

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	
Total RAM Bits	276480
Number of I/O	119
Number of Gates	1500000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	256-LBGA
Supplier Device Package	256-FPBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/afs1500-1fgg256i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Global Clocking

Fusion devices have extensive support for multiple clocking domains. In addition to the CCC and PLL support described above, there are on-chip oscillators as well as a comprehensive global clock distribution network.

The integrated RC oscillator generates a 100 MHz clock. It is used internally to provide a known clock source to the flash memory read and write control. It can also be used as a source for the PLLs.

The crystal oscillator supports the following operating modes:

- Crystal (32.768 KHz to 20 MHz)
- Ceramic (500 KHz to 8 MHz)
- RC (32.768 KHz to 4 MHz)

Each VersaTile input and output port has access to nine VersaNets: six main and three quadrant global networks. The VersaNets can be driven by the CCC or directly accessed from the core via MUXes. The VersaNets can be used to distribute low-skew clock signals or for rapid distribution of high-fanout nets.

Digital I/Os with Advanced I/O Standards

The Fusion family of FPGAs features a flexible digital I/O structure, supporting a range of voltages (1.5 V, 1.8 V, 2.5 V, and 3.3 V). Fusion FPGAs support many different digital I/O standards, both single-ended and differential.

The I/Os are organized into banks, with four or five banks per device. The configuration of these banks determines the I/O standards supported. The banks along the east and west sides of the device support the full range of I/O standards (single-ended and differential). The south bank supports the Analog Quads (analog I/O). In the family's two smaller devices, the north bank supports multiple single-ended digital I/O standards. In the family's larger devices, the north bank is divided into two banks of digital Pro I/Os, supporting a wide variety of single-ended, differential, and voltage-referenced I/O standards.

Each I/O module contains several input, output, and enable registers. These registers allow the implementation of the following applications:

- Single-Data-Rate (SDR) applications
- Double-Data-Rate (DDR) applications—DDR LVDS I/O for chip-to-chip communications
- Fusion banks support LVPECL, LVDS, BLVDS, and M-LVDS with 20 multi-drop points.

VersaTiles

The Fusion core consists of VersaTiles, which are also used in the successful ProASIC3 family. The Fusion VersaTile supports the following:

- All 3-input logic functions—LUT-3 equivalent
- Latch with clear or set
- D-flip-flop with clear or set and optional enable

Refer to Figure 1-2 for the VersaTile configuration arrangement.

Table 2-7 • AFS250 Global Resource Timing
Commercial Temperature Range Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	_	·2	-	-1	St	Unite	
Faranieter	Description	Min. ¹	Max. ²	Min. ¹	Max. ²	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	0.89	1.12	1.02	1.27	1.20	1.50	ns
t _{RCKH}	Input High Delay for Global Clock	0.88	1.14	1.00	1.30	1.17	1.53	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock							ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock							ns
t _{RCKSW}	Maximum Skew for Global Clock		0.26		0.30		0.35	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

Table 2-8 • AFS090 Global Resource Timing

Commercial Temperature Range Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	-	2	-	1	S	Unite	
Falailletei	Description	Min. ¹	Max. ²	Min. ¹	Max. ²	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	0.84	1.07	0.96	1.21	1.13	1.43	ns
t _{RCKH}	Input High Delay for Global Clock	0.83	1.10	0.95	1.25	1.12	1.47	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock							ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock							ns
t _{RCKSW}	Maximum Skew for Global Clock		0.27		0.30		0.36	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

Offset Error

Offset error indicates how well the actual transfer function matches the ideal transfer function at a single point. For an ideal ADC, the first transition occurs at 0.5 LSB above zero. The offset voltage is measured by applying an analog input such that the ADC outputs all zeroes and increases until the first transition occurs (Figure 2-86).

Figure 2-86 • Offset Error

Resolution

ADC resolution is the number of bits used to represent an analog input signal. To more accurately replicate the analog signal, resolution needs to be increased.

Sampling Rate

Sampling rate or sample frequency, specified in samples per second (sps), is the rate at which an ADC acquires (samples) the analog input.

SNR – Signal-to-Noise Ratio

SNR is the ratio of the amplitude of the desired signal to the amplitude of the noise signals at a given point in time. For a waveform perfectly reconstructed from digital samples, the theoretical maximum SNR (EQ 14) is the ratio of the full-scale analog input (RMS value) to the RMS quantization error (residual error). The ideal, theoretical minimum ADC noise is caused by quantization error only and results directly from the ADC's resolution (N bits):

$$SNR_{dB[MAX]} = 6.02_{dB} \times N + 1.76_{dB}$$

EQ 14

SINAD – Signal-to-Noise and Distortion

SINAD is the ratio of the rms amplitude to the mean value of the root-sum-square of the all other spectral components, including harmonics, but excluding DC. SINAD is a good indication of the overall dynamic performance of an ADC because it includes all components which make up noise and distortion.

