

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	
Number of Logic Elements/Cells	·
Total RAM Bits	276480
Number of I/O	223
Number of Gates	1500000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	484-BGA
Supplier Device Package	484-FPBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/afs1500-2fg484

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Fusion Device Architecture Overview

Figure 1 • Fusion Device Architecture Overview (AFS600)

Package I/Os: Single-/Double-Ended (Analog)

Fusion Devices	AFS090	AFS250	AFS600	AFS1500
ARM Cortex-M1 Devices		M1AFS250	M1AFS600	M1AFS1500
Pigeon Point Devices			P1AFS600 ¹	P1AFS1500 ¹
MicroBlade Devices		U1AFS250 ²	U1AFS600 ²	U1AFS1500 ²
QN108 ³	37/9 (16)			
QN180 ³	60/16 (20)	65/15 (24)		
PQ208 ⁴		93/26 (24)	95/46 (40)	
FG256	75/22 (20)	114/37 (24)	119/58 (40)	119/58 (40)
FG484			172/86 (40)	223/109 (40)
FG676				252/126 (40)
Notes:	•	1		•

1. Pigeon Point devices are only offered in FG484 and FG256.

2. MicroBlade devices are only offered in FG256.

3. Package not available.

4. Fusion devices in the same package are pin compatible with the exception of the PQ208 package (AFS250 and AFS600).

Figure 2-6 • Sequential Timing Model and Waveforms

Sequential Timing Characteristics

Table 2-2 • Register Delays
Commercial Temperature Range Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{CLKQ}	Clock-to-Q of the Core Register	0.55	0.63	0.74	ns
t _{SUD}	Data Setup Time for the Core Register	0.43	0.49	0.57	ns
t _{HD}	Data Hold Time for the Core Register	0.00	0.00	0.00	ns
t _{SUE}	Enable Setup Time for the Core Register	0.45	0.52	0.61	ns
t _{HE}	Enable Hold Time for the Core Register	0.00	0.00	0.00	ns
t _{CLR2Q}	Asynchronous Clear-to-Q of the Core Register	0.40	0.45	0.53	ns
t _{PRE2Q}	Asynchronous Preset-to-Q of the Core Register	0.40	0.45	0.53	ns
t _{REMCLR}	Asynchronous Clear Removal Time for the Core Register	0.00	0.00	0.00	ns
t _{RECCLR}	Asynchronous Clear Recovery Time for the Core Register	0.22	0.25	0.30	ns
t _{REMPRE}	Asynchronous Preset Removal Time for the Core Register	0.00	0.00	0.00	ns
t _{RECPRE}	Asynchronous Preset Recovery Time for the Core Register	0.22	0.25	0.30	ns
t _{WCLR}	Asynchronous Clear Minimum Pulse Width for the Core Register	0.22	0.25	0.30	ns
t _{WPRE}	Asynchronous Preset Minimum Pulse Width for the Core Register	0.22	0.25	0.30	ns
t _{CKMPWH}	Clock Minimum Pulse Width High for the Core Register	0.32	0.37	0.43	ns
t _{CKMPWL}	Clock Minimum Pulse Width Low for the Core Register	0.36	0.41	0.48	ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

Global Resource Characteristics

AFS600 VersaNet Topology

Clock delays are device-specific. Figure 2-15 is an example of a global tree used for clock routing. The global tree presented in Figure 2-15 is driven by a CCC located on the west side of the AFS600 device. It is used to drive all D-flip-flops in the device.

Figure 2-15 • Example of Global Tree Use in an AFS600 Device for Clock Routing

Global Buffers with No Programmable Delays

The CLKBUF and CLKBUF_LVPECL/LVDS macros are composite macros that include an I/O macro driving a global buffer, hardwired together (Figure 2-20).

The CLKINT macro provides a global buffer function driven by the FPGA core.

The CLKBUF, CLKBUF_LVPECL/LVDS, and CLKINT macros are pass-through clock sources and do not use the PLL or provide any programmable delay functionality.

Many specific CLKBUF macros support the wide variety of single-ended and differential I/O standards supported by Fusion devices. The available CLKBUF macros are described in the *IGLOO*, *ProASIC3*, *SmartFusion and Fusion Macro Library Guide*.

Clock Source		Clock Conditioning	Output
			GLA
CLKBUF_LVDS/LVPECL Macro CLKBUF Macro	CLKINT Macro		or
		None	GLB
			or
			GLC

Figure 2-20 • Global Buffers with No Programmable Delay

Global Buffers with Programmable Delay

The CLKDLY macro is a pass-through clock source that does not use the PLL, but provides the ability to delay the clock input using a programmable delay (Figure 2-21 on page 2-25). The CLKDLY macro takes the selected clock input and adds a user-defined delay element. This macro generates an output clock phase shift from the input clock.

