

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	276480
Number of I/O	119
Number of Gates	1500000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	256-LBGA
Supplier Device Package	256-FPBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/afs1500-2fgg256i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Embedded Memories

Flash Memory Blocks

The flash memory available in each Fusion device is composed of one to four flash blocks, each 2 Mbits in density. Each block operates independently with a dedicated flash controller and interface. Fusion flash memory blocks combine fast access times (60 ns random access and 10 ns access in Read-Ahead mode) with a configurable 8-, 16-, or 32-bit datapath, enabling high-speed flash operation without wait states. The memory block is organized in pages and sectors. Each page has 128 bytes, with 33 pages comprising one sector and 64 sectors per block. The flash block can support multiple partitions. The only constraint on size is that partition boundaries must coincide with page boundaries. The flexibility and granularity enable many use models and allow added granularity in programming updates.

Fusion devices support two methods of external access to the flash memory blocks. The first method is a serial interface that features a built-in JTAG-compliant port, which allows in-system programmability during user or monitor/test modes. This serial interface supports programming of an AES-encrypted stream. Data protected with security measures can be passed through the JTAG interface, decrypted, and then programmed in the flash block. The second method is a soft parallel interface.

FPGA logic or an on-chip soft microprocessor can access flash memory through the parallel interface. Since the flash parallel interface is implemented in the FPGA fabric, it can potentially be customized to meet special user requirements. For more information, refer to the *CoreCFI Handbook*. The flash memory parallel interface provides configurable byte-wide (×8), word-wide (×16), or dual-word-wide (×32) data-port options. Through the programmable flash parallel interface, the on-chip and off-chip memories can be cascaded for wider or deeper configurations.

The flash memory has built-in security. The user can configure either the entire flash block or the small blocks to protect against unintentional or intrusive attempts to change or destroy the storage contents. Each on-chip flash memory block has a dedicated controller, enabling each block to operate independently.

The flash block logic consists of the following sub-blocks:

- Flash block Contains all stored data. The flash block contains 64 sectors and each sector contains 33 pages of data.
- Page Buffer Contains the contents of the current page being modified. A page contains 8 blocks of data.
- Block Buffer Contains the contents of the last block accessed. A block contains 128 data bits.
- ECC Logic The flash memory stores error correction information with each block to perform single-bit error correction and double-bit error detection on all data blocks.

User Nonvolatile FlashROM

In addition to the flash blocks, Fusion devices have 1 Kbit of user-accessible, nonvolatile FlashROM on-chip. The FlashROM is organized as 8×128-bit pages. The FlashROM can be used in diverse system applications:

- Internet protocol addressing (wireless or fixed)
- System calibration settings
- Device serialization and/or inventory control
- Subscription-based business models (for example, set-top boxes)
- · Secure key storage for communications algorithms protected by security
- Asset management/tracking
- Date stamping
- Version management

The FlashROM is written using the standard IEEE 1532 JTAG programming interface. Pages can be individually programmed (erased and written). On-chip AES decryption can be used selectively over public networks to load data such as security keys stored in the FlashROM for a user design.

The FlashROM can be programmed (erased and written) via the JTAG programming interface, and its contents can be read back either through the JTAG programming interface or via direct FPGA core addressing.

Figure 2-52 • RAM Write, Output Retained. Applicable to both RAM4K9 and RAM512x18.

Figure 2-53 • RAM Write, Output as Write Data (WMODE = 1). Applicable to RAM4K9 Only.

Offset Error

Offset error indicates how well the actual transfer function matches the ideal transfer function at a single point. For an ideal ADC, the first transition occurs at 0.5 LSB above zero. The offset voltage is measured by applying an analog input such that the ADC outputs all zeroes and increases until the first transition occurs (Figure 2-86).

Figure 2-86 • Offset Error

Resolution

ADC resolution is the number of bits used to represent an analog input signal. To more accurately replicate the analog signal, resolution needs to be increased.

Sampling Rate

Sampling rate or sample frequency, specified in samples per second (sps), is the rate at which an ADC acquires (samples) the analog input.

SNR – Signal-to-Noise Ratio

SNR is the ratio of the amplitude of the desired signal to the amplitude of the noise signals at a given point in time. For a waveform perfectly reconstructed from digital samples, the theoretical maximum SNR (EQ 14) is the ratio of the full-scale analog input (RMS value) to the RMS quantization error (residual error). The ideal, theoretical minimum ADC noise is caused by quantization error only and results directly from the ADC's resolution (N bits):

$$SNR_{dB[MAX]} = 6.02_{dB} \times N + 1.76_{dB}$$

EQ 14

SINAD – Signal-to-Noise and Distortion

SINAD is the ratio of the rms amplitude to the mean value of the root-sum-square of the all other spectral components, including harmonics, but excluding DC. SINAD is a good indication of the overall dynamic performance of an ADC because it includes all components which make up noise and distortion.

Total Harmonic Distortion

THD measures the distortion content of a signal, and is specified in decibels relative to the carrier (dBc). THD is the ratio of the RMS sum of the selected harmonics of the input signal to the fundamental itself. Only harmonics within the Nyquist limit are included in the measurement.

Overview of I/O Performance Summary of I/O DC Input and Output Levels – Default I/O Software Settings

Table 2-86 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial Conditions Applicable to Pro I/Os

				VIL	VIH		VOL	VOH	IOL	IOH
I/O Standard	Drive Strength	Slew Rate	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA
3.3 V LVTTL / 3.3 V LVCMOS	12 mA	High	-0.3	0.8	2	3.6	0.4	2.4	12	12
2.5 V LVCMOS	12 mA	High	-0.3	0.7	1.7	3.6	0.7	1.7	12	12
1.8 V LVCMOS	12 mA	High	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI - 0.45	12	12
1.5 V LVCMOS	12 mA	High	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	12	12
3.3 V PCI		•	•		Per PCI Spec	ification				
3.3 V PCI-X					Per PCI-X Spe	cification				
3.3 V GTL	20 mA ²	High	-0.3	VREF-0.05	VREF + 0.05	3.6	0.4	-	20	20
2.5 V GTL	20 mA ²	High	-0.3	VREF-0.05	VREF + 0.05	3.6	0.4	-	20	20
3.3 V GTL+	35 mA	High	-0.3	VREF – 0.1	VREF + 0.1	3.6	0.6	-	35	35
2.5 V GTL+	33 mA	High	-0.3	VREF – 0.1	VREF + 0.1	3.6	0.6	-	33	33
HSTL (I)	8 mA	High	-0.3	VREF – 0.1	VREF + 0.1	3.6	0.4	VCCI – 0.4	8	8
HSTL (II)	15 mA ²	High	-0.3	VREF – 0.1	VREF + 0.1	3.6	0.4	VCCI – 0.4	15	15
SSTL2 (I)	15 mA	High	-0.3	VREF – 0.2	VREF + 0.2	3.6	0.54	VCCI-0.62	15	15
SSTL2 (II)	18 mA	High	-0.3	VREF – 0.2	VREF + 0.2	3.6	0.35	VCCI-0.43	18	18
SSTL3 (I)	14 mA	High	-0.3	VREF - 0.2	VREF + 0.2	3.6	0.7	VCCI – 1.1	14	14
SSTL3 (II)	21 mA	High	-0.3	VREF – 0.2	VREF + 0.2	3.6	0.5	VCCI – 0.9	21	21