Total Harmonic Distortion

THD measures the distortion content of a signal, and is specified in decibels relative to the carrier (dBc). THD is the ratio of the RMS sum of the selected harmonics of the input signal to the fundamental itself. Only harmonics within the Nyquist limit are included in the measurement.

Intra-Conversion

Note: **t*_{CONV} represents the conversion time of the second conversion. See EQ 23 on page 2-109 for calculation of the conversion time, *t*_{CONV}.

Figure 2-92 • Intra-Conversion Timing Diagram

Injected Conversion

Note: *See EQ 23 on page 2-109 for calculation on the conversion time, t_{CONV}.

Figure 2-93 • Injected Conversion Timing Diagram

Table 2-50 • ADC Characteristics in Direct Input Mode (continued)

Commercial Temperature Range Conditions, $T_J = 85^{\circ}C$ (unless noted otherwise), Typical: VCC33A = 3.3 V, VCC = 1.5 V

Parameter	Description	Condition	Min.	Тур.	Max.	Units
Dynamic Pe	erformance					
SNR	Signal-to-Noise Ratio	8-bit mode	48.0	49.5		dB
		10-bit mode	58.0	60.0		dB
		12-bit mode	62.9	64.5		dB
SINAD	Signal-to-Noise Distortion	8-bit mode	47.6	49.5		dB
		10-bit mode	57.4	59.8		dB
		12-bit mode	62.0	64.2		dB
THD	Total Harmonic Distortion	8-bit mode		-74.4	-63.0	dBc
		10-bit mode		-78.3	-63.0	dBc
		12-bit mode		-77.9	-64.4	dBc
ENOB	Effective Number of Bits	8-bit mode	7.6	7.9		bits
		10-bit mode	9.5	9.6		bits
		12-bit mode	10.0	10.4		bits
Conversion	Rate					
	Conversion Time	8-bit mode	1.7			μs
		10-bit mode	1.8			μs
		12-bit mode	2			μs
	Sample Rate	8-bit mode			600	Ksps
		10-bit mode			550	Ksps
		12-bit mode			500	Ksps

Notes:

1. Accuracy of the external reference is 2.56 V \pm 4.6 mV.

2. Data is based on characterization.

3. The sample rate is time-shared among active analog inputs.

Hot-Swap Support

Hot-swapping (also called hot plugging) is the operation of hot insertion or hot removal of a card in (or from) a powered-up system. The levels of hot-swap support and examples of related applications are described in Table 2-74. The I/Os also need to be configured in hot insertion mode if hot plugging compliance is required.

Table 2-74 • Levels of Hot-Swap Support

Hot Swapping Level	Description	Power Applied to Device	Bus State	Card Ground Connection	Device Circuitry Connected to Bus Pins	Example of Application with Cards that Contain Fusion Devices	Compliance of Fusion Devices
1	Cold-swap	No	-	_	_	System and card with Microsemi FPGA chip are powered down, then card gets plugged into system, then power supplies are turned on for system but not for FPGA on card.	Compliant I/Os can but do not have to be set to hot insertion mode.
2	Hot-swap while reset	Yes	Held in reset state	Must be made and maintained for 1 ms before, during, and after insertion/ removal	_	In PCI hot plug specification, reset control circuitry isolates the card busses until the card supplies are at their nominal operating levels and stable.	Compliant I/Os can but do not have to be set to hot insertion mode.
3	Hot-swap while bus idle	Yes	Held idle (no ongoing I/O processes during insertion/re moval)	Same as Level 2	Must remain glitch-free during power-up or power-down	Board bus shared with card bus is "frozen," and there is no toggling activity on bus. It is critical that the logic states set on the bus signal do not get disturbed during card insertion/removal.	Compliant with cards with two levels of staging. I/Os have to be set to hot insertion mode.
4	Hot-swap on an active bus	Yes	Bus may have active I/O processes ongoing, but device being inserted or removed must be idle.	Same as Level 2	Same as Level 3	There is activity on the system bus, and it is critical that the logic states set on the bus signal do not get disturbed during card insertion/removal.	Compliant with cards with two levels of staging. I/Os have to be set to hot insertion mode.