The CLKDLY macro can be driven by an INBUF macro to create a composite macro, where the I/O macro drives the global buffer (with programmable delay) using a hardwired connection. In this case, the I/O must be placed in one of the dedicated global I/O locations.

Many specific INBUF macros support the wide variety of single-ended and differential I/O standards supported by the Fusion family. The available INBUF macros are described in the *IGLOO*, *ProASIC3*, *SmartFusion and Fusion Macro Library Guide*.

The CLKDLY macro can be driven directly from the FPGA core.

The CLKDLY macro can also be driven from an I/O that is routed through the FPGA regular routing fabric. In this case, users must instantiate a special macro, PLLINT, to differentiate from the hardwired I/O connection described earlier.

The visual CLKDLY configuration in the SmartGen part of the Libero SoC and Designer tools allows the user to select the desired amount of delay and configures the delay elements appropriately. SmartGen also allows the user to select the input clock source. SmartGen will automatically instantiate the special macro, PLLINT, when needed.

Flash Memory Block Addressing

Figure 2-34 shows a graphical representation of the flash memory block.

Figure 2-34 • Flash Memory Block Organization

Each FB is partitioned into sectors, pages, blocks, and bytes. There are 64 sectors in an FB, and each sector contains 32 pages and 1 spare page. Each page contains 8 data blocks and 1 auxiliary block. Each data block contains 16 bytes of user data, and the auxiliary block contains 4 bytes of user data. Addressing for the FB is shown in Table 2-20.

Table 2-20 • FB Address Bit Allocation ADDR[17:0]

17	12	11	7	6	4	3	0
Sec	ctor	Pa	ge	Blo	ock	Ву	/te

When the spare page of a sector is addressed (SPAREPAGE active), ADDR[11:7] are ignored.

When the Auxiliary block is addressed (AUXBLOCK active), ADDR[6:2] are ignored.

Note: The spare page of sector 0 is unavailable for any user data. Writes to this page will return an error, and reads will return all zeroes.

Table 2-25 • Flash Memory Block Timing (continued)Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{SUPGLOSSPRO}	Page Loss Protect Setup Time for the Control Logic	1.69	1.93	2.27	ns
t _{HDPGLOSSPRO}	Page Loss Protect Hold Time for the Control Logic	0.00	0.00	0.00	ns
t _{SUPGSTAT}	Page Status Setup Time for the Control Logic	2.49	2.83	3.33	ns
t _{HDPGSTAT}	Page Status Hold Time for the Control Logic	0.00	0.00	0.00	ns
t _{SUOVERWRPG}	Over Write Page Setup Time for the Control Logic	1.88	2.14	2.52	ns
t _{HDOVERWRPG}	Over Write Page Hold Time for the Control Logic	0.00	0.00	0.00	ns
t _{SULOCKREQUEST}	Lock Request Setup Time for the Control Logic	0.87	0.99	1.16	ns
t _{HDLOCKREQUEST}	Lock Request Hold Time for the Control Logic	0.00	0.00	0.00	ns
t _{RECARNVM}	RNVM Reset Recovery Time			1.25	ns
t _{REMARNVM}	Reset Removal Time	0.00	0.00	0.00	ns
t _{mpwarnvm}	Asynchronous Reset Minimum Pulse Width for the Control Logic		12.50	12.50	ns
t _{MPWCLKNVM}	Clock Minimum Pulse Width for the Control Logic	4.00	5.00	5.00	ns
+	Maximum Frequency for Clock for the Control Logic – for AFS1500/AFS600	80.00	80.00	80.00	MHz
'FMAXCLKNVM	Maximum Frequency for Clock for the Control Logic – for AFS250/AFS090	100.00	80.00	80.00	MHz

FlashROM

Fusion devices have 1 kbit of on-chip nonvolatile flash memory that can be read from the FPGA core fabric. The FlashROM is arranged in eight banks of 128 bits during programming. The 128 bits in each bank are addressable as 16 bytes during the read-back of the FlashROM from the FPGA core (Figure 2-45).

The FlashROM can only be programmed via the IEEE 1532 JTAG port. It cannot be programmed directly from the FPGA core. When programming, each of the eight 128-bit banks can be selectively reprogrammed. The FlashROM can only be reprogrammed on a bank boundary. Programming involves an automatic, on-chip bank erase prior to reprogramming the bank. The FlashROM supports a synchronous read and can be read on byte boundaries. The upper three bits of the FlashROM address from the FPGA core define the bank that is being accessed. The lower four bits of the FlashROM address from the FPGA core define which of the 16 bytes in the bank is being accessed.

The maximum FlashROM access clock is given in Table 2-26 on page 2-54. Figure 2-46 shows the timing behavior of the FlashROM access cycle—the address has to be set up on the rising edge of the clock for DOUT to be valid on the next falling edge of the clock.

