

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

E·XF

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	276480
Number of I/O	252
Number of Gates	1500000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	676-BGA
Supplier Device Package	676-FBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/afs1500-2fgg676

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Fusion Device Architecture Overview

Figure 1 • Fusion Device Architecture Overview (AFS600)

Package I/Os: Single-/Double-Ended (Analog)

Fusion Devices	AFS090	AFS250	AFS600	AFS1500
ARM Cortex-M1 Devices		M1AFS250	M1AFS600	M1AFS1500
Pigeon Point Devices			P1AFS600 ¹	P1AFS1500 ¹
MicroBlade Devices		U1AFS250 ²	U1AFS600 ²	U1AFS1500 ²
QN108 ³	37/9 (16)			
QN180 ³	60/16 (20)	65/15 (24)		
PQ208 ⁴		93/26 (24)	95/46 (40)	
FG256	75/22 (20)	114/37 (24)	119/58 (40)	119/58 (40)
FG484			172/86 (40)	223/109 (40)
FG676				252/126 (40)
Notes:	•	1		•

1. Pigeon Point devices are only offered in FG484 and FG256.

2. MicroBlade devices are only offered in FG256.

3. Package not available.

4. Fusion devices in the same package are pin compatible with the exception of the PQ208 package (AFS250 and AFS600).

Fusion Device Family Overview

The FlashPoint tool in the Fusion development software solutions, Libero SoC and Designer, has extensive support for flash memory blocks and FlashROM. One such feature is auto-generation of sequential programming files for applications requiring a unique serial number in each part. Another feature allows the inclusion of static data for system version control. Data for the FlashROM can be generated quickly and easily using the Libero SoC and Designer software tools. Comprehensive programming file support is also included to allow for easy programming of large numbers of parts with differing FlashROM contents.

SRAM and FIFO

Fusion devices have embedded SRAM blocks along the north and south sides of the device. Each variable-aspect-ratio SRAM block is 4,608 bits in size. Available memory configurations are 256×18, 512×9, 1k×4, 2k×2, and 4k×1 bits. The individual blocks have independent read and write ports that can be configured with different bit widths on each port. For example, data can be written through a 4-bit port and read as a single bitstream. The SRAM blocks can be initialized from the flash memory blocks or via the device JTAG port (ROM emulation mode), using the UJTAG macro.

In addition, every SRAM block has an embedded FIFO control unit. The control unit allows the SRAM block to be configured as a synchronous FIFO without using additional core VersaTiles. The FIFO width and depth are programmable. The FIFO also features programmable Almost Empty (AEMPTY) and Almost Full (AFULL) flags in addition to the normal EMPTY and FULL flags. The embedded FIFO control unit contains the counters necessary for the generation of the read and write address pointers. The SRAM/FIFO blocks can be cascaded to create larger configurations.

Clock Resources

PLLs and Clock Conditioning Circuits (CCCs)

Fusion devices provide designers with very flexible clock conditioning capabilities. Each member of the Fusion family contains six CCCs. In the two larger family members, two of these CCCs also include a PLL; the smaller devices support one PLL.

The inputs of the CCC blocks are accessible from the FPGA core or from one of several inputs with dedicated CCC block connections.

The CCC block has the following key features:

- Wide input frequency range (f_{IN CCC}) = 1.5 MHz to 350 MHz
- Output frequency range ($f_{OUT CCC}$) = 0.75 MHz to 350 MHz
- Clock phase adjustment via programmable and fixed delays from -6.275 ns to +8.75 ns
- Clock skew minimization (PLL)
- Clock frequency synthesis (PLL)
- · On-chip analog clocking resources usable as inputs:
 - 100 MHz on-chip RC oscillator
 - Crystal oscillator

Additional CCC specifications:

- Internal phase shift = 0°, 90°, 180°, and 270°
- Output duty cycle = $50\% \pm 1.5\%$
- Low output jitter. Samples of peak-to-peak period jitter when a single global network is used:
 - 70 ps at 350 MHz
 - 90 ps at 100 MHz
 - 180 ps at 24 MHz
 - Worst case < 2.5% × clock period
- Maximum acquisition time = 150 µs
- Low power consumption of 5 mW

Fusion Device Family Overview

Specifying I/O States During Programming

You can modify the I/O states during programming in FlashPro. In FlashPro, this feature is supported for PDB files generated from Designer v8.5 or greater. See the *FlashPro User Guide* for more information.