Notes:

1. Currents are measured at 85°C junction temperature.

2. Output drive strength is below JEDEC specification.

3. Output slew rate can be extracted by the IBIS models.

Table 2-87 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial Conditions Applicable to Advanced I/Os

			VIL		VIH		VOL	VOH	IOL	ЮН
I/O Standard	Drive Strength	Slew Rate	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA
3.3 V LVTTL / 3.3 V LVCMOS	12 mA	High	-0.3	0.8	2	3.6	0.4	2.4	12	12
2.5 V LVCMOS	12 mA	High	-0.3	0.7	1.7	2.7	0.7	1.7	12	12
1.8 V LVCMOS	12 mA	High	-0.3	0.35 * VCCI	0.65 * VCCI	1.9	0.45	VCCI-0.45	12	12
1.5 V LVCMOS	12 mA	High	-0.3	0.35 * VCCI	0.65 * VCCI	1.575	0.25 * VCCI	0.75 * VCCI	12	12
3.3 V PCI			Per PCI specifications							
3.3 V PCI-X				Р	er PCI-X spec	cificatior	าร			

Note: Currents are measured at 85°C junction temperature.

Summary of I/O Timing Characteristics – Default I/O Software Settings

Table 2-90 • Summary of AC Measuring Points Applicable to All I/O Bank Types

Standard	Input Reference Voltage (VREF_TYP)	Board Termination Voltage (VTT_REF)	Measuring Trip Point (Vtrip)	
3.3 V LVTTL / 3.3 V LVCMOS	_	-	1.4 V	
2.5 V LVCMOS	_	-	1.2 V	
1.8 V LVCMOS	-	-	0.90 V	
1.5 V LVCMOS	-	-	0.75 V	
3.3 V PCI	_	_	0.285 * VCCI (RR) 0.615 * VCCI (FF))	
3.3 V PCI-X	-	_	0.285 * VCCI (RR) 0.615 * VCCI (FF)	
3.3 V GTL	0.8 V	1.2 V	VREF	
2.5 V GTL	0.8 V	1.2 V	VREF	
3.3 V GTL+	1.0 V	1.5 V	VREF	
2.5 V GTL+	1.0 V	1.5 V	VREF	
HSTL (I)	0.75 V	0.75 V	VREF	
HSTL (II)	0.75 V	0.75 V	VREF	
SSTL2 (I)	1.25 V	1.25 V	VREF	
SSTL2 (II)	1.25 V	1.25 V	VREF	
SSTL3 (I)	1.5 V	1.485 V	VREF	
SSTL3 (II)	1.5 V	1.485 V	VREF	
LVDS	-	-	Cross point	
LVPECL	-	-	Cross point	

Table 2-91 • I/O AC Parameter Definitions

Parameter	Definition
t _{DP}	Data to Pad delay through the Output Buffer
t _{PY}	Pad to Data delay through the Input Buffer with Schmitt trigger disabled
t _{DOUT}	Data to Output Buffer delay through the I/O interface
t _{EOUT}	Enable to Output Buffer Tristate Control delay through the I/O interface
t _{DIN}	Input Buffer to Data delay through the I/O interface
t _{PYS}	Pad to Data delay through the Input Buffer with Schmitt trigger enabled
t _{HZ}	Enable to Pad delay through the Output Buffer—High to Z
t _{ZH}	Enable to Pad delay through the Output Buffer—Z to High
t _{LZ}	Enable to Pad delay through the Output Buffer—Low to Z
t _{ZL}	Enable to Pad delay through the Output Buffer—Z to Low
t _{ZHS}	Enable to Pad delay through the Output Buffer with delayed enable—Z to High
t _{ZLS}	Enable to Pad delay through the Output Buffer with delayed enable—Z to Low

Fusion Family of Mixed Signal FPGAs

Table 2-98 • I/O Short Currents IOSH/IOSL

	Drive Strength	IOSH (mA)*	IOSL (mA)*
Applicable to Pro I/O Banks			
3.3 V LVTTL / 3.3 V LVCMOS	4 mA	25	27
	8 mA	51	54
	12 mA	103	109
	16 mA	132	127
	24 mA	268	181
2.5 V LVCMOS	4 mA	16	18
	8 mA	32	37
	12 mA	65	74
	16 mA	83	87
	24 mA	169	124
1.8 V LVCMOS	2 mA	9	11
	4 mA	17	22
	6 mA	35	44
	8 mA	45	51
	12 mA	91	74
	16 mA	91	74
1.5 V LVCMOS	2 mA	13	16
	4 mA	25	33
	6 mA	32	39
	8 mA	66	55
	12 mA	66	55
Applicable to Advanced I/O Banks			
3.3 V LVTTL / 3.3 V LVCMOS	2 mA	25	27
	4 mA	25	27
	6 mA	51	54
	8 mA	51	54
	12 mA	103	109
	16 mA	132	127
	24 mA	268	181
3.3 V LVCMOS	2 mA	25	27
	4 mA	25	27
	6 mA	51	54
	8 mA	51	54
	12 mA	103	109
	16 mA	132	127
	24 mA	268	181

Note: $^{*}T_{J} = 100^{\circ}C$

Table 2-99 • Short Current Event Duration before Failure

Temperature	Time Before Failure
-40°C	>20 years
0°C	>20 years
25°C	>20 years
70°C	5 years
85°C	2 years
100°C	6 months

Table 2-100 • Schmitt Trigger Input Hysteresis Hysteresis Voltage Value (typ.) for Schmitt Mode Input Buffers

Input Buffer Configuration	Hysteresis Value (typ.)
3.3 V LVTTL/LVCMOS/PCI/PCI-X (Schmitt trigger mode)	240 mV
2.5 V LVCMOS (Schmitt trigger mode)	140 mV
1.8 V LVCMOS (Schmitt trigger mode)	80 mV
1.5 V LVCMOS (Schmitt trigger mode)	60 mV

Table 2-101 • I/O Input Rise Time, Fall Time, and Related I/O Reliability

Input Buffer	Input Rise/Fall Time (min.)	Input Rise/Fall Time (max.)	Reliability
LVTTL/LVCMOS (Schmitt trigger disabled)	No requirement	10 ns*	20 years (100°C)
LVTTL/LVCMOS (Schmitt trigger enabled)	No requirement	No requirement, but input noise voltage cannot exceed Schmitt hysteresis	20 years (100°C)
HSTL/SSTL/GTL	No requirement	10 ns*	10 years (100°C)
LVDS/BLVDS/M-LVDS/LVPECL	No requirement	10 ns*	10 years (100°C)

Note: * The maximum input rise/fall time is related only to the noise induced into the input buffer trace. If the noise is low, the rise time and fall time of input buffers, when Schmitt trigger is disabled, can be increased beyond the maximum value. The longer the rise/fall times, the more susceptible the input signal is to the board noise. Microsemi recommends signal integrity evaluation/characterization of the system to ensure there is no excessive noise coupling into input signals.

Single-Ended I/O Characteristics

3.3 V LVTTL / 3.3 V LVCMOS

Low-Voltage Transistor–Transistor Logic is a general-purpose standard (EIA/JESD) for 3.3 V applications. It uses an LVTTL input buffer and push-pull output buffer. The 3.3 V LVCMOS standard is supported as part of the 3.3 V LVTTL support.