Table 2-85 • Fusion Pro I/O Attributes vs. I/O Standard Applications

I/O Standards	SLEW (output only)	OUT_DRIVE (output only)	SKEW (all macros with OE)	RES_PULL	OUT_LOAD (output only)	COMBINE_REGISTER	IN_DELAY (input only)	IN_DELAY_VAL (input only)	SCHMITT_TRIGGER (input only)	HOT_SWAPPABLE
LVTTL/LVCMOS 3.3 V	3	3	3	3	3	3	3	3	3	3
LVCMOS 2.5 V	3	3	3	3	3	3	3	3	3	3
LVCMOS 2.5/5.0 V	3	3	3	3	3	3	3	3	3	3
LVCMOS 1.8 V	3	3	3	3	3	3	3	3	3	3
LVCMOS 1.5 V	3	3	3	3	3	3	3	3	3	3
PCI (3.3 V)			3		3	3	3	3		
PCI-X (3.3 V)	3		3		3	3	3	3		
GTL+ (3.3 V)			3		3	3	3	3		3
GTL+ (2.5 V)			3		3	3	3	3		3
GTL (3.3 V)			3		3	3	3	3		3
GTL (2.5 V)			3		3	3	3	3		3
HSTL Class I			3		3	3	3	3		3
HSTL Class II			3		3	3	3	3		3
SSTL2 Class I and II			3		3	3	3	3		3
SSTL3 Class I and II			3		3	3	3	3		3
LVDS, BLVDS, M-LVDS			3			3	3	3		3
LVPECL						3	3	3		3

Figure 2-116 • Input Buffer Timing Model and Delays (example)

SSTL3 Class II

Stub-Speed Terminated Logic for 3.3 V memory bus standard (JESD8-8). Fusion devices support Class II. This provides a differential amplifier input buffer and a push-pull output buffer.

SSTL3 Class II		VIL	IL VIH		VOL	VOH	IOL	IOH	IOSL	IOSH	IIL ¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
21 mA	-0.3	VREF – 0.2	VREF + 0.2	3.6	0.5	VCCI – 0.9	21	21	109	103	10	10

Table 2-165 • Minimum and Maximum DC Input and Output Levels

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

Figure 2-133 • AC Loading

Table 2-166 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	VTT (typ.) (V)	C _{LOAD} (pF)
VREF – 0.2	VREF + 0.2	1.5	1.5	1.485	30

Note: *Measuring point = Vtrip. See Table 2-90 on page 2-166 for a complete table of trip points.

Timing Characteristics

Table 2-167 • SSTL3- Class II Commercial Temperature Range Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V, VREF = 1.5 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	0.66	2.07	0.04	1.25	0.43	2.10	1.67			4.34	3.91	ns
-1	0.56	1.76	0.04	1.06	0.36	1.79	1.42			3.69	3.32	ns
-2	0.49	1.54	0.03	0.93	0.32	1.57	1.25			3.24	2.92	ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

Output DDR

Figure 2-144 • Output DDR Timing Model

Table 2-181 • Parameter Definitions

Parameter Name	Parameter Definition	Measuring Nodes (From, To)
t _{DDROCLKQ}	Clock-to-Out	B, E
DDROCLR2Q Asynchronous Clear-to-Out		C, E
t _{DDROREMCLR}	Clear Removal	С, В
t _{DDRORECCLR}	Clear Recovery	С, В
t _{DDROSUD1}	Data Setup Data_F	A, B
t _{DDROSUD2}	Data Setup Data_R	D, B
t _{DDROHD1}	Data Hold Data_F	А, В
t _{DDROHD2}	Data Hold Data_R	D, B

XTAL2 Crystal Oscillator Circuit Input

Input to crystal oscillator circuit. Pin for connecting external crystal, ceramic resonator, RC network, or external clock input. When using an external crystal or ceramic oscillator, external capacitors are also recommended (Please refer to the crystal oscillator manufacturer for proper capacitor value).

If using external RC network or clock input, XTAL1 should be used and XTAL2 left unconnected. In the case where the Crystal Oscillator block is not used, the XTAL1 pin should be connected to GND and the XTAL2 pin should be left floating.

Security

Fusion devices have a built-in 128-bit AES decryption core. The decryption core facilitates highly secure, in-system programming of the FPGA core array fabric and the FlashROM. The FlashROM and the FPGA core fabric can be programmed independently from each other, allowing the FlashROM to be updated without the need for change to the FPGA core fabric. The AES master key is stored in on-chip nonvolatile memory (flash). The AES master key can be preloaded into parts in a security-protected programming environment (such as the Microsemi in-house programming center), and then "blank" parts can be shipped to an untrusted programming or manufacturing center for final personalization with an AES-encrypted bitstream. Late stage product changes or personalization can be implemented easily and with high level security by simply sending a STAPL file with AES-encrypted data. Highly secure remote field updates over public networks (such as the Internet) are possible by sending and programming a STAPL file with AES-encrypted data. For more information, refer to the *Fusion Security* application note.