If the address is unchanged for two cycles:

- D0 becomes invalid t_{CK2Q} ns after the second rising edge of the clock.
- D0 becomes valid again t_{CK2Q} ns after the second falling edge.

If the address unchanged for three cycles:

- D0 becomes invalid t_{CK2Q} ns after the second rising edge of the clock.
- D0 becomes valid again t_{CK2Q} ns after the second falling edge.
- D0 becomes invalid t_{CK2Q} ns after the third rising edge of the clock.
- D0 becomes valid again t_{CK2Q} ns after the third falling edge.

The rate at which the gate voltage of the external MOSFET slews is determined by the current, I_g , sourced or sunk by the AG pin and the gate-to-source capacitance, C_{GS} , of the external MOSFET. As an approximation, the slew rate is given by EQ 6.

$$dv/dt = I_g / C_{GS}$$

EQ 6

 C_{GS} is not a fixed capacitance but, depending on the circuitry connected to its drain terminal, can vary significantly during the course of a turn-on or turn-off transient. Thus, EQ 6 on page 2-91 can only be used for a first-order estimate of the switching speed of the external MOSFET.

Figure 2-75 • Gate Driver Example

Integrated Voltage Reference

The Fusion device has an integrated on-chip 2.56 V reference voltage for the ADC. The value of this reference voltage was chosen to make the prescaling and postscaling factors for the prescaler blocks change in a binary fashion. However, if desired, an external reference voltage of up to 3.3 V can be connected between the VAREF and ADCGNDREF pins. The VAREFSEL control pin is used to select the reference voltage.

Table 2-42 • VAREF Bit Function

Name	Bit	Function
VAREF	0	Reference voltage selection
		0 – Internal voltage reference selected. VAREF pin outputs 2.56 V.
		1 – Input external voltage reference from VAREF and ADCGNDREF

ADC Clock

The speed of the ADC depends on its internal clock, ADCCLK, which is not accessible to users. The ADCCLK is derived from SYSCLK. Input signal TVC[7:0], Time Divider Control, determines the speed of the ADCCLK in relationship to SYSCLK, based on EQ 15.

$$t_{ADCCLK} = 4 \times (1 + TVC) \times t_{SYSCLK}$$

EQ 15

TVC: Time Divider Control (0-255)

 t_{ADCCLK} is the period of ADCCLK, and must be between 0.5 MHz and 10 MHz t_{SYSCLK} is the period of SYSCLK

Table 2-43 • TVC Bits Function

Name	Bits	Function
TVC	[7:0]	SYSCLK divider control

The frequency of ADCCLK, f_{ADCCLK}, must be within 0.5 Hz to 10 MHz.

The inputs to the ADC are synchronized to SYSCLK. A conversion is initiated by asserting the ADCSTART signal on a rising edge of SYSCLK. Figure 2-90 on page 2-112 and Figure 2-91 on page 2-112 show the timing diagram for the ADC.

Acquisition Time or Sample Time Control

Acquisition time (t_{SAMPLE}) specifies how long an analog input signal has to charge the internal capacitor array. Figure 2-88 shows a simplified internal input sampling mechanism of a SAR ADC.

Figure 2-88 • Simplified Sample and Hold Circuitry

The internal impedance (Z_{INAD}), external source resistance (R_{SOURCE}), and sample capacitor (C_{INAD}) form a simple RC network. As a result, the accuracy of the ADC can be affected if the ADC is given insufficient time to charge the capacitor. To resolve this problem, you can either reduce the source resistance or increase the sampling time by changing the acquisition time using the STC signal.

The optimal setting for the system running at 66 MHz with an ADC for 10-bit mode chosen is shown in Table 2-47:

Table 2-47 • Optimal Setting at 66 MHz in 10-Bit Mode

TVC[7:0]	= 1	= 0x01
STC[7:0]	= 3	= 0x03
MODE[3:0]	= b'0100	= 0x4*

Note: No power-down after every conversion is chosen in this case; however, if the application is power-sensitive, the MODE[2] can be set to '0', as described above, and it will not affect any performance.

Timing Diagrams

Note: *Refer to EQ 15 on page 2-107 for the calculation on the period of ADCCLK, t_{ADCCLK}.

Figure 2-89 • Power-Up Calibration Status Signal Timing Diagram

Intra-Conversion

Note: **t*_{CONV} represents the conversion time of the second conversion. See EQ 23 on page 2-109 for calculation of the conversion time, *t*_{CONV}.

Figure 2-92 • Intra-Conversion Timing Diagram

Injected Conversion

Note: *See EQ 23 on page 2-109 for calculation on the conversion time, t_{CONV}.