Note: PDB files generated from Designer v8.1 to Designer v8.4 (including all service packs) have limited display of Pin Numbers only.

The I/Os are controlled by the JTAG Boundary Scan register during programming, except for the analog pins (AC, AT and AV). The Boundary Scan register of the AG pin can be used to enable/disable the gate driver in software v9.0.

- 1. Load a PDB from the FlashPro GUI. You must have a PDB loaded to modify the I/O states during programming.
- 2. From the FlashPro GUI, click **PDB Configuration**. A FlashPoint Programming File Generator window appears.
- Click the Specify I/O States During Programming button to display the Specify I/O States During Programming dialog box.
- 4. Sort the pins as desired by clicking any of the column headers to sort the entries by that header. Select the I/Os you wish to modify (Figure 1-3).
- Set the I/O Output State. You can set Basic I/O settings if you want to use the default I/O settings for your pins, or use Custom I/O settings to customize the settings for each pin. Basic I/O state settings:

1 - I/O is set to drive out logic High

0 – I/O is set to drive out logic Low

Last Known State – I/O is set to the last value that was driven out prior to entering the programming mode, and then held at that value during programming

Z -Tri-State: I/O is tristated

Port Name	Macro Cell	Pin Number	1/O State (Output Only)
BIST	ADLIB:INBUF	T2	1
BYPASS_IO	ADLIB:INBUF	К1	1
CLK	ADLIB:INBUF	B1	1
ENOUT	ADLIB:INBUF	J16	1
LED	ADLIB:OUTBUF	M3	0
MONITOR[0]	ADLIB:OUTBUF	B5	0
MONITOR[1]	ADLIB:OUTBUF	C7	Z
MONITOR[2]	ADLIB:OUTBUF	D9	Z
MONITOR[3]	ADLIB:OUTBUF	D7	Z
MONITOR[4]	ADLIB:OUTBUF	A11	Z
OEa	ADLIB:INBUF	E4	Z
OEb	ADLIB:INBUF	F1	Z
OSC_EN	ADLIB:INBUF	К3	Z
PAD[10]	ADLIB:BIBUF_LVCMOS33U	M8	Z
PAD[11]	ADLIB:BIBUF_LVCMOS33D	B7	Z
PAD[12]	ADLIB:BIBUF_LVCMOS33U	D11	Z
PAD[13]	ADLIB:BIBUF_LVCMOS33D	C12	Z
PAD[14]	ADLIB:BIBUF LVCMOS33U	B6	7

Figure 1-3 • I/O States During Programming Window

6. Click **OK** to return to the FlashPoint – Programming File Generator window.

I/O States During programming are saved to the ADB and resulting programming files after completing programming file generation.

Clock Aggregation

Clock aggregation allows for multi-spine clock domains. A MUX tree provides the necessary flexibility to allow long lines or I/Os to access domains of one, two, or four global spines. Signal access to the clock aggregation system is achieved through long-line resources in the central rib, and also through local resources in the north and south ribs, allowing I/Os to feed directly into the clock system. As Figure 2-14 indicates, this access system is contiguous.

There is no break in the middle of the chip for north and south I/O VersaNet access. This is different from the quadrant clocks, located in these ribs, which only reach the middle of the rib. Refer to the *Using Global Resources in Actel Fusion Devices* application note.

Figure 2-14 • Clock Aggregation Tree Architecture

VersaNet Timing Characteristics

Global clock delays include the central rib delay, the spine delay, and the row delay. Delays do not include I/O input buffer clock delays, as these are dependent upon I/O standard, and the clock may be driven and conditioned internally by the CCC module. Table 2-5, Table 2-6, Table 2-7, and Table 2-8 on page 2-17 present minimum and maximum global clock delays within the device Minimum and maximum delays are measured with minimum and maximum loading, respectively.