Table 2-102	• Minimum	and Maximum	DC Input	and Output	l evels
10016 2-102	• Willing the second		DO inpui	and Output	. LEVEIJ

3.3 V LVTTL / 3.3 V LVCMOS	v	IL	v	ін	VOL	νон	IOL	ЮН	IOSL	IOSH	IIL ¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
Applicable to P	ro I/O Ba	nks					•				•	
4 mA	-0.3	0.8	2	3.6	0.4	2.4	4	4	27	25	10	10
8 mA	-0.3	0.8	2	3.6	0.4	2.4	8	8	54	51	10	10
12 mA	-0.3	0.8	2	3.6	0.4	2.4	12	12	109	103	10	10
16 mA	-0.3	0.8	2	3.6	0.4	2.4	16	16	127	132	10	10
24 mA	-0.3	0.8	2	3.6	0.4	2.4	24	24	181	268	10	10
Applicable to A	dvanced	I/O Bank	s									
2 mA	-0.3	0.8	2	3.6	0.4	2.4	2	2	27	25	10	10
4 mA	-0.3	0.8	2	3.6	0.4	2.4	4	4	27	25	10	10
6 mA	-0.3	0.8	2	3.6	0.4	2.4	6	6	54	51	10	10
8 mA	-0.3	0.8	2	3.6	0.4	2.4	8	8	54	51	10	10
12 mA	-0.3	0.8	2	3.6	0.4	2.4	12	12	109	103	10	10
16 mA	-0.3	0.8	2	3.6	0.4	2.4	16	16	127	132	10	10
24 mA	-0.3	0.8	2	3.6	0.4	2.4	24	24	181	268	10	10
Applicable to S	tandard I	/O Banks										
2 mA	-0.3	0.8	2	3.6	0.4	2.4	2	2	27	25	10	10
4 mA	-0.3	0.8	2	3.6	0.4	2.4	4	4	27	25	10	10
6 mA	-0.3	0.8	2	3.6	0.4	2.4	6	6	54	51	10	10
8 mA	-0.3	0.8	2	3.6	0.4	2.4	8	8	54	51	10	10

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Software default selection highlighted in gray.

Figure 2-119 • AC Loading

Table 2-107 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew

Commercial Temperature Range Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Advanced I/Os

Drive	Speed												l
Strength	Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
4 mA	Std.	0.66	7.66	0.04	1.20	0.43	7.80	6.59	2.65	2.61	10.03	8.82	ns
	-1	0.56	6.51	0.04	1.02	0.36	6.63	5.60	2.25	2.22	8.54	7.51	ns
	-2	0.49	5.72	0.03	0.90	0.32	5.82	4.92	1.98	1.95	7.49	6.59	ns
8 mA	Std.	0.66	4.91	0.04	1.20	0.43	5.00	4.07	2.99	3.20	7.23	6.31	ns
	-1	0.56	4.17	0.04	1.02	0.36	4.25	3.46	2.54	2.73	6.15	5.36	ns
	-2	0.49	3.66	0.03	0.90	0.32	3.73	3.04	2.23	2.39	5.40	4.71	ns
12 mA	Std.	0.66	3.53	0.04	1.20	0.43	3.60	2.82	3.21	3.58	5.83	5.06	ns
	-1	0.56	3.00	0.04	1.02	0.36	3.06	2.40	2.73	3.05	4.96	4.30	ns
	-2	0.49	2.64	0.03	0.90	0.32	2.69	2.11	2.40	2.68	4.36	3.78	ns
16 mA	Std.	0.66	3.33	0.04	1.20	0.43	3.39	2.56	3.26	3.68	5.63	4.80	ns
	-1	0.56	2.83	0.04	1.02	0.36	2.89	2.18	2.77	3.13	4.79	4.08	ns
	-2	0.49	2.49	0.03	0.90	0.32	2.53	1.91	2.44	2.75	4.20	3.58	ns
24 mA	Std.	0.66	3.08	0.04	1.20	0.43	3.13	2.12	3.32	4.06	5.37	4.35	ns
	-1	0.56	2.62	0.04	1.02	0.36	2.66	1.80	2.83	3.45	4.57	3.70	ns
	-2	0.49	2.30	0.03	0.90	0.32	2.34	1.58	2.48	3.03	4.01	3.25	ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

Table 2-108 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew

Commercial Temperature Range Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Standard I/Os

Drive	Speed										
Strength	Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	Units
2 mA	Std.	0.66	9.46	0.04	1.00	0.43	9.64	8.54	2.07	2.04	ns
	-1	0.56	8.05	0.04	0.85	0.36	8.20	7.27	1.76	1.73	ns
	-2	0.49	7.07	0.03	0.75	0.32	7.20	6.38	1.55	1.52	ns
4 mA	Std.	0.66	9.46	0.04	1.00	0.43	9.64	8.54	2.07	2.04	ns
	-1	0.56	8.05	0.04	0.85	0.36	8.20	7.27	1.76	1.73	ns
	-2	0.49	7.07	0.03	0.75	0.32	7.20	6.38	1.55	1.52	ns
6 mA	Std.	0.66	6.57	0.04	1.00	0.43	6.69	5.98	2.40	2.57	ns
	-1	0.56	5.59	0.04	0.85	0.36	5.69	5.09	2.04	2.19	ns
	-2	0.49	4.91	0.03	0.75	0.32	5.00	4.47	1.79	1.92	ns
8 mA	Std.	0.66	6.57	0.04	1.00	0.43	6.69	5.98	2.40	2.57	ns
	-1	0.56	5.59	0.04	0.85	0.36	5.69	5.09	2.04	2.19	ns
	-2	0.49	4.91	0.03	0.75	0.32	5.00	4.47	1.79	1.92	ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

Table 2-121 • 1.8 V LVCMOS High Slew

Commercial Temperature Range Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V

Applicable to Pro I/Os

Drive	Speed													
Strength	Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
2 mA	Std.	0.66	12.10	0.04	1.45	1.91	0.43	9.59	12.10	2.78	1.64	11.83	14.34	ns
	-1	0.56	10.30	0.04	1.23	1.62	0.36	8.16	10.30	2.37	1.39	10.06	12.20	ns
	-2	0.49	9.04	0.03	1.08	1.42	0.32	7.16	9.04	2.08	1.22	8.83	10.71	ns
4 mA	Std.	0.66	7.05	0.04	1.45	1.91	0.43	6.20	7.05	3.25	2.86	8.44	9.29	ns
	-1	0.56	6.00	0.04	1.23	1.62	0.36	5.28	6.00	2.76	2.44	7.18	7.90	ns
	-2	0.49	5.27	0.03	1.08	1.42	0.32	4.63	5.27	2.43	2.14	6.30	6.94	ns
8 mA	Std.	0.66	4.52	0.04	1.45	1.91	0.43	4.47	4.52	3.57	3.47	6.70	6.76	ns
	-1	0.56	3.85	0.04	1.23	1.62	0.36	3.80	3.85	3.04	2.95	5.70	5.75	ns
	-2	0.49	3.38	0.03	1.08	1.42	0.32	3.33	3.38	2.66	2.59	5.00	5.05	ns
12 mA	Std.	0.66	4.12	0.04	1.45	1.91	0.43	4.20	3.99	3.63	3.62	6.43	6.23	ns
	-1	0.56	3.51	0.04	1.23	1.62	0.36	3.57	3.40	3.09	3.08	5.47	5.30	ns
	-2	0.49	3.08	0.03	1.08	1.42	0.32	3.14	2.98	2.71	2.71	4.81	4.65	ns
16 mA	Std.	0.66	3.80	0.04	1.45	1.91	0.43	3.87	3.09	3.73	4.24	6.10	5.32	ns
	-1	0.56	3.23	0.04	1.23	1.62	0.36	3.29	2.63	3.18	3.60	5.19	4.53	ns
	-2	0.49	2.83	0.03	1.08	1.42	0.32	2.89	2.31	2.79	3.16	4.56	3.98	ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

3.3 V GTL+

Gunning Transceiver Logic Plus is a high-speed bus standard (JESD8-3). It provides a differential amplifier input buffer and an open-drain output buffer. The VCCI pin should be connected to 3.3 V.