Figure 2-93 • Injected Conversion Timing Diagram

Figure 2-99 • Fusion Pro I/O Bank Detail Showing VREF Minibanks (north side of AFS600 and AFS1500)

Table 2-67 • I/O Standards	Supported by	Bank Type
----------------------------	--------------	-----------

I/O Bank	Single-Ended I/O Standards	Differential I/O Standards	Voltage-Referenced	Hot- Swap
Standard I/O	LVTTL/LVCMOS 3.3 V, LVCMOS 2.5 V / 1.8 V / 1.5 V, LVCMOS 2.5/5.0 V	-	_	Yes
Advanced I/O	LVTTL/LVCMOS 3.3 V, LVCMOS 2.5 V / 1.8 V / 1.5 V, LVCMOS 2.5/5.0 V, 3.3 V PCI / 3.3 V PCI-X	LVPECL and LVDS	-	-
Pro I/O	LVTTL/LVCMOS 3.3 V, LVCMOS 2.5 V / 1.8 V / 1.5 V, LVCMOS 2.5/5.0 V, 3.3 V PCI / 3.3 V PCI-X	LVPECL and LVDS	GTL+2.5 V / 3.3 V, GTL 2.5 V / 3.3 V, HSTL Class I and II, SSTL2 Class I and II, SSTL3 Class I and II	Yes

Table 2-68 • I/O Bank Support by Device

I/O Bank	AFS090	AFS250	AFS600	AFS1500
Standard I/O	Ν	Ν	_	-
Advanced I/O	E, W	E, W	E, W	E, W
Pro I/O	-	_	Ν	Ν
Analog Quad	S	S	S	S

Note: E = *East side of the device*

W = West side of the device

N = *North* side of the device

S = South side of the device

Table 2-69 • Fusion VCCI Voltages and Compatible Standards

VCCI (typical)	Compatible Standards
3.3 V	LVTTL/LVCMOS 3.3, PCI 3.3, SSTL3 (Class I and II),* GTL+ 3.3, GTL 3.3,* LVPECL
2.5 V	LVCMOS 2.5, LVCMOS 2.5/5.0, SSTL2 (Class I and II),* GTL+ 2.5,* GTL 2.5,* LVDS, BLVDS, M-LVDS
1.8 V	LVCMOS 1.8
1.5 V	LVCMOS 1.5, HSTL (Class I),* HSTL (Class II)*

Note: *I/O standard supported by Pro I/O banks.

Table 2-70 • Fusion VREF Voltages and Compatible Standards*

VREF (typical)	Compatible Standards
1.5 V	SSTL3 (Class I and II)
1.25 V	SSTL2 (Class I and II)
1.0 V	GTL+ 2.5, GTL+ 3.3
0.8 V	GTL 2.5, GTL 3.3
0.75 V	HSTL (Class I), HSTL (Class II)

Note: *I/O standards supported by Pro I/O banks.

Table 2-93 • Summary of I/O Timing Characteristics – Software Default SettingsCommercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,Worst-Case VCCI = I/O Standard DependentApplicable to Advanced I/Os

I/O Standard	Drive Strength (mA)	Slew Rate	Capacitive Load (pF)	External Resistor (Ohm)	tpour	top	toin	tey	teout	tzı	tzH	t _{LZ}	tHZ	ţzıs	tzHS	Units
3.3 V LVTTL/ 3.3 V LVCMOS	12 mA	High	35 pF	-	0.49	2.64	0.03	0.90	0.32	2.69	2.11	2.40	2.68	4.36	3.78	ns
2.5 V LVCMOS	12 mA	High	35 pF	_	0.49	2.66	0.03	0.98	0.32	2.71	2.56	2.47	2.57	4.38	4.23	ns
1.8 V LVCMOS	12 mA	High	35 pF	_	0.49	2.64	0.03	0.91	0.32	2.69	2.27	2.76	3.05	4.36	3.94	ns
1.5 V LVCMOS	12 mA	High	35 pF	_	0.49	3.05	0.03	1.07	0.32	3.10	2.67	2.95	3.14	4.77	4.34	ns
3.3 V PCI	Per PCI spec	High	10 pF	25 ²	0.49	2.00	0.03	0.65	0.32	2.04	1.46	2.40	2.68	3.71	3.13	ns
3.3 V PCI-X	Per PCI-X spec	High	10 pF	25 ²	0.49	2.00	0.03	0.62	0.32	2.04	1.46	2.40	2.68	3.71	3.13	ns
LVDS	24 mA	High	_	-	0.49	1.37	0.03	1.20	N/A	N/A	N/A	N/A	N/A	N/A	N/A	ns
LVPECL	24 mA	High	-		0.49	1.34	0.03	1.05	N/A	N/A	N/A	N/A	N/A	N/A	N/A	ns

Notes:

1. For specific junction temperature and voltage-supply levels, refer to Table 3-6 on page 3-7 for derating values.

2. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-123 on page 2-197 for connectivity. This resistor is not required during normal operation.