Timing Characteristics

 Table 2-5 • AFS1500 Global Resource Timing

 Commercial Temperature Range Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	_	2	_	1	S	Unito	
	Description	Min. ¹	Max. ²	Min. ¹	Max. ²	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	1.53	1.75	1.74	1.99	2.05	2.34	ns
t _{RCKH}	Input High Delay for Global Clock	1.53	1.79	1.75	2.04	2.05	2.40	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock							ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock							ns
t _{RCKSW}	Maximum Skew for Global Clock		0.26		0.29		0.34	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

Table 2-6 • AFS600 Global Resource Timing

Commercial Temperature Range Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	-	2	-	-1	S	Unite	
	Description	Min. ¹	Max. ²	Min. ¹	Max. ²	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	1.27	1.49	1.44	1.70	1.69	2.00	ns
t _{RCKH}	Input High Delay for Global Clock	1.26	1.54	1.44	1.75	1.69	2.06	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock							ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock							ns
t _{RCKSW}	Maximum Skew for Global Clock		0.27		0.31		0.36	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

Conversely, when writing 4-bit values and reading 9-bit values, the ninth bit of a read operation will be undefined. The RAM blocks employ little-endian byte order for read and write operations.

Figure 2-47 • Fusion RAM Block with Embedded FIFO Controller

Figure 2-52 • RAM Write, Output Retained. Applicable to both RAM4K9 and RAM512x18.

Figure 2-53 • RAM Write, Output as Write Data (WMODE = 1). Applicable to RAM4K9 Only.

Device Architecture

Gain Error

The gain error of an ADC indicates how well the slope of an actual transfer function matches the slope of the ideal transfer function. Gain error is usually expressed in LSB or as a percent of full-scale (%FSR). Gain error is the full-scale error minus the offset error (Figure 2-84).

Figure 2-84 • Gain Error

Gain Error Drift

Gain-error drift is the variation in gain error due to a change in ambient temperature, typically expressed in ppm/°C.

Device Architecture

ADC Input Multiplexer

At the input to the Fusion ADC is a 32:1 multiplexer. Of the 32 input channels, up to 30 are user definable. Two of these channels are hardwired internally. Channel 31 connects to an internal temperature diode so the temperature of the Fusion device itself can be monitored. Channel 0 is wired to the FPGA's 1.5 V VCC supply, enabling the Fusion device to monitor its own power supply. Doing this internally makes it unnecessary to use an analog I/O to support these functions. The balance of the MUX inputs are connected to Analog Quads (see the "Analog Quad" section on page 2-80). Table 2-40 defines which Analog Quad inputs are associated with which specific analog MUX channels. The number of Analog Quads present is device-dependent; refer to the family list in the "Fusion Family" table on page I of this datasheet for the number of quads per device. Regardless of the number of quads populated in a device, the internal connections to both VCC and the internal temperature diode remain on Channels 0 and 31, respectively. To sample the internal temperature monitor, it must be strobed (similar to the AT pads). The TMSTBINT pin on the Analog Block macro is the control for strobing the internal temperature measurement diode.

To determine which channel is selected for conversion, there is a five-pin interface on the Analog Block, CHNUMBER[4:0], defined in Table 2-39.

Channel Number	CHNUMBER[4:0]
0	00000
1	00001
2	00010
3	00011
•	•
30	11110
31	11111

Table 2-39 • Channel Selection

Table 2-40 shows the correlation between the analog MUX input channels and the analog input pins.

Table 2-40 • Analog MUX Channels

Analog MUX Channel	Signal	Analog Quad Number
0	Vcc_analog	
1	AV0	
2	AC0	Analog Quad 0
3	AT0	
4	AV1	
5	AC1	Analog Quad 1
6	AT1	
7	AV2	
8	AC2	Analog Quad 2
9	AT2	
10	AV3	
11	AC3	Analog Quad 3
12	AT3	
13	AV4	
14	AC4	Analog Quad 4
15	AT4	7

EQ 16 through EQ 18 can be used to calculate the acquisition time required for a given input. The STC signal gives the number of sample periods in ADCCLK for the acquisition time of the desired signal. If the actual acquisition time is higher than the STC value, the settling time error can affect the accuracy of the ADC, because the sampling capacitor is only partially charged within the given sampling cycle. Example acquisition times are given in Table 2-44 and Table 2-45. When controlling the sample time for the ADC along with the use of the active bipolar prescaler, current monitor, or temperature monitor, the minimum sample time(s) for each must be obeyed. EQ 19 can be used to determine the appropriate value of STC.