128-Bit AES Decryption

The 128-bit AES standard (FIPS-197) block cipher is the National Institute of Standards and Technology (NIST) replacement for DES (Data Encryption Standard FIPS46-2). AES has been designed to protect sensitive government information well into the 21st century. It replaces the aging DES, which NIST adopted in 1977 as a Federal Information Processing Standard used by federal agencies to protect sensitive, unclassified information. The 128-bit AES standard has 3.4 × 10³⁸ possible 128-bit key variants, and it has been estimated that it would take 1,000 trillion years to crack 128-bit AES cipher text using exhaustive techniques. Keys are stored (protected with security) in Fusion devices in nonvolatile flash memory. All programming files sent to the device can be authenticated by the part prior to programming to ensure that bad programming data is not loaded into the part that may possibly damage it. All programming verification is performed on-chip, ensuring that the contents of Fusion devices remain as secure as possible.

AES decryption can also be used on the 1,024-bit FlashROM to allow for remote updates of the FlashROM contents. This allows for easy support of subscription model products and protects them with measures designed to provide the highest level of security available. See the application note *Fusion Security* for more details.

AES for Flash Memory

AES decryption can also be used on the flash memory blocks. This provides the best available security during update of the flash memory blocks. During runtime, the encrypted data can be clocked in via the JTAG interface. The data can be passed through the internal AES decryption engine, and the decrypted data can then be stored in the flash memory block.

Programming

Programming can be performed using various programming tools, such as Silicon Sculptor II (BP Micro Systems) or FlashPro3 (Microsemi).

The user can generate STP programming files from the Designer software and can use these files to program a device.

Fusion devices can be programmed in-system. During programming, VCCOSC is needed in order to power the internal 100 MHz oscillator. This oscillator is used as a source for the 20 MHz oscillator that is used to drive the charge pump for programming.

Symbol	Parameter ²		Commercial	Industrial	Units
Τ _J	Junction temperature		0 to +85	-40 to +100	°C
VCC	1.5 V DC core supply voltage		1.425 to 1.575	1.425 to 1.575	V
VJTAG	JTAG DC voltage		1.4 to 3.6	1.4 to 3.6	V
VPUMP	Programming voltage	Programming mode ³	3.15 to 3.45	3.15 to 3.45	V
		Operation ⁴	0 to 3.6	0 to 3.6	V
VCCPLL	Analog power supply (PLL)		1.425 to 1.575	1.425 to 1.575	V
VCCI	1.5 V DC supply voltage		1.425 to 1.575	1.425 to 1.575	V
	1.8 V DC supply voltage		1.7 to 1.9	1.7 to 1.9	V
	2.5 V DC supply voltage		2.3 to 2.7	2.3 to 2.7	V
	3.3 V DC supply voltage		3.0 to 3.6	3.0 to 3.6	V
	LVDS differential I/O		2.375 to 2.625	2.375 to 2.625	V
	LVPECL differential I/O		3.0 to 3.6	3.0 to 3.6	V
VCC33A	+3.3 V power supply		2.97 to 3.63	2.97 to 3.63	V
VCC33PMP	+3.3 V power supply		2.97 to 3.63	2.97 to 3.63	V
VAREF	Voltage reference for ADC		2.527 to 2.593	2.527 to 2.593	V
VCC15A ⁵	Digital power supply for the analog	system	1.425 to 1.575	1.425 to 1.575	V
VCCNVM	Embedded flash power supply		1.425 to 1.575	1.425 to 1.575	V
VCCOSC	Oscillator power supply		2.97 to 3.63	2.97 to 3.63	V
AV, AC ⁶	Unpowered, ADC reset asserted or	unconfigured	-10.5 to 12.0	-10.5 to 11.6	V
	Analog input (+16 V to +2 V presca	ller range)	-0.3 to 12.0	–0.3 to 11.6	V
	Analog input (+1 V to + 0.125 V pre	escaler range)	-0.3 to 3.6	-0.3 to 3.6	V
	Analog input (–16 V to –2 V presca	ler range)	-10.5 to 0.3	-10.5 to 0.3	V
	Analog input (–1 V to –0.125 V pres	scaler range)	-3.6 to 0.3	-3.6 to 0.3	V
	Analog input (direct input to ADC)		-0.3 to 3.6	-0.3 to 3.6	V
	Digital input		-0.3 to 12.0	–0.3 to 11.6	V
AG ⁶	Unpowered, ADC reset asserted or	unconfigured	-10.5 to 12.0	-10.5 to 11.6	V
	Low Current Mode (1 µA, 3 µA, 10	μΑ, 30 μΑ)	-0.3 to 12.0	–0.3 to 11.6	V
	Low Current Mode (–1 µA, –3 µA, -	–10 μA, –30 μA)	-10.5 to 0.3	-10.5 to 0.3	V
	High Current Mode ⁷		-10.5 to 12.0	-10.5 to 11.6	V
AT ⁶	Unpowered, ADC reset asserted or	unconfigured	-0.3 to 15.5	–0.3 to 14.5	V
	Analog input (+16 V, +4 V prescale	r range)	-0.3 to 15.5	–0.3 to 14.5	V
	Analog input (direct input to ADC)		-0.3 to 3.6	-0.3 to 3.6	V
	Digital input		-0.3 to 15.5	-0.3 to 14.5	V

Table 3-2 • Recommended Operating Conditions¹

Notes:

1. The ranges given here are for power supplies only. The recommended input voltage ranges specific to each I/O standard are given in Table 2-85 on page 2-157.