Table 2-94 • Summary of I/O Timing Characteristics – Software Default SettingsCommercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,Worst-Case VCCI = I/O Standard DependentApplicable to Standard I/Os

I/O Standard	Drive Strength (mA)	Slew Rate	Capacitive Load (pF)	External Resistor (Ohm)	t pour	t _{DP}	t _{DIN}	t _Þ v	teour	tzı	tzH	t _{LZ}	t _{HZ}	Units
3.3 V LVTTL/ 3.3 V LVCMOS	8 mA	High	35 pF	-	0.49	3.29	0.03	0.75	0.32	3.36	2.80	1.79	2.01	ns
2.5 V LVCMOS	8 mA	High	35pF	_	0.49	3.56	0.03	0.96	0.32	3.40	3.56	1.78	1.91	ns
1.8 V LVCMOS	4 mA	High	35pF	_	0.49	4.74	0.03	0.90	0.32	4.02	4.74	1.80	1.85	ns
1.5 V LVCMOS	2 mA	High	35pF	_	0.49	5.71	0.03	1.06	0.32	4.71	5.71	1.83	1.83	ns

Note: For specific junction temperature and voltage-supply levels, refer to Table 3-6 on page 3-7 for derating values.

Table 2-107 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew

Commercial Temperature Range Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Advanced I/Os

Drive	Speed												l
Strength	Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
4 mA	Std.	0.66	7.66	0.04	1.20	0.43	7.80	6.59	2.65	2.61	10.03	8.82	ns
	-1	0.56	6.51	0.04	1.02	0.36	6.63	5.60	2.25	2.22	8.54	7.51	ns
	-2	0.49	5.72	0.03	0.90	0.32	5.82	4.92	1.98	1.95	7.49	6.59	ns
8 mA	Std.	0.66	4.91	0.04	1.20	0.43	5.00	4.07	2.99	3.20	7.23	6.31	ns
	-1	0.56	4.17	0.04	1.02	0.36	4.25	3.46	2.54	2.73	6.15	5.36	ns
	-2	0.49	3.66	0.03	0.90	0.32	3.73	3.04	2.23	2.39	5.40	4.71	ns
12 mA	Std.	0.66	3.53	0.04	1.20	0.43	3.60	2.82	3.21	3.58	5.83	5.06	ns
	-1	0.56	3.00	0.04	1.02	0.36	3.06	2.40	2.73	3.05	4.96	4.30	ns
	-2	0.49	2.64	0.03	0.90	0.32	2.69	2.11	2.40	2.68	4.36	3.78	ns
16 mA	Std.	0.66	3.33	0.04	1.20	0.43	3.39	2.56	3.26	3.68	5.63	4.80	ns
	-1	0.56	2.83	0.04	1.02	0.36	2.89	2.18	2.77	3.13	4.79	4.08	ns
	-2	0.49	2.49	0.03	0.90	0.32	2.53	1.91	2.44	2.75	4.20	3.58	ns
24 mA	Std.	0.66	3.08	0.04	1.20	0.43	3.13	2.12	3.32	4.06	5.37	4.35	ns
	-1	0.56	2.62	0.04	1.02	0.36	2.66	1.80	2.83	3.45	4.57	3.70	ns
	-2	0.49	2.30	0.03	0.90	0.32	2.34	1.58	2.48	3.03	4.01	3.25	ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

Table 2-108 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew

Commercial Temperature Range Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Standard I/Os

Drive	Speed										
Strength	Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	Units
2 mA	Std.	0.66	9.46	0.04	1.00	0.43	9.64	8.54	2.07	2.04	ns
	-1	0.56	8.05	0.04	0.85	0.36	8.20	7.27	1.76	1.73	ns
	-2	0.49	7.07	0.03	0.75	0.32	7.20	6.38	1.55	1.52	ns
4 mA	Std.	0.66	9.46	0.04	1.00	0.43	9.64	8.54	2.07	2.04	ns
	-1	0.56	8.05	0.04	0.85	0.36	8.20	7.27	1.76	1.73	ns
	-2	0.49	7.07	0.03	0.75	0.32	7.20	6.38	1.55	1.52	ns
6 mA	Std.	0.66	6.57	0.04	1.00	0.43	6.69	5.98	2.40	2.57	ns
	-1	0.56	5.59	0.04	0.85	0.36	5.69	5.09	2.04	2.19	ns
	-2	0.49	4.91	0.03	0.75	0.32	5.00	4.47	1.79	1.92	ns
8 mA	Std.	0.66	6.57	0.04	1.00	0.43	6.69	5.98	2.40	2.57	ns
	-1	0.56	5.59	0.04	0.85	0.36	5.69	5.09	2.04	2.19	ns
	-2	0.49	4.91	0.03	0.75	0.32	5.00	4.47	1.79	1.92	ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