You can calculate the minimum actual acquisition time by using EQ 16:

EQ 16

EQ 17

For 0.5 LSB gain error, VOUT should be replaced with (VIN –(0.5 × LSB Value)): (VIN – 0.5 × LSB Value) = VIN(1 – $e^{-t/RC}$)

$$1 - e^{-e^{-1}}$$

Solving EQ 17:

EQ 18

where $R = Z_{INAD} + R_{SOURCE}$ and $C = C_{INAD}$. Calculate the value of STC by using EQ 19.

t_{SAMPLE} = (2 + STC) x (1 / ADCCLK) or t_{SAMPLE} = (2 + STC) x (ADC Clock Period)

EQ 19

where ADCCLK = ADC clock frequency in MHz.

where VIN is the ADC reference voltage (VREF)

 t_{SAMPLE} = 0.449 µs from bit resolution in Table 2-44.

ADC Clock frequency = 10 MHz or a 100 ns period.

STC = (t_{SAMPLE} / (1 / 10 MHz)) - 2 = 4.49 - 2 = 2.49.

You must round up to 3 to accommodate the minimum sample time.

Table 2-44 • Acquisition Time Example with VAREF = 2.56 V

VIN = 2.56V, R = 4K (R _{SOURCE} ~ 0), C = 18 pF							
Resolution LSB Value (mV) Min. Sample/Hold Time for 0.5 LSB (μs)							
8	10	0.449					
10	2.5	0.549					
12	0.625	0.649					

|--|

VIN = 3.3V, R = 4K (R _{SOURCE} ~ 0), C = 18 pF							
Resolution LSB Value (mV) Min. Sample/Hold time for 0.5 LSB (μs)							
8	12.891	0.449					
10	3.223	0.549					
12	0.806	0.649					

Sample Phase

A conversion is performed in three phases. In the first phase, the analog input voltage is sampled on the input capacitor. This phase is called sample phase. During the sample phase, the output signals BUSY and SAMPLE change from '0' to '1', indicating the ADC is busy and sampling the analog signal. The sample time can be controlled by input signals STC[7:0]. The sample time can be calculated by EQ 20. When controlling the sample time for the ADC along with the use of Prescaler or Current Monitor or Temperature Monitor, the minimum sample time for each must be obeyed.

User I/O Characteristics

Timing Model

Figure 2-115	Timing Model
	Operating Conditions: -2 Speed, Commercial Temperature Range (T _J = 70°C),
	Worst-Case VCC = 1.425 V

Device Architecture

Table 2-107 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew

Commercial Temperature Range Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Advanced I/Os

Drive	Speed												l
Strength	Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
4 mA	Std.	0.66	7.66	0.04	1.20	0.43	7.80	6.59	2.65	2.61	10.03	8.82	ns
	-1	0.56	6.51	0.04	1.02	0.36	6.63	5.60	2.25	2.22	8.54	7.51	ns
	-2	0.49	5.72	0.03	0.90	0.32	5.82	4.92	1.98	1.95	7.49	6.59	ns
8 mA	Std.	0.66	4.91	0.04	1.20	0.43	5.00	4.07	2.99	3.20	7.23	6.31	ns
	-1	0.56	4.17	0.04	1.02	0.36	4.25	3.46	2.54	2.73	6.15	5.36	ns
	-2	0.49	3.66	0.03	0.90	0.32	3.73	3.04	2.23	2.39	5.40	4.71	ns
12 mA	Std.	0.66	3.53	0.04	1.20	0.43	3.60	2.82	3.21	3.58	5.83	5.06	ns
	-1	0.56	3.00	0.04	1.02	0.36	3.06	2.40	2.73	3.05	4.96	4.30	ns
	-2	0.49	2.64	0.03	0.90	0.32	2.69	2.11	2.40	2.68	4.36	3.78	ns
16 mA	Std.	0.66	3.33	0.04	1.20	0.43	3.39	2.56	3.26	3.68	5.63	4.80	ns
	-1	0.56	2.83	0.04	1.02	0.36	2.89	2.18	2.77	3.13	4.79	4.08	ns
	-2	0.49	2.49	0.03	0.90	0.32	2.53	1.91	2.44	2.75	4.20	3.58	ns
24 mA	Std.	0.66	3.08	0.04	1.20	0.43	3.13	2.12	3.32	4.06	5.37	4.35	ns
	-1	0.56	2.62	0.04	1.02	0.36	2.66	1.80	2.83	3.45	4.57	3.70	ns
	-2	0.49	2.30	0.03	0.90	0.32	2.34	1.58	2.48	3.03	4.01	3.25	ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

