

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	276480
Number of I/O	119
Number of Gates	1500000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	256-LBGA
Supplier Device Package	256-FPBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/afs1500-fg256

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

RC Oscillator

The RC oscillator is an on-chip free-running clock source generating a 100 MHz clock. It can be used as a source clock for both on-chip and off-chip resources. When used in conjunction with the Fusion PLL and CCC circuits, the RC oscillator clock source can be used to generate clocks of varying frequency and phase.

The Fusion RC oscillator is very accurate at $\pm 1\%$ over commercial temperature ranges and and $\pm 3\%$ over industrial temperature ranges. It is an automated clock, requiring no setup or configuration by the user. It requires only that the power and GNDOSC pins be connected; no external components are required. The RC oscillator can be used to drive either a PLL or another internal signal.

RC Oscillator Characteristics

Parameter	Description	Min.	Тур.	Max.	Units	
Fac	Operating Frequency			100		MHz
	Accuracy	Temperature: 0°C to 85°C Voltage: 3.3 V ± 5%		1		%
		Temperature: -40° C to 125° C Voltage: 3.3 V ± 5%		3		%
	Output Jitter		100		ps	
NO		Cycle–Cycle Jitter (at 5 k cycles)		100		ps
		Period Jitter (at 5 k cycles) with 1 KHz / 300 mV peak-to-peak noise on power supply		150		ps
		Cycle–Cycle Jitter (at 5 k cycles) with 1 KHz / 300 mV peak-to-peak noise on power supply		150		ps
	Output Duty Cycle			50		%
IDYNRC	Operating Current			1		mA

Table 2-9 • Electrical Characteristics of RC Oscillator

Device Architecture

Table 2-16 • RTC Control/Status Register

Bit	Name	Description			
7	rtc_rst	RTC Reset			
		1 – Resets the RTC			
		0 – Deassert reset on after two ACM_CLK cycle.			
6	cntr_en	Counter Enable	0		
		1 – Enables the counter; rtc_rst must be deasserted as well. First counter increments after 64 RTCCLK positive edges.			
		0 – Disables the crystal prescaler but does not reset the counter value. Counter value can only be updated when the counter is disabled.			
5	vr_en_mat	Voltage Regulator Enable on Match	0		
		1 – Enables RTCMATCH and RTCPSMMATCH to output 1 when the counter value equals the Match Register value. This enables the 1.5 V voltage regulator when RTCPSMMATCH connects to the RTCPSMMATCH signal in VRPSM.			
		0 – RTCMATCH and RTCPSMMATCH output 0 at all times.			
4:3	xt_mode[1:0]	Crystal Mode	00		
		Controls RTCXTLMODE[1:0]. Connects to RTC_MODE signal in XTLOSC. XTL_MODE uses this value when xtal_en is 1. See the "Crystal Oscillator" section on page 2-20 for mode configuration.			
2	rst_cnt_omat	Reset Counter on Match	0		
		1 – Enables the sync clear of the counter when the counter value equals the Match Register value. The counter clears on the rising edge of the clock. If all the Match Registers are set to 0, the clear is disabled.			
		0 – Counter increments indefinitely			
1	rstb_cnt	Counter Reset, active Low	0		
		0 - Resets the 40-bit counter value			
0	xtal_en	Crystal Enable	0		
		Controls RTCXTLSEL. Connects to SELMODE signal in XTLOSC.			
		0 – XTLOSC enables control by FPGA_EN; xt_mode is not used. Sleep mode requires this bit to equal 0.			
		1 – Enables XTLOSC, XTL_MODE control by xt_mode			
		Standby mode requires this bit to be set to 1.			
		See the "Crystal Oscillator" section on page 2-20 for further details on SELMODE configuration.			

Data operations are performed in widths of 1 to 4 bytes. A write to a location in a page that is not already in the Page Buffer will cause the page to be read from the FB Array and stored in the Page Buffer. The block that was addressed during the write will be put into the Block Buffer, and the data written by WD will overwrite the data in the Block Buffer. After the data is written to the Block Buffer, the Block Buffer is then written to the Page Buffer to keep both buffers in sync. Subsequent writes to the same block will overwrite the Block Buffer and the Page Buffer. A write to another block in the page will cause the addressed block to be loaded from the Page Buffer, and the write will be performed as described previously.