	FG484		FG484					
Pin Number	AFS600 Function	AFS1500 Function	Pin Number	AFS600 Function	AFS1500 Function			
H13	GND	GND	K4	IO75NDB4V0	IO110NDB4V0			
H14	VCCIB1	VCCIB1	K5	GND	GND			
H15	GND	GND	K6	NC	IO104NDB4V0			
H16	GND	GND	K7	NC	IO111NDB4V0			
H17	NC	IO53NDB2V0	K8	GND	GND			
H18	IO38PDB2V0	IO57PDB2V0	K9	VCC	VCC			
H19	GCA2/IO39PDB2V0	GCA2/IO59PDB2V0	K10	GND	GND			
H20	VCCIB2	VCCIB2	K11	VCC	VCC			
H21	IO37NDB2V0	IO54NDB2V0	K12	GND	GND			
H22	IO37PDB2V0	IO54PDB2V0	K13	VCC	VCC			
J1	NC	IO112PPB4V0	K14	GND	GND			
J2	IO76NDB4V0	IO113NDB4V0	K15	GND	GND			
J3	GFB2/IO74PDB4V0	GFB2/IO109PDB4V0	K16	IO40NDB2V0	IO60NDB2V0			
J4	GFA2/IO75PDB4V0	GFA2/IO110PDB4V0	K17	NC	IO58PDB2V0			
J5	NC	IO112NPB4V0	K18	GND	GND			
J6	NC	IO104PDB4V0	K19	NC	IO68NPB2V0			
J7	NC	IO111PDB4V0	K20	IO41NDB2V0	IO61NDB2V0			
J8	VCCIB4	VCCIB4	K21	GND	GND			
J9	GND	GND	K22	IO42NDB2V0	IO56NDB2V0			
J10	VCC	VCC	L1	IO73NDB4V0	IO108NDB4V0			
J11	GND	GND	L2	VCCOSC	VCCOSC			
J12	VCC	VCC	L3	VCCIB4	VCCIB4			
J13	GND	GND	L4	XTAL2	XTAL2			
J14	VCC	VCC	L5	GFC1/IO72PDB4V0	GFC1/IO107PDB4V0			
J15	VCCIB2	VCCIB2	L6	VCCIB4	VCCIB4			
J16	GCB2/IO40PDB2V0	GCB2/IO60PDB2V0	L7	GFB1/IO71PDB4V0	GFB1/IO106PDB4V0			
J17	NC	IO58NDB2V0	L8	VCCIB4	VCCIB4			
J18	IO38NDB2V0	IO57NDB2V0	L9	GND	GND			
J19	IO39NDB2V0	IO59NDB2V0	L10	VCC	VCC			
J20	GCC2/IO41PDB2V0	GCC2/IO61PDB2V0	L11	GND	GND			
J21	NC	IO55PSB2V0	L12	VCC	VCC			
J22	IO42PDB2V0	IO56PDB2V0	L13	GND	GND			
K1	GFC2/IO73PDB4V0	GFC2/IO108PDB4V0	L14	VCC	VCC			
K2	GND	GND	L15	VCCIB2	VCCIB2			
K3	IO74NDB4V0	IO109NDB4V0	L16	IO48PDB2V0	IO70PDB2V0			

Package Pin Assignments

	FG484		FG484					
Pin Number	AFS600 Function	AFS1500 Function	Pin Number	AFS600 Function	AFS1500 Function			
V3	VCCIB4	VCCIB4	W16	GNDA	GNDA			
V4	GEA1/IO61PDB4V0	GEA1/IO88PDB4V0	W17	AV9	AV9			
V5	GEA0/IO61NDB4V0	GEA0/IO88NDB4V0	W18	VCCIB2	VCCIB2			
V6	GND	GND	W19	NC	IO68PPB2V0			
V7	VCC33PMP	VCC33PMP	W20	ТСК	ТСК			
V8	NC	NC	W21	GND	GND			
V9	VCC33A	VCC33A	W22	NC	IO76PPB2V0			
V10	AG4	AG4	Y1	GEC2/IO60PDB4V0	GEC2/IO87PDB4V0			
V11	AT4	AT4	Y2	IO60NDB4V0	IO87NDB4V0			
V12	ATRTN2	ATRTN2	Y3	GEA2/IO58PDB4V0	GEA2/IO85PDB4V0			
V13	AT5	AT5	Y4	IO58NDB4V0	IO85NDB4V0			
V14	VCC33A	VCC33A	Y5	NCAP	NCAP			
V15	NC	NC	Y6	AC0	AC0			
V16	VCC33A	VCC33A	Y7	VCC33A	VCC33A			
V17	GND	GND	Y8	AC1	AC1			
V18	TMS	TMS	Y9	AC2	AC2			
V19	VJTAG	VJTAG	Y10	VCC33A	VCC33A			
V20	VCCIB2	VCCIB2	Y11	AC3	AC3			
V21	TRST	TRST	Y12	AC6	AC6			
V22	TDO	TDO	Y13	VCC33A	VCC33A			
W1	NC	IO93PDB4V0	Y14	AC7	AC7			
W2	GND	GND	Y15	AC8	AC8			
W3	NC	IO93NDB4V0	Y16	VCC33A	VCC33A			
W4	GEB2/IO59PDB4V0	GEB2/IO86PDB4V0	Y17	AC9	AC9			
W5	IO59NDB4V0	IO86NDB4V0	Y18	ADCGNDREF	ADCGNDREF			
W6	AV0	AV0	Y19	PTBASE	PTBASE			
W7	GNDA	GNDA	Y20	GNDNVM	GNDNVM			
W8	AV1	AV1	Y21	VCCNVM	VCCNVM			
W9	AV2	AV2	Y22	VPUMP	VPUMP			
W10	GNDA	GNDA						
W11	AV3	AV3						
W12	AV6	AV6						
W13	GNDA	GNDA						
W14	AV7	AV7						
W15	AV8	AV8						