Table 2-108 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew

Commercial Temperature Range Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Standard I/Os

Drive	Speed										
Strength	Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	Units
2 mA	Std.	0.66	9.46	0.04	1.00	0.43	9.64	8.54	2.07	2.04	ns
	-1	0.56	8.05	0.04	0.85	0.36	8.20	7.27	1.76	1.73	ns
	-2	0.49	7.07	0.03	0.75	0.32	7.20	6.38	1.55	1.52	ns
4 mA	Std.	0.66	9.46	0.04	1.00	0.43	9.64	8.54	2.07	2.04	ns
	-1	0.56	8.05	0.04	0.85	0.36	8.20	7.27	1.76	1.73	ns
	-2	0.49	7.07	0.03	0.75	0.32	7.20	6.38	1.55	1.52	ns
6 mA	Std.	0.66	6.57	0.04	1.00	0.43	6.69	5.98	2.40	2.57	ns
	-1	0.56	5.59	0.04	0.85	0.36	5.69	5.09	2.04	2.19	ns
	-2	0.49	4.91	0.03	0.75	0.32	5.00	4.47	1.79	1.92	ns
8 mA	Std.	0.66	6.57	0.04	1.00	0.43	6.69	5.98	2.40	2.57	ns
	-1	0.56	5.59	0.04	0.85	0.36	5.69	5.09	2.04	2.19	ns
	-2	0.49	4.91	0.03	0.75	0.32	5.00	4.47	1.79	1.92	ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

Table 2-122 • 1.8 V LVCMOS Low Slew

Commercial Temperature Range Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V Applicable to Advanced I/Os

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
2 mA	Std.	0.66	15.53	0.04	1.31	0.43	14.11	15.53	2.78	1.60	16.35	17.77	ns
	-1	0.56	13.21	0.04	1.11	0.36	12.01	13.21	2.36	1.36	13.91	15.11	ns
	-2 ²	0.49	11.60	0.03	0.98	0.32	10.54	11.60	2.07	1.19	12.21	13.27	ns
4 mA	Std.	0.66	10.48	0.04	1.31	0.43	10.41	10.48	3.23	2.73	12.65	12.71	ns
	-1	0.56	8.91	0.04	1.11	0.36	8.86	8.91	2.75	2.33	10.76	10.81	ns
	-2	0.49	7.82	0.03	0.98	0.32	7.77	7.82	2.41	2.04	9.44	9.49	ns
8 mA	Std.	0.66	8.05	0.04	1.31	0.43	8.20	7.84	3.54	3.27	10.43	10.08	ns
	-1	0.56	6.85	0.04	1.11	0.36	6.97	6.67	3.01	2.78	8.88	8.57	ns
	-2	0.49	6.01	0.03	0.98	0.32	6.12	5.86	2.64	2.44	7.79	7.53	ns
12 mA	Std.	0.66	7.50	0.04	1.31	0.43	7.64	7.30	3.61	3.41	9.88	9.53	ns
	-1	0.56	6.38	0.04	1.11	0.36	6.50	6.21	3.07	2.90	8.40	8.11	ns
	-2	0.49	5.60	0.03	0.98	0.32	5.71	5.45	2.69	2.55	7.38	7.12	ns
16 mA	Std.	0.66	7.29	0.04	1.31	0.43	7.23	7.29	3.71	3.95	9.47	9.53	ns
	-1	0.56	6.20	0.04	1.11	0.36	6.15	6.20	3.15	3.36	8.06	8.11	ns
	-2	0.49	5.45	0.03	0.98	0.32	5.40	5.45	2.77	2.95	7.07	7.12	ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

Fully Registered I/O Buffers with Synchronous Enable and Asynchronous Clear

Figure 2-138 • Timing Model of the Registered I/O Buffers with Synchronous Enable and Asynchronous Clear

TMS Test Mode Select

The TMS pin controls the use of the IEEE1532 boundary scan pins (TCK, TDI, TDO, TRST). There is an internal weak pull-up resistor on the TMS pin.