Table 2-144 • Minimum and Maximum DC Input and Output Levels

3.3 V GTL+	VIL		VIH		VOL	VOH	IOL	ЮН	IOSL	IOSH	IIL¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
35 mA	-0.3	VREF – 0.1	VREF + 0.1	3.6	0.6	-	35	35	181	268	10	10

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

Figure 2-126 • AC Loading

Table	2-145	AC Wavef	orms. Meas	suring Poin	ts, and Ca	pacitive Loads
i ubic	2-140	AC HUVE	ormo, mous	ournig i oni	its, and ou	

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	VTT (typ.) (V)	C _{LOAD} (pF)
VREF – 0.1	VREF + 0.1	1.0	1.0	1.5	10

Note: *Measuring point = Vtrip. See Table 2-90 on page 2-166 for a complete table of trip points.

Timing Characteristics

Table 2-146 • 3.3 V GTL+

Commercial Temperature Range Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V, VREF = 1.0 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	0.66	2.06	0.04	1.59	0.43	2.09	2.06			4.33	4.29	ns
-1	0.56	1.75	0.04	1.35	0.36	1.78	1.75			3.68	3.65	ns
-2	0.49	1.53	0.03	1.19	0.32	1.56	1.53			3.23	3.20	ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

Example of Power Calculation

This example considers a shift register with 5,000 storage tiles, including a counter and memory that stores analog information. The shift register is clocked at 50 MHz and stores and reads information from a RAM.

The device used is a commercial AFS600 device operating in typical conditions.

The calculation below uses the power calculation methodology previously presented and shows how to determine the dynamic and static power consumption of resources used in the application.

Also included in the example is the calculation of power consumption in operating, standby, and sleep modes to illustrate the benefit of power-saving modes.

Global Clock Contribution—P_{CLOCK}

 F_{CLK} = 50 MHz Number of sequential VersaTiles: N_{S-CELL} = 5,000 Estimated number of Spines: N_{SPINES} = 5 Estimated number of Rows: N_{ROW} = 313

Operating Mode

$$\begin{split} & \mathsf{P}_{\mathsf{CLOCK}} = (\mathsf{PAC1} + \mathsf{N}_{\mathsf{SPINE}} * \mathsf{PAC2} + \mathsf{N}_{\mathsf{ROW}} * \mathsf{PAC3} + \mathsf{N}_{\mathsf{S}\text{-}\mathsf{CELL}} * \mathsf{PAC4}) * \mathsf{F}_{\mathsf{CLK}} \\ & \mathsf{P}_{\mathsf{CLOCK}} = (0.0128 + 5 * 0.0019 + 313 * 0.00081 + 5,000 * 0.00011) * 50 \\ & \mathsf{P}_{\mathsf{CLOCK}} = 41.28 \ \mathsf{mW} \end{split}$$

Standby Mode and Sleep Mode

 $P_{CLOCK} = 0 W$

Logic—Sequential Cells, Combinational Cells, and Routing Net Contributions— P_{S-CELL} , P_{C-CELL} , and P_{NET}

 $\label{eq:F_CLK} \ensuremath{\mathsf{F_{CLK}}}\xspace = 50 \ensuremath{\,\mathsf{MHz}}\xspace \\ \ensuremath{\mathsf{Number}}\xspace of sequential VersaTiles: \ensuremath{\mathsf{N}_{S-CELL}}\xspace = 5,000 \\ \ensuremath{\mathsf{Number}}\xspace of versaTiles: \ensuremath{\mathsf{N}_{C-CELL}}\xspace = 6,000 \\ \ensuremath{\mathsf{Estimated}}\xspace toggle rate of VersaTile outputs: \ensuremath{\alpha_1}\xspace = 0.1 \ensuremath{\,(10\%)}\xspace \ensuremath{}\xspace \ensuremath{\mathsf{R}}\xspace \ensuremath{\mathsf{R}}\xspace \ensuremath{\mathsf{R}}\xspace \ensuremath{\mathsf{R}}\xspace \ensuremath{}\xspace \ensuremath{\mathsf{R}}\xspace \ensuremath{}\xspace \ensuremath{\mathsf{R}}\xspace \ensuremath{\mathsf{R}}\xspace \ensuremath{}\xspace \ensuremath{\mathsf{R}}\xspace \ensuremath{}\xspace \ensuremath{\mathsf{R}}\xspace \ensuremath{}\xspace \ensuremath{}\xspace \ensuremath{\mathsf{R}}\xspace \ensuremath{}\xspace \ensuremath{$

Operating Mode

$$\begin{split} \mathsf{P}_{S\text{-}CELL} &= \mathsf{N}_{S\text{-}CELL} * (\mathsf{P}_{\mathsf{AC5}}\text{+} (\alpha_1 \, / \, 2) * \mathsf{PAC6}) * \mathsf{F}_{\mathsf{CLK}} \\ \mathsf{P}_{S\text{-}CELL} &= 5,000 * (0.00007 + (0.1 \, / \, 2) * 0.00029) * 50 \\ \mathsf{P}_{S\text{-}CELL} &= 21.13 \text{ mW} \end{split}$$

 $P_{C-CELL} = N_{C-CELL}^* (\alpha_1 / 2) * PAC7 * F_{CLK}$ $P_{C-CELL} = 6,000 * (0.1 / 2) * 0.00029 * 50$ $P_{C-CELL} = 4.35 \text{ mW}$

$$\begin{split} \mathsf{P}_{\mathsf{NET}} &= (\mathsf{N}_{\mathsf{S}\text{-}\mathsf{CELL}} + \mathsf{N}_{\mathsf{C}\text{-}\mathsf{CELL}}) * (\alpha_1 \,/\, 2) * \mathsf{PAC8} * \mathsf{F}_{\mathsf{CLK}} \\ \mathsf{P}_{\mathsf{NET}} &= (5,000 + 6,000) * (0.1 \,/\, 2) * 0.0007 * 50 \\ \mathsf{P}_{\mathsf{NET}} &= 19.25 \text{ mW} \end{split}$$

 $P_{LOGIC} = P_{S-CELL} + P_{C-CELL} + P_{NET}$ $P_{LOGIC} = 21.13 \text{ mW} + 4.35 \text{ mW} + 19.25 \text{ mW}$ $P_{LOGIC} = 44.73 \text{ mW}$