FG676

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/default.aspx.

Microsemi

Package Pin Assignments

FG676			FG676	FG676		
Pin Number	AFS1500 Function	Pin Number	AFS1500 Function	Pin Number	AFS1500 Function	
A1	NC	AA11	AV2	AB21	PTBASE	
A2	GND	AA12	GNDA	AB22	GNDNVM	
A3	NC	AA13	AV3	AB23	VCCNVM	
A4	NC	AA14	AV6	AB24	VPUMP	
A5	GND	AA15	GNDA	AB25	NC	
A6	NC	AA16	AV7	AB26	GND	
A7	NC	AA17	AV8	AC1	NC	
A8	GND	AA18	GNDA	AC2	NC	
A9	IO17NDB0V2	AA19	AV9	AC3	NC	
A10	IO17PDB0V2	AA20	VCCIB2	AC4	GND	
A11	GND	AA21	IO68PPB2V0	AC5	VCCIB4	
A12	IO18NDB0V2	AA22	ТСК	AC6	VCCIB4	
A13	IO18PDB0V2	AA23	GND	AC7	PCAP	
A14	IO20NDB0V2	AA24	IO76PPB2V0	AC8	AG0	
A15	IO20PDB0V2	AA25	VCCIB2	AC9	GNDA	
A16	GND	AA26	NC	AC10	AG1	
A17	IO21PDB0V2	AB1	GND	AC11	AG2	
A18	IO21NDB0V2	AB2	NC	AC12	GNDA	
A19	GND	AB3	GEC2/IO87PDB4V0	AC13	AG3	
A20	IO39NDB1V2	AB4	IO87NDB4V0	AC14	AG6	
A21	IO39PDB1V2	AB5	GEA2/IO85PDB4V0	AC15	GNDA	
A22	GND	AB6	IO85NDB4V0	AC16	AG7	
A23	NC	AB7	NCAP	AC17	AG8	
A24	NC	AB8	AC0	AC18	GNDA	
A25	GND	AB9	VCC33A	AC19	AG9	
A26	NC	AB10	AC1	AC20	VAREF	
AA1	NC	AB11	AC2	AC21	VCCIB2	
AA2	VCCIB4	AB12	VCC33A	AC22	PTEM	
AA3	IO93PDB4V0	AB13	AC3	AC23	GND	
AA4	GND	AB14	AC6	AC24	NC	
AA5	IO93NDB4V0	AB15	VCC33A	AC25	NC	
AA6	GEB2/IO86PDB4V0	AB16	AC7	AC26	NC	
AA7	IO86NDB4V0	AB17	AC8	AD1	NC	
AA8	AV0	AB18	VCC33A	AD2	NC	
AA9	GNDA	AB19	AC9	AD3	GND	
AA10	AV1	AB20	ADCGNDREF	AD4	NC	