TRST Boundary Scan Reset Pin

The TRST pin functions as an active low input to asynchronously initialize (or reset) the boundary scan circuitry. There is an internal weak pull-up resistor on the TRST pin. If JTAG is not used, an external pull-down resistor could be included to ensure the TAP is held in reset mode. The resistor values must be chosen from Table 2-183 and must satisfy the parallel resistance value requirement. The values in Table 2-183 correspond to the resistor recommended when a single device is used and to the equivalent parallel resistor when multiple devices are connected via a JTAG chain.

In critical applications, an upset in the JTAG circuit could allow entering an undesired JTAG state. In such cases, Microsemi recommends tying off TRST to GND through a resistor placed close to the FPGA pin. Note that to operate at all VJTAG voltages, 500 Ω to 1 k Ω will satisfy the requirements.

Special Function Pins

NC No Connect

This pin is not connected to circuitry within the device. These pins can be driven to any voltage or can be left floating with no effect on the operation of the device.

DC Don't Connect

This pin should not be connected to any signals on the PCB. These pins should be left unconnected.

NCAP Negative Capacitor

Negative Capacitor is where the negative terminal of the charge pump capacitor is connected. A capacitor, with a 2.2 μ F recommended value, is required to connect between PCAP and NCAP.

PCAP Positive Capacitor

Positive Capacitor is where the positive terminal of the charge pump capacitor is connected. A capacitor, with a 2.2 μ F recommended value, is required to connect between PCAP and NCAP.

PUB Push Button

Push button is the connection for the external momentary switch used to turn on the 1.5 V voltage regulator and can be floating if not used.

PTBASE Pass Transistor Base

Pass Transistor Base is the control signal of the voltage regulator. This pin should be connected to the base of the external pass transistor used with the 1.5 V internal voltage regulator and can be floating if not used.

PTEM Pass Transistor Emitter

Pass Transistor Emitter is the feedback input of the voltage regulator.

This pin should be connected to the emitter of the external pass transistor used with the 1.5 V internal voltage regulator and can be floating if not used.

XTAL1 Crystal Oscillator Circuit Input

Input to crystal oscillator circuit. Pin for connecting external crystal, ceramic resonator, RC network, or external clock input. When using an external crystal or ceramic oscillator, external capacitors are also recommended (Please refer to the crystal oscillator manufacturer for proper capacitor value).

If using external RC network or clock input, XTAL1 should be used and XTAL2 left unconnected. In the case where the Crystal Oscillator block is not used, the XTAL1 pin should be connected to GND and the XTAL2 pin should be left floating.