- 2. All parameters representing voltages are measured with respect to GND unless otherwise specified.
- 3. The programming temperature range supported is $T_{ambient} = 0^{\circ}C$ to 85°C.
- 4. VPUMP can be left floating during normal operation (not programming mode).
- 5. Violating the V_{CC15A} recommended voltage supply during an embedded flash program cycle can corrupt the page being programmed.
- 6. The input voltage may overshoot by up to 500 mV above the Recommended Maximum (150 mV in Direct mode), provided the duration of the overshoot is less than 50% of the operating lifetime of the device.
- 7. The AG pad should also conform to the limits as specified in Table 2-48 on page 2-114.

The 1.76 W power is less than the required 3.00 W. The design therefore requires a heat sink, or the airflow where the device is mounted should be increased. The design's total junction-to-air thermal resistance requirement can be estimated by EQ 7:

$$\theta_{ja(total)} = \frac{T_J - T_A}{P} = \frac{100^{\circ}C - 70^{\circ}C}{3.00 W} = 10.00^{\circ}C/W$$

Determining the heat sink's thermal performance proceeds as follows:

$$\theta_{\text{JA(TOTAL)}} = \theta_{\text{JC}} + \theta_{\text{CS}} + \theta_{\text{SA}}$$

EQ 8

EQ 7

where

- $\theta_{JA} = 0.37^{\circ}C/W$
 - Thermal resistance of the interface material between the case and the heat sink, usually provided by the thermal interface manufacturer

 θ_{SA} = Thermal resistance of the heat sink in °C/W

$$\theta_{SA} = \theta_{JA(TOTAL)} - \theta_{JC} - \theta_{CS}$$

EQ 9

$$\theta_{SA} = 13.33^{\circ}C/W - 8.28^{\circ}C/W - 0.37^{\circ}C/W = 5.01^{\circ}C/W$$

A heat sink with a thermal resistance of 5.01°C/W or better should be used. Thermal resistance of heat sinks is a function of airflow. The heat sink performance can be significantly improved with increased airflow.

Carefully estimating thermal resistance is important in the long-term reliability of an Microsemi FPGA. Design engineers should always correlate the power consumption of the device with the maximum allowable power dissipation of the package selected for that device.

Note: The junction-to-air and junction-to-board thermal resistances are based on JEDEC standard (JESD-51) and assumptions made in building the model. It may not be realized in actual application and therefore should be used with a degree of caution. Junction-to-case thermal resistance assumes that all power is dissipated through the case.

Temperature and Voltage Derating Factors

Table 3-7 • Temperature and Voltage Derating Factors for Timing Delays
(normalized to $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V)

Array Voltage	Junction Temperature (°C)								
VCC (V)	–40°C	0°C	25°C	70°C	85°C	100°C			
1.425	0.88	0.93	0.95	1.00	1.02	1.05			
1.500	0.83	0.88	0.90	0.95	0.96	0.99			
1.575	0.80	0.85	0.87	0.91	0.93	0.96			

Dynamic Power Consumption of Various Internal Resources

Table 3-14 • Different Components Contributing to the Dynamic Power Consumption in Fusion Devices

		Device-Specific Power Supply Dynamic Contributions			6			
Parameter	Definition	Name	Setting	AFS1500	AFS600	AFS250	AFS090	Units
PAC1	Clock contribution of a Global Rib	VCC	1.5 V	14.5	12.8	11	11	µW/MHz
PAC2	Clock contribution of a Global Spine	VCC	1.5 V	2.5	1.9	1.6	0.8	µW/MHz
PAC3	Clock contribution of a VersaTile row	VCC	1.5 V		0.8	1		µW/MHz
PAC4	Clock contribution of a VersaTile used as a sequential module	VCC	1.5 V		0.1	1		µW/MHz
PAC5	First contribution of a VersaTile used as a sequential module	VCC	1.5 V		0.0	7		µW/MHz
PAC6	Second contribution of a VersaTile used as a sequential module	VCC	1.5 V		0.2	9		µW/MHz
PAC7	Contribution of a VersaTile used as a combinatorial module	VCC	1.5 V		0.2	9		µW/MHz
PAC8	Average contribution of a routing net	VCC	1.5 V	0.70				µW/MHz
PAC9	Contribution of an I/O input pin (standard dependent)	VCCI		See	Table 3-12	on page 3	-18	
PAC10	Contribution of an I/O output pin (standard dependent)	VCCI		See	Table 3-13	on page 3	-20	
PAC11	Average contribution of a RAM block during a read operation	VCC	1.5 V		25	5		µW/MHz
PAC12	Average contribution of a RAM block during a write operation	VCC	1.5 V		30)		µW/MHz
PAC13	Dynamic Contribution for PLL	VCC	1.5 V		2.6	6		µW/MHz
PAC15	Contribution of NVM block during a read operation (F < $33MHz$)	VCC	1.5 V		35	8		µW/MHz
PAC16	1st contribution of NVM block during a read operation (F > 33 MHz)	VCC	1.5 V		12.8	38		mW
PAC17	2nd contribution of NVM block during a read operation (F > 33 MHz)	VCC	1.5 V		4.8	3		µW/MHz
PAC18	Crystal Oscillator contribution	VCC33A	3.3 V		0.6	3		mW
PAC19	RC Oscillator contribution	VCC33A	3.3 V		3.3	3		mW
PAC20	Analog Block dynamic power contribution of ADC	VCC	1.5 V		3			mW

