIB1	G1	NC		
D8	IO04PDB0V0	E18	IO37NDB1V2	G2	IO119PPB4V0		
D9	GND	E19	GBB0/IO41NDB1V2	G3	IO120NDB4V0		
D10	IO09NDB0V1	E20	VCCIB1	G4	IO120PDB4V0		
D11	IO11PDB0V1	E21	VCOMPLB	G5	VCCIB4		
D12	GND	E22	GBA2/IO44PDB2V0	G6	GAB2/IO124PDB4V0		
D13	IO24NDB1V0	E23	IO48PPB2V0	G7	IO125NDB4V0		
D14	IO26NDB1V0	E24	GBB2/IO45PDB2V0	G8	GND		
D15	GND	E25	NC	G9	VCCIB0		
D16	IO31NDB1V1	E26	GND	G10	IO08NDB0V1		
D17	IO31PDB1V1	F1	NC	G11	IO08PDB0V1		
D18	GND	F2	VCCIB4	G12	GND		