	QN180		QN180				
Pin Number	AFS090 Function	AFS250 Function	Pin Number	AFS090 Function	AFS250 Function		
B9	XTAL2	XTAL2	B45	GBA2/IO31PDB1V0	GBA2/IO40PDB1V0		
B10	GEA0/IO44NDB3V0	GFA0/IO66NDB3V0	B46	GNDQ	GNDQ		
B11	GEB2/IO42PDB3V0	IO60NDB3V0	B47	GBA1/IO30RSB0V0	GBA0/IO38RSB0V0		
B12	VCC	VCC	B48	GBB1/IO28RSB0V0	GBC1/IO35RSB0V0		
B13	VCCNVM	VCCNVM	B49	VCC	VCC		
B14	VCC15A	VCC15A	B50	GBC0/IO25RSB0V0	IO31RSB0V0		
B15	NCAP	NCAP	B51	IO23RSB0V0	IO28RSB0V0		
B16	VCC33N	VCC33N	B52	IO20RSB0V0	IO25RSB0V0		
B17	GNDAQ	GNDAQ	B53	VCC	VCC		
B18	AC0	AC0	B54	IO11RSB0V0	IO14RSB0V0		
B19	AT0	AT0	B55	IO08RSB0V0	IO11RSB0V0		
B20	AT1	AT1	B56	GAC1/IO05RSB0V0	IO08RSB0V0		
B21	AV1	AV1	B57	VCCIB0	VCCIB0		
B22	AC2	AC2	B58	GAB0/IO02RSB0V0	GAC0/IO04RSB0V0		
B23	ATRTN1	ATRTN1	B59	GAA0/IO00RSB0V0	GAA1/IO01RSB0V0		
B24	AG3	AG3	B60	VCCPLA	VCCPLA		
B25	AV3	AV3	C1	NC	NC		
B26	AG4	AG4	C2	NC	VCCIB3		
B27	ATRTN2	ATRTN2	C3	GND	GND		
B28	NC	AC5	C4	NC	GFC2/IO69PPB3V0		
B29	VCC33A	VCC33A	C5	GFC1/IO49PDB3V0	GFC1/IO68PDB3V0		
B30	VAREF	VAREF	C6	GFA0/IO47NPB3V0	GFB0/IO67NPB3V0		
B31	PUB	PUB	C7	VCCIB3	NC		
B32	PTEM	PTEM	C8	GND	GND		
B33	GNDNVM	GNDNVM	C9	GEA1/IO44PDB3V0	GFA1/IO66PDB3V0		
B34	VCC	VCC	C10	GEA2/IO42NDB3V0	GEC2/IO60PDB3V0		
B35	ТСК	ТСК	C11	NC	GEA2/IO58PSB3V0		
B36	TMS	TMS	C12	NC	NC		
B37	TRST	TRST	C13	GND	GND		
B38	GDB2/IO41PSB1V0	GDA2/IO55PSB1V0	C14	NC	NC		
B39	GDC0/IO38NDB1V0	GDB0/IO53NDB1V0	C15	NC	NC		
B40	VCCIB1	VCCIB1	C16	GNDA	GNDA		
B41	GCA1/IO36PDB1V0	GCA1/IO49PDB1V0	C17	NC	NC		
B42	GCC0/IO34NDB1V0	GCC0/IO47NDB1V0	C18	NC	NC		
B43	GCB2/IO33PSB1V0	GBC2/IO42PSB1V0	C19	NC	NC		
B44	VCC	VCC	C20	NC	NC		

FG676

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/default.aspx.

Microsemi

Package Pin Assignments

	FG676		FG676	FG676			
Pin Number	AFS1500 Function	Pin Number	AFS1500 Function	Pin Number	AFS1500 Function		
A1	NC	AA11	AV2	AB21	PTBASE		
A2	GND	AA12	GNDA	AB22	GNDNVM		
A3	NC	AA13	AV3	AB23	VCCNVM		
A4	NC	AA14	AV6	AB24	VPUMP		
A5	GND	AA15	GNDA	AB25	NC		
A6	NC	AA16	AV7	AB26	GND		
A7	NC	AA17	AV8	AC1	NC		
A8	GND	AA18	GNDA	AC2	NC		
A9	IO17NDB0V2	AA19	AV9	AC3	NC		
A10	IO17PDB0V2	AA20	VCCIB2	AC4	GND		
A11	GND	AA21	IO68PPB2V0	AC5	VCCIB4		
A12	IO18NDB0V2	AA22	ТСК	AC6	VCCIB4		
A13	IO18PDB0V2	AA23	GND	AC7	PCAP		
A14	IO20NDB0V2	AA24	IO76PPB2V0	AC8	AG0		
A15	IO20PDB0V2	AA25	VCCIB2	AC9	GNDA		
A16	GND	AA26	NC	AC10	AG1		
A17	IO21PDB0V2	AB1	GND	AC11	AG2		
A18	IO21NDB0V2	AB2	NC	AC12	GNDA		
A19	GND	AB3	GEC2/IO87PDB4V0	AC13	AG3		
A20	IO39NDB1V2	AB4	IO87NDB4V0	AC14	AG6		
A21	IO39PDB1V2	AB5	GEA2/IO85PDB4V0	AC15	GNDA		
A22	GND	AB6	IO85NDB4V0	AC16	AG7		
A23	NC	AB7	NCAP	AC17	AG8		
A24	NC	AB8	AC0	AC18	GNDA		
A25	GND	AB9	VCC33A	AC19	AG9		
A26	NC	AB10	AC1	AC20	VAREF		
AA1	NC	AB11	AC2	AC21	VCCIB2		
AA2	VCCIB4	AB12	VCC33A	AC22	PTEM		
AA3	IO93PDB4V0	AB13	AC3	AC23	GND		
AA4	GND	AB14	AC6	AC24	NC		
AA5	IO93NDB4V0	AB15	VCC33A	AC25	NC		
AA6	GEB2/IO86PDB4V0	AB16	AC7	AC26	NC		
AA7	IO86NDB4V0	AB17	AC8	AD1	NC		
AA8	AV0	AB18	VCC33A	AD2	NC		
AA9	GNDA	AB19	AC9	AD3	GND		
AA10	AV1	AB20	ADCGNDREF	AD4	NC		