Package Pin Assignments

	QN180		QN180		
Pin Number	AFS090 Function	AFS250 Function	Pin Number	AFS090 Function	AFS250 Function
A1	GNDQ	GNDQ	A37	VPUMP	VPUMP
A2	VCCIB3	VCCIB3	A38	TDI	TDI
A3	GAB2/IO52NDB3V0	IO74NDB3V0	A39	TDO	TDO
A4	GFA2/IO51NDB3V0	IO71NDB3V0	A40	VJTAG	VJTAG
A5	GFC2/IO50NDB3V0	IO69NPB3V0	A41	GDB1/IO39PPB1V0	GDA1/IO54PPB1V0
A6	VCCIB3	VCCIB3	A42	GDC1/IO38PDB1V0	GDB1/IO53PDB1V0
A7	GFA1/IO47PPB3V0	GFB1/IO67PPB3V0	A43	VCC	VCC
A8	GEB0/IO45NDB3V0	NC	A44	GCB0/IO35NPB1V0	GCB0/IO48NPB1V0
A9	XTAL1	XTAL1	A45	GCC1/IO34PDB1V0	GCC1/IO47PDB1V0
A10	GNDOSC	GNDOSC	A46	VCCIB1	VCCIB1
A11	GEC2/IO43PPB3V0	GEA1/IO61PPB3V0	A47	GBC2/IO32PPB1V0	GBB2/IO41PPB1V0
A12	IO43NPB3V0	GEA0/IO61NPB3V0	A48	VCCIB1	VCCIB1
A13	NC	VCCIB3	A49	NC	NC
A14	GNDNVM	GNDNVM	A50	GBA0/IO29RSB0V0	GBB1/IO37RSB0V0
A15	PCAP	PCAP	A51	VCCIB0	VCCIB0
A16	VCC33PMP	VCC33PMP	A52	GBB0/IO27RSB0V0	GBC0/IO34RSB0V0
A17	NC	NC	A53	GBC1/IO26RSB0V0	IO33RSB0V0
A18	AV0	AV0	A54	IO24RSB0V0	IO29RSB0V0
A19	AG0	AG0	A55	IO21RSB0V0	IO26RSB0V0
A20	ATRTN0	ATRTN0	A56	VCCIB0	VCCIB0
A21	AG1	AG1	A57	IO15RSB0V0	IO21RSB0V0
A22	AC1	AC1	A58	IO10RSB0V0	IO13RSB0V0
A23	AV2	AV2	A59	IO07RSB0V0	IO10RSB0V0
A24	AT2	AT2	A60	GAC0/IO04RSB0V0	IO06RSB0V0
A25	AT3	AT3	A61	GAB1/IO03RSB0V0	GAC1/IO05RSB0V0
A26	AC3	AC3	A62	VCC	VCC
A27	AV4	AV4	A63	GAA1/IO01RSB0V0	GAB0/IO02RSB0V0
A28	AC4	AC4	A64	NC	NC
A29	AT4	AT4	B1	VCOMPLA	VCOMPLA
A30	NC	AG5	B2	GAA2/IO52PDB3V0	GAC2/IO74PDB3V0
A31	NC	AV5	B3	GAC2/IO51PDB3V0	GFA2/IO71PDB3V0
A32	ADCGNDREF	ADCGNDREF	B4	GFB2/IO50PDB3V0	GFB2/IO70PSB3V0
A33	VCC33A	VCC33A	B5	VCC	VCC
A34	GNDA	GNDA	B6	GFC0/IO49NDB3V0	GFC0/IO68NDB3V0
A35	PTBASE	PTBASE	B7	GEB1/IO45PDB3V0	NC
A36	VCCNVM	VCCNVM	B8	VCCOSC	VCCOSC

PQ208

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/default.aspx.