The data width can be selected dynamically via the DATAWIDTH input bus. The truth table for the data width settings is detailed in Table 2-21. The minimum resolvable address is one 8-bit byte. For data widths greater than 8 bits, the corresponding address bits are ignored—when DATAWIDTH = 0 (2 bytes), ADDR[0] is ignored, and when DATAWIDTH = '10' or '11' (4 bytes), ADDR[1:0] are ignored. Data pins are LSB-oriented and unused WD data pins must be grounded.

Table 2-21 • Data Width Settings

DATAWIDTH[1:0]	Data Width
00	1 byte [7:0]
01	2 byte [15:0]
10, 11	4 bytes [31:0]

Flash Memory Block Protection

Page Loss Protection

When the PAGELOSSPROTECT pin is set to logic 1, it prevents writes to any page other than the current page in the Page Buffer until the page is either discarded or programmed.

A write to another page while the current page is Page Loss Protected will return a STATUS of '11'.

Overwrite Protection

Any page that is Overwrite Protected will result in the STATUS being set to '01' when an attempt is made to either write, program, or erase it. To set the Overwrite Protection state for a page, set the OVERWRITEPROTECT pin when a Program operation is undertaken. To clear the Overwrite Protect state for a given page, an Unprotect Page operation must be performed on the page, and then the page must be programmed with the OVERWRITEPROTECT pin cleared to save the new page.

LOCKREQUEST

The LOCKREQUEST signal is used to give the user interface control over simultaneous access of the FB from both the User and JTAG interfaces. When LOCKREQUEST is asserted, the JTAG interface will hold off any access attempts until LOCKREQUEST is deasserted.

Flash Memory Block Operations

FB Operation Priority

The FB provides for priority of operations when multiple actions are requested simultaneously. Table 2-22 shows the priority order (priority 0 is the highest).

Table 2-22 • FB Operation

Operation	Priority
System Initialization	0
FB Reset	1
Read	2
Write	3
Erase Page	4
Program	5
Unprotect Page	6
Discard Page	7

Device Architecture

The following error indications are possible for Read operations:

- 1. STATUS = '01' when a single-bit data error was detected and corrected within the block addressed.
- 2. STATUS = '10' when a double-bit error was detected in the block addressed (note that the error is uncorrected).

In addition to data reads, users can read the status of any page in the FB by asserting PAGESTATUS along with REN. The format of the data returned by a page status read is shown in Table 2-23, and the definition of the page status bits is shown in Table 2-24.

Table 2-23 • Page Status Read Data Format

31	8	7	4	3	2	1	0
Write (Count	Rese	erved	Over Threshold	Read Protected	Write Protected	Overwrite Protected

Table 2-24 • Page Status Bit Definition

Page Status Bit(s)	Definition
31–8	The number of times the page addressed has been programmed/erased
7–4	Reserved; read as 0
3	Over Threshold indicator (see the "Program Operation" section on page 2-46)
2	Read Protected; read protect bit for page, which is set via the JTAG interface and only affects JTAG operations. This bit can be overridden by using the correct user key value.
1	Write Protected; write protect bit for page, which is set via the JTAG interface and only affects JTAG operations. This bit can be overridden by using the correct user key value.
0	Overwrite Protected; designates that the user has set the OVERWRITEPROTECT bit on the interface while doing a Program operation. The page cannot be written without first performing an Unprotect Page operation.

SRAM and **FIFO**

All Fusion devices have SRAM blocks along the north side of the device. Additionally, AFS600 and AFS1500 devices have an SRAM block on the south side of the device. To meet the needs of high-performance designs, the memory blocks operate strictly in synchronous mode for both read and write operations. The read and write clocks are completely independent, and each may operate at any desired frequency less than or equal to 350 MHz. The following configurations are available:

- 4k×1, 2k×2, 1k×4, 512×9 (dual-port RAM—two read, two write or one read, one write)
- 512×9, 256×18 (two-port RAM—one read and one write)
- Sync write, sync pipelined/nonpipelined read

The Fusion SRAM memory block includes dedicated FIFO control logic to generate internal addresses and external flag logic (FULL, EMPTY, AFULL, AEMPTY).

During RAM operation, addresses are sourced by the user logic, and the FIFO controller is ignored. In FIFO mode, the internal addresses are generated by the FIFO controller and routed to the RAM array by internal MUXes. Refer to Figure 2-47 for more information about the implementation of the embedded FIFO controller.