Standby Mode and Sleep Mode

Package Pin Assignments

	QN180		QN180				
Pin Number	AFS090 Function	AFS250 Function	Pin Number	AFS090 Function	AFS250 Function		
A1	GNDQ	GNDQ	A37	VPUMP	VPUMP		
A2	VCCIB3	VCCIB3	A38	TDI	TDI		
A3	GAB2/IO52NDB3V0	IO74NDB3V0	A39	TDO	TDO		
A4	GFA2/IO51NDB3V0	IO71NDB3V0	A40	VJTAG	VJTAG		
A5	GFC2/IO50NDB3V0	IO69NPB3V0	A41	GDB1/IO39PPB1V0	GDA1/IO54PPB1V0		
A6	VCCIB3	VCCIB3	A42	GDC1/IO38PDB1V0	GDB1/IO53PDB1V0		
A7	GFA1/IO47PPB3V0	GFB1/IO67PPB3V0	A43	VCC	VCC		
A8	GEB0/IO45NDB3V0	NC	A44	GCB0/IO35NPB1V0	GCB0/IO48NPB1V0		
A9	XTAL1	XTAL1	A45	GCC1/IO34PDB1V0	GCC1/IO47PDB1V0		
A10	GNDOSC	GNDOSC	A46	VCCIB1	VCCIB1		
A11	GEC2/IO43PPB3V0	GEA1/IO61PPB3V0	A47	GBC2/IO32PPB1V0	GBB2/IO41PPB1V0		
A12	IO43NPB3V0	GEA0/IO61NPB3V0	A48	VCCIB1	VCCIB1		
A13	NC	VCCIB3	A49	NC	NC		
A14	GNDNVM	GNDNVM	A50	GBA0/IO29RSB0V0	GBB1/IO37RSB0V0		
A15	PCAP	PCAP	A51	VCCIB0	VCCIB0		
A16	VCC33PMP	VCC33PMP	A52	GBB0/IO27RSB0V0	GBC0/IO34RSB0V0		
A17	NC	NC	A53	GBC1/IO26RSB0V0	IO33RSB0V0		
A18	AV0	AV0	A54	IO24RSB0V0	IO29RSB0V0		
A19	AG0	AG0	A55	IO21RSB0V0	IO26RSB0V0		
A20	ATRTN0	ATRTN0	A56	VCCIB0	VCCIB0		
A21	AG1	AG1	A57	IO15RSB0V0	IO21RSB0V0		
A22	AC1	AC1	A58	IO10RSB0V0	IO13RSB0V0		
A23	AV2	AV2	A59	IO07RSB0V0	IO10RSB0V0		
A24	AT2	AT2	A60	GAC0/IO04RSB0V0	IO06RSB0V0		
A25	AT3	AT3	A61	GAB1/IO03RSB0V0	GAC1/IO05RSB0V0		
A26	AC3	AC3	A62	VCC	VCC		
A27	AV4	AV4	A63	GAA1/IO01RSB0V0	GAB0/IO02RSB0V0		
A28	AC4	AC4	A64	NC	NC		
A29	AT4	AT4	B1	VCOMPLA	VCOMPLA		
A30	NC	AG5	B2	GAA2/IO52PDB3V0	GAC2/IO74PDB3V0		
A31	NC	AV5	B3	GAC2/IO51PDB3V0	GFA2/IO71PDB3V0		
A32	ADCGNDREF	ADCGNDREF	B4	GFB2/IO50PDB3V0	GFB2/IO70PSB3V0		
A33	VCC33A	VCC33A	B5	VCC	VCC		
A34	GNDA	GNDA	B6	GFC0/IO49NDB3V0	GFC0/IO68NDB3V0		
A35	PTBASE	PTBASE	B7	GEB1/IO45PDB3V0	NC		
A36	VCCNVM	VCCNVM	B8	VCCOSC	VCCOSC		