Fusion Family of Mixed Signal FPGAs

	FG676		FG676		FG676
Pin Number	AFS1500 Function	Pin Number	AFS1500 Function	Pin Number	AFS1500 Function
G13	IO22NDB1V0	H23	IO50NDB2V0	K7	IO114PDB4V0
G14	IO22PDB1V0	H24	IO51PDB2V0	K8	IO117NDB4V0
G15	GND	H25	NC	K9	GND
G16	IO32PPB1V1	H26	GND	K10	VCC
G17	IO36NPB1V2	J1	NC	K11	VCCIB0
G18	VCCIB1	J2	VCCIB4	K12	GND
G19	GND	J3	IO115PDB4V0	K13	VCCIB0
G20	IO47NPB2V0	J4	GND	K14	VCCIB1
G21	IO49PDB2V0	J5	IO116NDB4V0	K15	GND
G22	VCCIB2	J6	IO116PDB4V0	K16	VCCIB1
G23	IO46NDB2V0	J7	VCCIB4	K17	GND
G24	GBC2/IO46PDB2V0	J8	IO117PDB4V0	K18	GND
G25	IO48NPB2V0	J9	VCCIB4	K19	IO53NDB2V0
G26	NC	J10	GND	K20	IO57PDB2V0
H1	GND	J11	IO06NDB0V1	K21	GCA2/IO59PDB2V0
H2	NC	J12	IO06PDB0V1	K22	VCCIB2
H3	IO118NDB4V0	J13	IO16NDB0V2	K23	IO54NDB2V0
H4	IO118PDB4V0	J14	IO16PDB0V2	K24	IO54PDB2V0
H5	IO119NPB4V0	J15	IO28NDB1V1	K25	NC
H6	IO124NDB4V0	J16	IO28PDB1V1	K26	NC
H7	GND	J17	GND	L1	GND
H8	VCOMPLA	J18	IO38PPB1V2	L2	NC
H9	VCCPLA	J19	IO53PDB2V0	L3	IO112PPB4V0
H10	VCCIB0	J20	VCCIB2	L4	IO113NDB4V0
H11	IO12NDB0V1	J21	IO52PDB2V0	L5	GFB2/IO109PDB4V0
H12	IO12PDB0V1	J22	IO52NDB2V0	L6	GFA2/IO110PDB4V0
H13	VCCIB0	J23	GND	L7	IO112NPB4V0
H14	VCCIB1	J24	IO51NDB2V0	L8	IO104PDB4V0
H15	IO30NDB1V1	J25	VCCIB2	L9	IO111PDB4V0
H16	IO30PDB1V1	J26	NC	L10	VCCIB4
H17	VCCIB1	K1	NC	L11	GND
H18	IO36PPB1V2	K2	NC	L12	VCC
H19	IO38NPB1V2	К3	IO115NDB4V0	L13	GND
H20	GND	K4	IO113PDB4V0	L14	VCC
H21	IO49NDB2V0	K5	VCCIB4	L15	GND
H22	IO50PDB2V0	K6	IO114NDB4V0	L16	VCC

Datasheet Information

Revision	Changes	Page				
Advance v0.5	The low power modes of operation were updated and clarified.	N/A				
(June 2006)	The AFS1500 digital I/O count was updated in Table 1 • Fusion Family.	i				
	The AFS1500 digital I/O count was updated in the "Package I/Os: Single-/Double- Ended (Analog)" table.	ii				
	The "Voltage Regulator Power Supply Monitor (VRPSM)" was updated.	2-36				
	Figure 2-45 • FlashROM Timing Diagram was updated.	2-53				
	The "256-Pin FBGA" table for the AFS1500 is new.	3-12				
Advance v0.4 (April 2006)	The G was moved in the "Product Ordering Codes" section.	III				
Advance v0.3	The "Features and Benefits" section was updated.	I				
(April 2006)	The "Fusion Family" table was updated.	I				
	The "Package I/Os: Single-/Double-Ended (Analog)" table was updated.	П				
	The "Product Ordering Codes" table was updated.	Ш				
	The "Temperature Grade Offerings" table was updated.					
	The "General Description" section was updated to include ARM information.					
	Figure 2-46 • FlashROM Timing Diagram was updated.					
	The "FlashROM" section was updated.	2-57				
	The "RESET" section was updated.	2-61				
	The "RESET" section was updated.	2-64				
	Figure 2-27 · Real-Time Counter System was updated.					
	Table 2-19 • Flash Memory Block Pin Names was updated.	2-43				
	Figure 2-33 • Flash Memory Block Diagram was updated to include AUX block information.	2-45				
	Figure 2-34 • Flash Memory Block Organization was updated to include AUX block information.	2-46				
	The note in the "Program Operation" section was updated.	2-48				
	Figure 2-76 • Gate Driver Example was updated.	2-95				
	The "Analog Quad ACM Description" section was updated.	2-130				
	Information about the maximum pad input frequency was added to the "Gate Driver" section.	2-94				
	Figure 2-65 • Analog Block Macro was updated.	2-81				
	Figure 2-65 • Analog Block Macro was updated.	2-81				
	The "Analog Quad" section was updated.	2-84				
	The "Voltage Monitor" section was updated.	2-86				
	The "Direct Digital Input" section was updated.	2-89				
	The "Current Monitor" section was updated.	2-90				
	Information about the maximum pad input frequency was added to the "Gate Driver" section.	2-94				