The Fusion architecture enables the read and write sizes of RAMs to be organized independently, allowing for bus conversion. This is done with the WW (write width) and RW (read width) pins. The different D×W configurations are 256×18 , 512×9 , $1k \times 4$, $2k \times 2$, and $4k \times 1$. For example, the write size can be set to 256×18 and the read size to 512×9 .

Both the write and read widths for the RAM blocks can be specified independently with the WW (write width) and RW (read width) pins. The different D×W configurations are 256×18, 512×9, 1k×4, 2k×2, and 4k×1.

Refer to the allowable RW and WW values supported for each of the RAM macro types in Table 2-27 on page 2-58.

When a width of one, two, or four is selected, the ninth bit is unused. For example, when writing 9-bit values and reading 4-bit values, only the first four bits and the second four bits of each 9-bit value are addressable for read operations. The ninth bit is not accessible.

Direct Digital Input

The AV, AC, and AT pads can also be configured as high-voltage digital inputs (Figure 2-69). As these pads are 12 V–tolerant, the digital input can also be up to 12 V. However, the frequency at which these pads can operate is limited to 10 MHz.

To enable one of these analog input pads to operate as a digital input, its corresponding Digital Input Enable (DENAxy) pin on the Analog Block must be pulled High, where x is either V, C, or T (for AV, AC, or AT pads, respectively) and y is in the range 0 to 9, corresponding to the appropriate Analog Quad.

When the pad is configured as a digital input, the signal will come out of the Analog Block macro on the appropriate DAxOUTy pin, where x represents the pad type (V for AV pad, C for AC pad, or T for AT pad) and y represents the appropriate Analog Quad number. Example: If the AT pad in Analog Quad 5 is configured as a digital input, it will come out on the DATOUT5 pin of the Analog Block macro.

Figure 2-69 • Analog Quad Direct Digital Input Configuration

Temperature Monitor

The final pin in the Analog Quad is the Analog Temperature (AT) pin. The AT pin is used to implement an accurate temperature monitor in conjunction with an external diode-connected bipolar transistor (Figure 2-76). For improved temperature measurement accuracy, it is important to use the ATRTN pin for the return path of the current sourced by the AT pin. Each ATRTN pin is shared between two adjacent Analog Quads. Additionally, if not used for temperature monitoring, the AT pin can provide functionality similar to that of the AV pad. However, in this mode only positive voltages can be applied to the AT pin, and only two prescaler factors are available (16 V and 4 V ranges—refer to Table 2-57 on page 2-130).

Figure 2-76 • Temperature Monitor Quad

Figure 2-90 • Input Setup Time

Standard Conversion

Notes:

1. Refer to EQ 20 on page 2-109 for the calculation on the sample time, t_{SAMPLE} .

2. See EQ 23 on page 2-109 for calculation of the conversion time, t_{CONV} .

3. Minimum time to issue an ADCSTART after DATAVALID is 1 SYSCLK period

Figure 2-91 • Standard Conversion Status Signal Timing Diagram

Figure 2-96 • Temperature Reading Noise When Averaging is Used

Table 2-49 • Analog Channel Specifications (continued)Commercial Temperature Range Conditions, TJ = 85°C (unless noted otherwise),Typical: VCC33A = 3.3 V, VCC = 1.5 V

Parameter	Description	Condition	Min.	Тур.	Max.	Units			
Temperature Monitor Using Analog Pad AT									
External	Resolution	8-bit ADC		4					
Temperature		10-bit ADC		1					
(external diode		12-bit ADC		0.25					
2N3904, T _J = 25°C) ⁴	Systematic Offset ⁵	AFS090, AFS250, AFS600, AFS1500, uncalibrated ⁷		5					
		AFS090, AFS250, AFS600, AFS1500, calibrated ⁷	±5			°C			
	Accuracy			±3	±5	°C			
	External Sensor Source Current	High level, TMSTBx = 0		10		μA			
		Low level, TMSTBx = 1		100		μA			
	Max Capacitance on AT pad				1.3	nF			
Internal	Resolution	8-bit ADC	4			°C			
Temperature		10-bit ADC	1			°C			
Mornton		12-bit ADC	0.25			°C			
	Systematic Offset ⁵	AFS090 ⁷	5			°C			
		AFS250, AFS600, AFS1500 ⁷		11					
	Accuracy			±3	±5	°C			
t _{TMSHI}	Strobe High time		10		105	μs			
t _{TMSLO}	Strobe Low time		5			μs			
t _{TMSSET}	Settling time		5			μs			

Notes:

1. VRSM is the maximum voltage drop across the current sense resistor.

2. Analog inputs used as digital inputs can tolerate the same voltage limits as the corresponding analog pad. There is no reliability concern on digital inputs as long as VIND does not exceed these limits.