Pin Number AFS090 Function AFS250 Function AFS600 Function AFS1500 Function M15 TRST TRST TRST TRST TRST M16 GND GND GND GND GND N1 GEB2/IO42PD83V0 GEB2/IO59PDB3V0 GEB2/IO59PDB4V0 GEB2/IO68PDB4V0 N2 GEA2/IO42PD83V0 GEA2/IO58PPB3V0 GEA2/IO58PPB4V0 GEA2/IO58PPB4V0 GEA2/IO58PPB4V0 N3 NC GEA2/IO58PPB3V0 GEA2/IO58PPB4V0 GEA2/IO58PPB4V0 GEA2/IO58PPB4V0 N4 VCC33PMP VCC33PMP VCC33PMP VCC33PMP N5 VCC15A VCC15A VCC15A VCC15A N6 NC NC AG3 AG3 AG3 N8 AG3 AG3 AG5 AG5 N9 AV3 AV3 AV5 AV5 N10 AG4 AG6 AG6 N11 NC NC AC8 AC8 N11 NC NC AC8 AC8	FG256							
M15 TRST TRST TRST TRST M16 GND GND GND GND GND N1 GEB2/IO42PDB3V0 GEB2/IO59PDB3V0 GEB2/IO59PDB4V0 GEB2/IO58PDB4V0 GEB2/IO58PDB4V0 N2 GEA2/IO42NDB3V0 IO59NDB3V0 GEA2/IO58PPB4V0 GEA2/IO58PPB4V0 GEA2/IO58PPB4V0 N3 NC GEA2/IO58PPB3V0 GEA2/IO58PPB4V0 GEA2/IO58PPB4V0 GEA2/IO58PPB4V0 N4 VCC33PMP VCC33PMP VCC33PMP VCC33PMP VCC15A N6 NC NC AG0 AG0 AG3 N6 NC NC AG3 AC3 AC3 N8 AG3 AG3 AG5 AV5 N10 AG4 AG4 AG6 AG6 N11 NC NC AC8 AC8 N12 GNDA GNDA GNDA GNDA N13 VCC33A VCC33A VCC33A VCC3VM N14 VCCNVM VCCNVM VCC	Pin Number	AFS090 Function	AFS250 Function	AFS600 Function	AFS1500 Function			
M16 GND GND GND GND N1 GEB2/IO42PDB3V0 GEB2/IO59PDB3V0 GEB2/IO59PDB4V0 GEB2/IO80PDB4V0 N2 GEA2/IO42NDB3V0 IO59NDB3V0 GEA2/IO58PPB4V0 GEA2/IO86PDB4V0 N3 NC GEA2/IO58PPB3V0 GEA2/IO58PPB4V0 GEA2/IO85PPB4V0 N4 VCC33PMP VCC33PMP VCC33PMP VCC33PMP N5 VCC15A VCC15A VCC15A VCC15A N6 NC NC AG0 AG0 N7 AC1 AC1 AC3 AC3 N8 AG3 AG3 AV5 AV5 N10 AG4 AG4 AG6 AG6 N11 NC NC AC8 AC8 N12 GNDA GNDA GNDA GNDA GNDA N13 VCC33A VCC33A VCC33A VCC33A N14 VCCNVM VCCNVM VCCNVM VCCNVM N15 TCK TCK TCK TCK <td>M15</td> <td>TRST</td> <td>TRST</td> <td>TRST</td> <td>TRST</td>	M15	TRST	TRST	TRST	TRST			
N1 GEB2/IO42PDB3V0 GEB2/IO59PDB3V0 GEB2/IO59PDB4V0 GEB2/IO68PDB4V0 N2 GEA2/IO42NDB3V0 IO59NDB3V0 IO59NDB4V0 IO68NDB4V0 N3 NC GEA2/IO58PPB3V0 GEA2/IO58PPB4V0 GEA2/IO68PPB4V0 N4 VCC33PMP VCC33PMP VCC33PMP VCC33PMP N5 VCC15A VCC15A VCC15A VCC15A N6 NC NC AG0 AG0 N7 AC1 AC1 AC3 AC3 N8 AG3 AG3 AG5 AG6 N10 AG4 AG4 AG6 AG6 N11 NC NC AC8 AC8 N12 GNDA GNDA GNDA GNDA N13 VCC33A VCC33A VCC33A VCC33A N14 VCCNVM VCCNVM VCCNVM VCCNVM N15 TCK TCK TCK TCK N16 TDI TDI TDI P1	M16	GND	GND	GND	GND			
N2 GEA2/IO42NDB3V0 IO59NDB3V0 IO59NDB4V0 IO86NDB4V0 N3 NC GEA2/IO58PPB3V0 GEA2/IO58PPB4V0 GEA2/IO68PPB4V0 N4 VCC33PMP VCC33PMP VCC33PMP VCC33PMP N5 VCC15A VCC15A VCC15A VCC15A N6 NC NC AG0 AG0 N7 AC1 AC1 AC3 AC3 N8 AG3 AG3 AG5 AG5 N9 AV3 AV3 AV5 AV5 N10 AG4 AG4 AG6 AG6 N11 NC NC AC8 AC8 N12 GNDA GNDA GNDA GNDA GNDA N13 VCC33A VCC33A	N1	GEB2/IO42PDB3V0	GEB2/IO59PDB3V0	GEB2/IO59PDB4V0	GEB2/IO86PDB4V0			
N3 NC GEA2/IO58PPB3V0 GEA2/IO58PPB4V0 GEA2/IO85PPB4V0 N4 VCC33PMP VCC33PMP VCC33PMP VCC33PMP N5 VCC15A VCC15A VCC15A VCC33PMP N6 NC NC AG0 AG0 N7 AC1 AC1 AC3 AC3 N8 AG3 AG3 AG5 AG5 N9 AV3 AV3 AV5 AV5 N10 AG4 AG4 AG6 AG6 N11 NC NC AC8 AC8 N12 GNDA GNDA GNDA GNDA N13 VCC33A VCC33A VCC33A VCC33A N14 VCCNVM VCCNVM VCCNVM VCCNVM N15 TCK TCK TCK TCK N16 TDI TDI TDI TDI P1 VCCNVM VCCNVM VCCNVM VCCNVM P2 GNDNVM GNDA	N2	GEA2/IO42NDB3V0	IO59NDB3V0	IO59NDB4V0	IO86NDB4V0			
N4 VCC33PMP VCC33PMP VCC33PMP VCC33PMP N5 VCC15A VCC15A VCC15A VCC15A N6 NC NC AG0 AG0 N7 AC1 AC1 AC3 AC3 N8 AG3 AG3 AG5 AG5 N9 AV3 AV3 AV5 AV5 N10 AG4 AG4 AG6 AG6 N11 NC NC AC8 AC8 N12 GNDA GNDA GNDA GNDA GNDA N13 VCC33A VCC33A VCC33A VCC33A N14 VCCNVM VCCNVM VCCNVM VCCNVM N15 TCK TCK TCK TCK N16 TDI TDI TDI TDI P1 VCCNVM VCCNVM VCCNVM P2 GNDNVM GNDA GNDA GNDA P4 NC NC AC0 AC0 <	N3	NC	GEA2/IO58PPB3V0	GEA2/IO58PPB4V0	GEA2/IO85PPB4V0			
N5 VCC15A VCC15A VCC15A VCC15A N6 NC NC AG0 AG0 N7 AC1 AC1 AC3 AC3 N8 AG3 AG3 AG5 AG5 N9 AV3 AV3 AV5 AV5 N10 AG4 AG4 AG6 AG6 N11 NC NC AC8 AC8 N13 VCC33A VCC33A VCC33A VCC33A N14 VCCNVM VCCNVM VCCNVM VCCNVM N15 TCK TCK TCK TCK N16 TDI TDI TDI TDI P1 VC	N4	VCC33PMP	VCC33PMP	VCC33PMP	VCC33PMP			
N6NCNCAG0AG0N7AC1AC1AC3AC3N8AG3AG3AG5AG5N9AV3AV3AV5AV5N10AG4AG4AG6AG6N11NCNCAC8AC8N12GNDAGNDAGNDAGNDAN13VCC33AVCC33AVCC33AVCC33AN14VCCNVMVCCNVMVCCNVMVCCNVMN15TCKTCKTCKTCKN16TDITDITDITDIP1VCCNVMVCCNVMVCCNVMP2GNDAGNDAGNDAP4NCNCAC0P5NCNCAG1P6NCNCAG1P7AG0AG2AG2AG2AG2AG2AG2AG2P1NCNCAV1AV1P1NCP1NCNCAG0AG0AG2AG2AG2AG2AG3AG2AG4AG4AG2AG2AG2AG2AG2AG2AG2AG2AG3AG2AG2AG2AG2AG2AG3AG3AG4AG4AG4AG2AG2AG2AG2AG3AG3AG3AG3AG3AG3AG4AG4AG4 <td< td=""><td>N5</td><td>VCC15A</td><td>VCC15A</td><td>VCC15A</td><td>VCC15A</td></td<>	N5	VCC15A	VCC15A	VCC15A	VCC15A			
N7AC1AC1AC3AC3N8AG3AG3AG5AG5N9AV3AV3AV5AV5N10AG4AG4AG6AG6N11NCNCAC8AC8N12GNDAGNDAGNDAGNDAN13VCC33AVCC33AVCC33AVCC33AN14VCCNVMVCCNVMVCCNVMVCCNVMN15TCKTCKTCKTCKN16TDITDITDITDIP1VCCNVMVCCNVMVCCNVMP2GNDAGNDAGNDAP3GNDAGNDAGNDAP4NCNCAC0P5NCNCAC1P6NCNCAC2AG0AG2AG2AG2AG2AG2AG0AG0AG2P10NCAC5AC7AC7P11NCNCAG8AG8P12NCNCAG8AG8	N6	NC	NC	AG0	AG0			
