

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

EXF

Details	
Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	276480
Number of I/O	252
Number of Gates	1500000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	676-BGA
Supplier Device Package	676-FBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/afs1500-2fgg676i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Device Architecture

Table 2-7 AFS250 Global Resource Timing

Commercial Temperature Range Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	2		1		Std.		Units
		Min. ¹	Max. ²	Min. ¹	Max. ²	Min. ¹	Max. ²	UTILS
T RCKL	Input Low Delay for Global Clock	0.89	1.12	1.02	1.27	1.20) 1.50) ns
ҟскн	Input High Delay for Global Clock	0.88	1.14	1.00	1.30	1.17	1.53	ns
t RCKMPWH	Minimum Pulse Width High for Global Clock							h
	Minimum Pulse Width Low for Global Clock							n
t RCKSW	Maximum Skew for Global Clock		0.2	6	0.3	0	0.	35 I

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For the derating values at specific junction temperature and voltage supply levels and the second second

Parameter	Description	2		1		Std.		Units	
	Description	Min. ¹	Max. ²	Min. ¹	Max. ²	Min. ¹	Max. ²	Units	
t RCKL	Input Low Delay for Global Clock	0.8	4 1.0)7 O.	96 1	.21 1	1.13 1	.43	ns
ŧрскн	Input High Delay for Global Clock	0.8	3 1.1	0 0.9	95 1	.25 1	.12 1	.47	ns
t RCKMPWH	Minimum Pulse Width High for Global Cloo	:k							ns
	Minimum Pulse Width Low for Global Cloc	k							ns
t RCKSW	Maximum Skew for Global Clock		0.2	7	0.3	30	0.	36	ns

Table 2-8AFSO90 Global Resource Timing

Commercial Temperature Range Conditions: T₁ = 70°C, Worst-Case VCC = 1.425 V

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For the derating values at specific junction temperature and voltage supply level 3, at the B to on page 3.9

		FG256				
Pin Number	AFS090 Function	AFS250 Function	AFS600 Function	AFS1500 Function		
A1	GND	GND	GND	GND		
A2	VCCIBO	VCCIBO	VCCIBO	VCCIBO		
A3	GABO/IOO2RSBOVO	GAAO/IOOORSBOVO	GAAO/IOO1NDBOVO	GAAO/IOO1NDBOVO		
A4	GAB1/IOO3RSBOVO	GAA1/IOO1RSBOVO	GAA1/IOO1PDBOVO	GAA1/IOO1PDBOVO		
A5	GND	GND	GND	GND		
A6	IO07RSB0V0	IO11RSBOVO	IO10PDB0V1	IO07PDBOV1		
A7	IO10RSB0V0	IO14RSBOVO	IO12PDBOV1	IO13PDBOV2		
A8	IO11RSBOVO	IO15RSBOVO	IO12NDBOV1	IO13NDBOV2		
Α9	IO16RSBOVO	IO24RSBOVO	IO22NDB1VO	IO24NDB1VO		
A10	IO17RSBOVO	IO25RSBOVO	IO22PDB1VO	IO24PDB1VO		
A11	IO18RSBOVO	IO26RSBOVO	IO24NDB1V1	IO29NDB1V1		
A12	GND	GND	GND	GND		
A13	GBCO/IO25RSBOVO	GBA0'IO38RSBOVO	GBAO/IO28NDB1V1	GBAO/IO42NDB1V2		
A14	GBAO/IO29RSBOVO	IO32RSBØ0	IO29NDB1V1	IO43NDB1V2		
A15	VCCIBO	VCCIBO	VCCIB1	VCCIB1		
A16	GND	GND	GND	GND		
B1	VCOMPLA	VCOMPLA	VCOMPLA	VCOMPLA		
B2	VCCPLA	VCCPLA	VCCPLA	VCCPLA		
В3	GAAO/IOOORSBOVO	IOO7RSBOYO	IOOONDBOVO	IOOONDBOVO		
B4	GAA1/IOO1RSBOVO	IO06RSB0V0	IOOOPDBOVO	IOOOPDBOVO		
B5	NC	GAB1/IOO3RSBOVO	GAB1/IOO2PPBOVO	GAB1/IOO2PPBOVO		
B6	IOO6RSBOVO	IO10RSB0V0	IO10NDB0V1	IO07NDB0V1		
B7	VCCIBO	VCCIBO	VCCIBO	VCCIBO		
B8	IO12RSBOVO	IO16RSBOVO	IO18NDB1VO	IO22NDB1VO		
B9	IO13RSBOV0	IO17RSBOVO	IO18PDB1VO	IO22PDB1VO		
B10	VCCIBO	VCCIBO	VCCIB1	VCCIB1		
B11	IO19RSBOVO	IO27RSBOVO	IO24PDB1V1	IO29PDB1V1		
B12	GBB0/I027RSB0V0	GBC0/IO34RSBOVO	GBC0/I026PB1V1	GBCO/IO40NPB1V2		
B13	GBC1/IO26RSBOVO	GBA1/IO39RSBOVO	GBA1/IO28PDB1V1	GBA1/IO42PDB1V2		
B14	GBA1/IO30RSB0V0	IO33RSBOV0	IO29PDB1V1	IO43PDB1V2		
B15	NC	NC	VCCPLB	VCCPLB		
B16	NC	NC	VCOMPLB	VCOMPLB		
C1	VCCIB3	V CCIB3	VCCIB4	VCCIB4		
C2	GND	GND	GND	GND		
C3	VCCIB3	VCCIB3	VCCIB4	VCCIB4		
C4	NC	NC	VCCIBO	VCCIBO		
C5	VCCIBO	VCCIBO	VCCIBO	VCCIBO		