Package Pin Assignments

	FG484			FG484		
Pin Number	AFS600 Function	AFS1500 Function	Pin Number	AFS600 Function	AFS1500 Function	
L17	VCCIB2	VCCIB2	N8	GND	GND	
L18	IO46PDB2V0	IO69PDB2V0	N9	GND	GND	
L19	GCA1/IO45PDB2V0	GCA1/IO64PDB2V0	N10	VCC	VCC	
L20	VCCIB2	VCCIB2	N11	GND	GND	
L21	GCC0/IO43NDB2V0	GCC0/IO62NDB2V0	N12	VCC	VCC	
L22	GCC1/IO43PDB2V0	GCC1/IO62PDB2V0	N13	GND	GND	
M1	NC	IO103PDB4V0	N14	VCC	VCC	
M2	XTAL1	XTAL1	N15	GND	GND	
M3	VCCIB4	VCCIB4	N16	GDB2/IO56PDB2V0	GDB2/IO83PDB2V0	
M4	GNDOSC	GNDOSC	N17	NC	IO78PDB2V0	
M5	GFC0/IO72NDB4V0	GFC0/IO107NDB4V0	N18	GND	GND	
M6	VCCIB4	VCCIB4	N19	IO47NDB2V0	IO72NDB2V0	
M7	GFB0/IO71NDB4V0	GFB0/IO106NDB4V0	N20	IO47PDB2V0	IO72PDB2V0	
M8	VCCIB4	VCCIB4	N21	GND	GND	
M9	VCC	VCC	N22	IO49PDB2V0	IO71PDB2V0	
M10	GND	GND	P1	GFA1/IO70PDB4V0	GFA1/IO105PDB4V0	
M11	VCC	VCC	P2	GFA0/IO70NDB4V0	GFA0/IO105NDB4V0	
M12	GND	GND	P3	IO68NDB4V0	IO101NDB4V0	
M13	VCC	VCC	P4	IO65PDB4V0	IO96PDB4V0	
M14	GND	GND	P5	IO65NDB4V0	IO96NDB4V0	
M15	VCCIB2	VCCIB2	P6	NC	IO99NDB4V0	
M16	IO48NDB2V0	IO70NDB2V0	P7	NC	IO97NDB4V0	
M17	VCCIB2	VCCIB2	P8	VCCIB4	VCCIB4	
M18	IO46NDB2V0	IO69NDB2V0	P9	VCC	VCC	
M19	GCA0/IO45NDB2V0	GCA0/IO64NDB2V0	P10	GND	GND	
M20	VCCIB2	VCCIB2	P11	VCC	VCC	
M21	GCB0/IO44NDB2V0	GCB0/IO63NDB2V0	P12	GND	GND	
M22	GCB1/IO44PDB2V0	GCB1/IO63PDB2V0	P13	VCC	VCC	
N1	NC	IO103NDB4V0	P14	GND	GND	
N2	GND	GND	P15	VCCIB2	VCCIB2	
N3	IO68PDB4V0	IO101PDB4V0	P16	IO56NDB2V0	IO83NDB2V0	
N4	NC	IO100NPB4V0	P17	NC	IO78NDB2V0	
N5	GND	GND	P18	GDA1/IO54PDB2V0	GDA1/IO81PDB2V0	
N6	NC	IO99PDB4V0	P19	GDB1/IO53PDB2V0	GDB1/IO80PDB2V0	
N7	NC	IO97PDB4V0	P20	IO51NDB2V0	IO73NDB2V0	