N8AG3AG3AG5AG5N9AV3AV3AV3AV5AV5N10AG4AG4AG6AG6N11NCNCAC8AC8N12GNDAGNDAGNDAGNDAN13VCC33AVCC33AVCC33AVCC33AN14VCCNVMVCCNVMVCCNVMVCCNVMN15TCKTCKTCKTCKN16TDITDITDITDIP1VCCNVMVCCNVMVCCNVMP2GNDNVMGNDAGNDAP3GNDAGNDAGNDAP4NCNCAC0P5NCNCAC1P6NCNCAG2P8AG2AG2AG4P9GNDAGNDAGNDAP10NCAC5AC7P11NCNCAV8P12NCNCAC8AG8AG8	N7	AC1	AC1	AC3	AC3			
N9AV3AV3AV5AV5N10AG4AG4AG6AG6N11NCNCAC8AG8N12GNDAGNDAGNDAGNDAN13VCC33AVCC33AVCC33AVCC33AN14VCCNVMVCCNVMVCCNVMVCCNVMN15TCKTCKTCKTCKN16TDITDITDITDIP1VCCNVMVCCNVMVCCNVMP2GNDNVMGNDAGNDAP3GNDAGNDAGNDAP4NCNCAC0P5NCNCAC1P6NCNCAG2P8AG2AG2AG2P9GNDAGNDAGNDAP10NCAC5AC7P11NCNCAC8P12NCNCAC7P11NCNCAC8P12NCNCAG8AG8	N8	AG3	AG3	AG5	AG5			
N10AG4AG4AG6AG6N11NCNCAC8AC8N12GNDAGNDAGNDAGNDAN13VCC33AVCC33AVCC33AVCC33AN14VCCNVMVCCNVMVCCNVMVCCNVMN15TCKTCKTCKTCKN16TDITDITDITDIP1VCCNVMVCCNVMVCCNVMP2GNDNVMGNDAGNDAP3GNDAGNDAGNDAP4NCNCAC0P5NCNCAG1P6NCNCAG2P8AG2AG2AG2P9GNDAGNDAGNDAP10NCAC5AC7P11NCNCAV8P12NCNCAC8AG8AG8AG8	N9	AV3	AV3	AV5	AV5			
N11NCNCAC8AC8N12GNDAGNDAGNDAGNDAGNDAN13VCC33AVCC33AVCC33AVCC33AN14VCCNVMVCCNVMVCCNVMVCCNVMN15TCKTCKTCKTCKN16TDITDITDITDIP1VCCNVMVCCNVMVCCNVMP2GNDNVMGNDNVMGNDNVMP3GNDAGNDAGNDAP4NCNCAC0P5NCNCAC1P7AG0AG2AG2P8AG2AG2AG4P9GNDAGNDAGNDAP10NCAC5AC7P11NCNCAV8P12NCNCAC8	N10	AG4	AG4	AG6	AG6			
N12GNDAGNDAGNDAGNDAN13VCC33AVCC33AVCC33AVCC33AN14VCCNVMVCCNVMVCCNVMVCCNVMN15TCKTCKTCKTCKN16TDITDITDITDIP1VCCNVMVCCNVMVCCNVMP2GNDNVMGNDNVMGNDNVMP3GNDAGNDAGNDAP4NCNCAC0P5NCNCAG1P6NCNCAG2P8AG2AG2AG4P9GNDAGNDAGNDAP10NCAC5AC7P11NCNCAV8P12NCNCAC8AG8AG8	N11	NC	NC	AC8	AC8			
N13VCC33AVCC33AVCC33AVCC33AN14VCCNVMVCCNVMVCCNVMVCCNVMN15TCKTCKTCKTCKN16TDITDITDITDIP1VCCNVMVCCNVMVCCNVMP2GNDNVMGNDNVMGNDNVMP3GNDAGNDAGNDAP4NCNCAC0P5NCNCAG1P6NCNCAG2P8AG2AG2P9GNDAGNDAGNDAP10NCAC5AC7P11NCNCAV8P12NCNCAG8AG8AG8	N12	GNDA	GNDA	GNDA	GNDA			
N14VCCNVMVCCNVMVCCNVMN15TCKTCKTCKTCKN16TDITDITDITDIP1VCCNVMVCCNVMVCCNVMVCCNVMP2GNDNVMGNDNVMGNDNVMGNDNVMP3GNDAGNDAGNDAGNDAP4NCNCAC0AC0P5NCNCAG1AG1P6NCNCAV1AV1P7AG0AG2AG2AG2P8AG2AG2AG4AG4P9GNDAGNDAGNDAGNDAP10NCAC5AC7AC7P11NCNCNCAG8AV8P12NCNCAC8AG8	N13	VCC33A	VCC33A	VCC33A	VCC33A			
N15TCKTCKTCKTCKN16TDITDITDITDIP1VCCNVMVCCNVMVCCNVMVCCNVMP2GNDNVMGNDNVMGNDNVMGNDNVMP3GNDAGNDAGNDAGNDAP4NCNCAC0AC0P5NCNCAG1AG1P6NCNCAV1AV1P7AG0AG2AG2P8AG2AG2AG4AG4P9GNDAGNDAGNDAGNDAP10NCAC5AC7AC7P11NCNCAC8AV8P12NCNCAG8AG8	N14	VCCNVM	VCCNVM	VCCNVM	VCCNVM			
N16TDITDITDITDIP1VCCNVMVCCNVMVCCNVMVCCNVMP2GNDNVMGNDNVMGNDNVMGNDNVMP3GNDAGNDAGNDAGNDAP4NCNCAC0AC0P5NCNCAG1AG1P6NCNCAG2AG2P8AG2AG2AG2AG4P9GNDAGNDAGNDAGNDAP10NCAC5AC7AC7P11NCNCAC8AG8P12NCNCAG8AG8	N15	TCK	TCK	TCK	TCK			
P1VCCNVMVCCNVMVCCNVMVCCNVMP2GNDNVMGNDNVMGNDNVMGNDNVMGNDNVMP3GNDAGNDAGNDAGNDAGNDAP4NCNCAC0AC0P5NCNCAG1AG1P6NCNCAV1AV1P7AG0AG2AG2P8AG2AG2AG4AG4P9GNDAGNDAGNDAGNDAP10NCAC5AC7AC7P11NCNCAG8AG8	N16	TDI	TDI	TDI	TDI			
P2GNDNVMGNDNVMGNDNVMGNDNVMP3GNDAGNDAGNDAGNDAP4NCNCAC0AC0P5NCNCAG1AG1P6NCNCAV1AV1P7AG0AG0AG2AG2P8AG2AG2AG4AG4P9GNDAGNDAGNDAGNDAP10NCAC5AC7AC7P11NCNCAC8AV8P12NCNCAG8AG8	P1	VCCNVM	VCCNVM	VCCNVM	VCCNVM			
P3GNDAGNDAGNDAGNDAP4NCNCAC0AC0P5NCNCAG1AG1P6NCNCAV1AV1P7AG0AG0AG2AG2P8AG2AG2AG4AG4P9GNDAGNDAGNDAGNDAP10NCAC5AC7AC7P11NCNCAC8AG8	P2	GNDNVM	GNDNVM	GNDNVM	GNDNVM			
P4NCNCAC0AC0P5NCNCNCAG1AG1P6NCNCAV1AV1P7AG0AG0AG2AG2P8AG2AG2AG4AG4P9GNDAGNDAGNDAGNDAP10NCAC5AC7AC7P11NCNCAG8AG8	P3	GNDA	GNDA	GNDA	GNDA			
P5NCNCAG1AG1P6NCNCAV1AV1P7AG0AG0AG2AG2P8AG2AG2AG4AG4P9GNDAGNDAGNDAGNDAP10NCAC5AC7AC7P11NCNCAV8AV8P12NCNCAG8AG8	P4	NC	NC	AC0	AC0			
P6NCNCAV1AV1P7AG0AG0AG2AG2P8AG2AG2AG4AG4P9GNDAGNDAGNDAGNDAP10NCAC5AC7AC7P11NCNCAV8AV8P12NCNCAG8AG8	P5	NC	NC	AG1	AG1			
P7AG0AG0AG2AG2P8AG2AG2AG4AG4P9GNDAGNDAGNDAGNDAP10NCAC5AC7AC7P11NCNCAV8AV8P12NCNCAG8AG8	P6	NC	NC	AV1	AV1			
P8AG2AG2AG2AG4AG4P9GNDAGNDAGNDAGNDAGNDAP10NCAC5AC7AC7P11NCNCAV8AV8P12NCNCAG8AG8	P7	AG0	AG0	AG2	AG2			
P9GNDAGNDAGNDAGNDAP10NCAC5AC7AC7P11NCNCAV8AV8P12NCNCAG8AG8	P8	AG2	AG2	AG4	AG4			
P10 NC AC5 AC7 AC7 P11 NC NC AV8 AV8 P12 NC NC AG8 AG8	P9	GNDA	GNDA	GNDA	GNDA			
P11 NC NC AV8 AV8 P12 NC NC AG8 AG8	P10	NC	AC5	AC7	AC7			
P12 NC NC AG8 AG8	P11	NC	NC	AV8	AV8			
	P12	NC	NC	AG8	AG8			
P13 NC NC AV9 AV9	P13	NC	NC	AV9	AV9			
P14 ADCGNDREF ADCGNDREF ADCGNDREF ADCGNDREF	P14	ADCGNDREF	ADCGNDREF	ADCGNDREF	ADCGNDREF			
P15 PTBASE PTBASE PTBASE PTBASE PTBASE	P15	PTBASE	PTBASE	PTBASE	PTBASE			
P16 GNDNVM GNDNVM GNDNVM GNDNVM	P16	GNDNVM	GNDNVM	GNDNVM	GNDNVM			
R1 VCCIB3 VCCIB3 VCCIB4 VCCIB4	R1	VCCIB3	VCCIB3	VCCIB4	VCCIB4			
R2 PCAP PCAP PCAP PCAP PCAP	R2	PCAP	PCAP	PCAP	PCAP			
R3 NC NC AT1 AT1	R3	NC	NC	AT1	AT1			
R4 NC NC ATO ATO	R4	NC	NC	AT0	AT0			