Datasheet Information

Revision	Changes	Page					
Advance v0.8 (continued)	The voltage range in the "VPUMP Programming Supply Voltage" section was updated. The parenthetical reference to "pulled up" was removed from the statement, "VPUMP can be left floating or can be tied (pulled up) to any voltage between 0 V and 3.6 V."						
	The "ATRTNx Temperature Monitor Return" section was updated with information about grounding and floating the pin.						
	The following text was deleted from the "VREF I/O Voltage Reference" section: (all digital I/O).	2-225					
	The "NCAP Negative Capacitor" section and "PCAP Positive Capacitor" section were updated to include information about the type of capacitor that is required to connect the two.	2-228					
	1 µF was changed to 100 pF in the "XTAL1 Crystal Oscillator Circuit Input".						
	The "Programming" section was updated to include information about V_{CCOSC} .	2-229					
	The VMV pins have now been tied internally with the V _{CCI} pins.	N/A					
	The AFS090"108-Pin QFN" table was updated.	3-2					
	The AFS090 and AFS250 devices were updated in the "108-Pin QFN" table.	3-2					
	The AFS250 device was updated in the "208-Pin PQFP" table.	3-8					
	The AFS600 device was updated in the "208-Pin PQFP" table.	3-8					
	The AFS090, AFS250, AFS600, and AFS1500 devices were updated in the "256-Pin FBGA" table.	3-12					
	The AFS600 and AFS1500 devices were updated in the "484-Pin FBGA" table.	3-20					
Advance v0.7	The AFS600 device was updated in the "676-Pin FBGA" table.	3-28					
(January 2007)	The AFS1500 digital I/O count was updated in the "Fusion Family" table.	I					
	The AFS1500 digital I/O count was updated in the "Package I/Os: Single-/Double- Ended (Analog)" table.	II					
Advance v0.6 (October 2006)	The second paragraph of the "PLL Macro" section was updated to include information about POWERDOWN.	2-30					
	The description for bit 0 was updated in Table 2-17 · RTC Control/Status Register.	2-38					
	3.9 was changed to 7.8 in the "Crystal Oscillator (Xtal Osc)" section.	2-40.					
	All function descriptions in Table 2-18 · Signals for VRPSM Macro.	2-42					
	In Table 2-19 • Flash Memory Block Pin Names, the RD[31:0] description was updated.	2-43					
	The "RESET" section was updated.	2-61					
	The "RESET" section was updated.	2-64					
	Table 2-35 • FIFO was updated.	2-79					
	The VAREF function description was updated in Table 2-36 • Analog Block Pin Description.	2-82					
	The "Voltage Monitor" section was updated to include information about low power mode and sleep mode.	2-86					
	The text in the "Current Monitor" section was changed from 2 mV to 1 mV.	2-90					
	The "Gate Driver" section was updated to include information about forcing 1 V on the drain.	2-94					

Microsemi Corporate Headquarters One Enterprise, Aliso Viejo CA 92656 USA Within the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996 Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semiconductor solutions for: aerospace, defense and security; enterprise and communications; and industrial and alternative energy markets. Products include high-performance, high-reliability analog and RF devices, mixed signal and RF integrated circuits, customizable SoCs, FPGAs, and complete subsystems. Microsemi is headquartered in Aliso Viejo, Calif. Learn more at **www.microsemi.com**.

© 2014 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.