Fusion Family of Mixed Signal FPGAs

FG676			FG676	FG676		
Pin Number	AFS1500 Function	Pin Number	AFS1500 Function	Pin Number	AFS1500 Function	
R21	IO72NDB2V0	U5	VCCIB4	V15	AC5	
R22	IO72PDB2V0	U6	IO91PDB4V0	V16	NC	
R23	GND	U7	IO91NDB4V0	V17	GNDA	
R24	IO71PDB2V0	U8	IO92PDB4V0	V18	IO77PPB2V0	
R25	VCCIB2	U9	GND	V19	IO74PDB2V0	
R26	IO67NDB2V0	U10	GND	V20	VCCIB2	
T1	GND	U11	VCC33A	V21	IO82NDB2V0	
T2	NC	U12	GNDA	V22	GDA2/IO82PDB2V0	
Т3	GFA1/IO105PDB4V0	U13	VCC33A	V23	GND	
T4	GFA0/IO105NDB4V0	U14	GNDA	V24	GDC1/IO79PDB2V0	
T5	IO101NDB4V0	U15	VCC33A	V25	VCCIB2	
Т6	IO96PDB4V0	U16	GNDA	V26	NC	
Τ7	IO96NDB4V0	U17	VCC	W1	GND	
Т8	IO99NDB4V0	U18	GND	W2	IO94PPB4V0	
Т9	IO97NDB4V0	U19	IO74NDB2V0	W3	IO98PDB4V0	
T10	VCCIB4	U20	GDA0/IO81NDB2V0	W4	IO98NDB4V0	
T11	VCC	U21	GDB0/IO80NDB2V0	W5	GEC1/IO90PDB4V0	
T12	GND	U22	VCCIB2	W6	GEC0/IO90NDB4V0	
T13	VCC	U23	IO75NDB2V0	W7	GND	
T14	GND	U24	IO75PDB2V0	W8	VCCNVM	
T15	VCC	U25	NC	W9	VCCIB4	
T16	GND	U26	NC	W10	VCC15A	
T17	VCCIB2	V1	NC	W11	GNDA	
T18	IO83NDB2V0	V2	VCCIB4	W12	AC4	
T19	IO78NDB2V0	V3	IO100PPB4V0	W13	VCC33A	
T20	GDA1/IO81PDB2V0	V4	GND	W14	GNDA	
T21	GDB1/IO80PDB2V0	V5	IO95PDB4V0	W15	AG5	
T22	IO73NDB2V0	V6	IO95NDB4V0	W16	GNDA	
T23	IO73PDB2V0	V7	VCCIB4	W17	PUB	
T24	IO71NDB2V0	V8	IO92NDB4V0	W18	VCCIB2	
T25	NC	V9	GNDNVM	W19	TDI	
T26	GND	V10	GNDA	W20	GND	
U1	NC	V11	NC	W21	IO84NDB2V0	
U2	NC	V12	AV4	W22	GDC2/IO84PDB2V0	
U3	IO102PDB4V0	V13	NC	W23	IO77NPB2V0	
U4	IO102NDB4V0	V14	AV5	W24	GDC0/IO79NDB2V0	

Fusion Family of Mixed Signal FPGAs

Revision	Changes	Page		
Advance v0.3	The "Temperature Monitor" section was updated.			
(continued)	EQ 2 is new.			
	The "ADC Description" section was updated.			
	Figure 2-16 • Fusion Clocking Options was updated.	2-20		
	Table 2-46 · Analog Channel Specifications was updated.	2-118		
	The notes in Table 2-72 • Fusion Standard and Advanced I/O – Hot-Swap and 5 V Input Tolerance Capabilities were updated.	2-144		
	The "Simultaneously Switching Outputs and PCB Layout" section is new.	2-149		
	LVPECL and LVDS were updated in Table 2-81 • Fusion Standard and Advanced I/O Attributes vs. I/O Standard Applications.	2-157		
	LVPECL and LVDS were updated in Table 2-82 • Fusion Pro I/O Attributes vs. I/O Standard Applications.	2-158		
	The "Timing Model" was updated.	2-161		
	All voltage-referenced Minimum and Maximum DC Input and Output Level tables were updated.	N/A		
	All Timing Characteristic tables were updated	N/A		
	Table 2-83 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial Conditions was updated.	2-165		
	Table 2-79 • Summary of I/O Timing Characteristics – Software Default Settings was updated.	2-134		
	Table 2-93 • I/O Output Buffer Maximum Resistances ¹ was updated.	2-171		
	The "BLVDS/M-LVDS" section is new. BLVDS and M-LVDS are two new I/O standards included in the datasheet.	2-211		
	The "CoreMP7 and Cortex-M1 Software Tools" section is new.	2-257		
	Table 2-83 • Summary of Maximum and Minimum DC Input and Output LevelsApplicable to Commercial and Industrial Conditions was updated.	2-165		
	Table 2-79 • Summary of I/O Timing Characteristics – Software Default Settings was updated.	2-134		
	Table 2-93 • I/O Output Buffer Maximum Resistances ¹ was updated.	2-171		
	The "BLVDS/M-LVDS" section is new. BLVDS and M-LVDS are two new I/O standards included in the datasheet.	2-211		
	The "108-Pin QFN" table for the AFS090 device is new.	3-2		
	The "180-Pin QFN" table for the AFS090 device is new.	3-4		
	The "208-Pin PQFP" table for the AFS090 device is new.	3-8		
	The "256-Pin FBGA" table for the AFS090 device is new.	3-12		
	The "256-Pin FBGA" table for the AFS250 device is new.	3-12		

Microsemi Corporate Headquarters One Enterprise, Aliso Viejo CA 92656 USA Within the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996 Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semiconductor solutions for: aerospace, defense and security; enterprise and communications; and industrial and alternative energy markets. Products include high-performance, high-reliability analog and RF devices, mixed signal and RF integrated circuits, customizable SoCs, FPGAs, and complete subsystems. Microsemi is headquartered in Aliso Viejo, Calif. Learn more at **www.microsemi.com**.

© 2014 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.