5 – Datasheet Information

List of Changes

The following table lists critical changes that were made in each revision of the Fusion datasheet.

Revision	Changes	Page					
Revision 6 (March 2014)	Note added for the discontinuance of QN108 and QN180 packages to the "Package I/Os: Single-/Double-Ended (Analog)" table and the "Temperature Grade Offerings" table (SAR 55113, PDN 1306).	II and IV					
	Updated details about page programming time in the "Program Operation" section (SAR 49291).	2-46					
	ADC_START changed to ADCSTART in the "ADC Operation" section (SAR 44104).	2-104					
Revision 5 (January 2014)	Calibrated offset values (AFS090, AFS250) of the external temperature monitor in Table 2-49 • Analog Channel Specifications have been updated (SAR 51464).						
	Specifications for the internal temperature monitor in Table 2-49 • Analog Channel Specifications have been updated (SAR 50870).						
Revision 4 (January 2013)	The "Product Ordering Codes" section has been updated to mention "Y" as "Blank" mentioning "Device Does Not Include License to Implement IP Based on the Cryptography Research, Inc. (CRI) Patent Portfolio" (SAR 43177).						
	The note in Table 2-12 • Fusion CCC/PLL Specification referring the reader to SmartGen was revised to refer instead to the online help associated with the core (SAR 42563).						
	Table 2-49 • Analog Channel Specifications was modified to update the uncalibrated offset values (AFS250) of the external and internal temperature monitors (SAR 43134).						
	In Table 2-57 • Prescaler Control Truth Table—AV ($x = 0$), AC ($x = 1$), and AT ($x = 3$), changed the column heading from 'Full-Scale Voltage' to 'Full Scale Voltage in 10-Bit Mode', and added and updated Notes as required (SAR 20812).	2-130					
	The values for the Speed Grade (-1 and Std.) for FDDRIMAX (Table 2-180 • Input DDR Propagation Delays) and values for the Speed Grade (-2 and Std.) for FDDOMAX (Table 2-182 • Output DDR Propagation Delays) had been inadvertently interchanged. This has been rectified (SAR 38514).	2-220, 2-222					
	Added description about what happens if a user connects VAREF to an external 3.3 V on their board to the "VAREF Analog Reference Voltage" section (SAR 35188).	2-225					
	Added a note to Table 3-2 • Recommended Operating Conditions1 (SAR 43429): The programming temperature range supported is $T_{ambient} = 0^{\circ}C$ to 85°C.	3-3					
	Added the Package Thermal details for AFS600-PQ208 and AFS250-PQ208 to Table 3-6 • Package Thermal Resistance (SAR 37816). Deleted the Die Size column from the table (SAR 43503).	3-7					
	Libero Integrated Design Environment (IDE) was changed to Libero System-on-Chip (SoC) throughout the document (SAR 42495).	NA					
Devision 0	Live at Power-Up (LAPU) has been replaced with 'Instant On'.	1 . 15.7					
Revision 3 (August 2012)	Microblade U1AFS250 and U1AFS1500 devices were added to the product tables.	I – IV					
(A sentence pertaining to the analog I/Os was added to the "Specifying I/O States During Programming" section (SAR 34831).	1-9					

Revision	Changes	Page						
Advance v1.5 (continued)	This bullet was added to the "Integrated A/D Converter (ADC) and Analog I/O" section: ADC Accuracy is Better than 1%	I						
	In the "Integrated Analog Blocks and Analog I/Os" section, ±4 LSB was changed to 0.72. The following sentence was deleted:	1-4						
	The input range for voltage signals is from -12 V to $+12$ V with full-scale output values from 0.125 V to 16 V.							
	In addition, 2°C was changed to 3°C:	1						
	"One analog input in each quad can be connected to an external temperature monitor diode and achieves detection accuracy of ±3°C."							
	The following sentence was deleted:	1						
	The input range for voltage signals is from -12 V to +12 V with full-scale output values from 0.125 V to 16 V.							
	The title of the datasheet changed from Actel Programmable System Chips to Actel Fusion Mixed Signal FPGAs. In addition, all instances of programmable system chip were changed to mixed signal FPGA.	N/A						
Advance v1.4 (July 2008)	In Table 3-8 · Quiescent Supply Current Characteristics (IDDQ)1, footnote references were updated for I_{DC2} and I_{DC3} . Footnote 3 and 4 were updated and footnote 5 is new.							
Advance v1 3	tvance v1.3 The "ADC Description" section was significantly undated. Please review carefully							
(July 2008)								
Advance v1.2	Table 2-25 • Flash Memory Block Timing was significantly updated.	2-55						
(May 2008)	The "V _{AREF} Analog Reference Voltage" pin description section was significantly update. Please review it carefully.	2-226						
	Table 2-45 • ADC Interface Timing was significantly updated.	2-110						
	Table 2-56 • Direct Analog Input Switch Control Truth Table—AV ($x = 0$), AC ($x = 1$), and AT ($x = 3$) was significantly updated.	2-131						
	The following sentence was deleted from the "Voltage Monitor" section:	2-86						
	The Analog Quad inputs are tolerant up to 12 V + 10%.	l						
	The "180-Pin QFN" figure was updated. D1 to D4 are new and the figure was changed to bottom view. The note below the figure is new.	3-3						
Advance v1.1	The following text was incorrect and therefore deleted:	2-204						
(May 2008)	VCC33A Analog Power Filter	1						
	Analog power pin for the analog power supply low-pass filter. An external 100 pF capacitor should be connected between this pin and ground.	l						
	There is still a description of V _{CC33A} on page 2-224.	L						