3. VIND is limited to VCC33A + 0.2 to allow reaching 10 MHz input frequency.

- 4. An averaging of 1,024 samples (LPF setting in Analog System Builder) is required and the maximum capacitance allowed across the AT pins is 500 pF.
- 5. The temperature offset is a fixed positive value.
- 6. The high current mode has a maximum power limit of 20 mW. Appropriate current limit resistors must be used, based on voltage on the pad.
- 7. When using SmartGen Analog System Builder, CalibIP is required to obtain specified offset. For further details on CalibIP, refer to the "Temperature, Voltage, and Current Calibration in Fusion FPGAs" chapter of the Fusion FPGA Fabric User Guide.

Table 2-50 • ADC Characteristics in Direct Input ModeCommercial Temperature Range Conditions, TJ = 85°C (unless noted otherwise),Typical: VCC33A = 3.3 V, VCC = 1.5 V

Parameter	Description	Condition	Min.	Тур.	Max.	Units
Direct Input	using Analog Pad AV, AC, A	Г				
VINADC	Input Voltage (Direct Input)	Refer to Table 3-2 on page 3-3				
CINADC	Input Capacitance	Channel not selected		7		pF
		Channel selected but not sampling		8		pF
		Channel selected and sampling		18		pF
ZINADC	Input Impedance	8-bit mode		2		kΩ
		10-bit mode		2		kΩ
		12-bit mode		2		kΩ
Analog Refe	erence Voltage VAREF					
VAREF	Accuracy	T _J = 25°C	2.537	2.56	2.583	V
	Temperature Drift of Internal Reference			65		ppm / °C
	External Reference		2.527		VCC33A + 0.05	V
ADC Accura	acy (using external reference) 1,2				
DC Accurac	y					
TUE	Total Unadjusted Error	8-bit mode	0.29			LSB
		10-bit mode	0.72		72	LSB
		12-bit mode		1.	8	LSB
INL	Integral Non-Linearity	8-bit mode		0.20	0.25	LSB
		10-bit mode		0.32	0.43	LSB
		12-bit mode		1.71	1.80	LSB
DNL	Differential Non-Linearity (no missing code)	8-bit mode		0.20	0.24	LSB
		10-bit mode		0.60	0.65	LSB
		12-bit mode		2.40	2.48	LSB
	Offset Error	8-bit mode		0.01	0.17	LSB
		10-bit mode		0.05	0.20	LSB
		12-bit mode		0.20	0.40	LSB
	Gain Error	8-bit mode		0.0004	0.003	LSB
		10-bit mode		0.002	0.011	LSB
		12-bit mode		0.007	0.044	LSB
	Gain Error (with internal reference)	All modes		2		% FSR

Notes:

1. Accuracy of the external reference is 2.56 V \pm 4.6 mV.

2. Data is based on characterization.

3. The sample rate is time-shared among active analog inputs.

Table 2-57 details the settings available to control the prescaler values of the AV, AC, and AT pins. Note that the AT pin has a reduced number of available prescaler values.

Control Lines Bx[2:0]	Scaling Factor, Pad to ADC Input	LSB for an 8-Bit Conversion ¹ (mV)	LSB for a 10-Bit Conversion ¹ (mV)	LSB for a 12-Bit Conversion ¹ (mV)	Full-Scale Voltage in 10-Bit Mode ²	Range Name
000 ³	0.15625	64	16	4	16.368 V	16 V
001	0.3125	32	8	2	8.184 V	8 V
010 ³	0.625	16	4	1	4.092 V	4 V
011	1.25	8	2	0.5	2.046 V	2 V
100	2.5	4	1	0.25	1.023 V	1 V
101	5.0	2	0.5	0.125	0.5115 V	0.5 V
110	10.0	1	0.25	0.0625	0.25575 V	0.25 V
111	20.0	0.5	0.125	0.03125	0.127875 V	0.125 V

Table 2-57 • Prescaler Control Truth Table—AV (x = 0), AC (x = 1), and AT (x = 3)

Notes:

1. LSB voltage equivalences assume VAREF = 2.56 V.

2. Full Scale voltage for n-bit mode: ((2ⁿ) - 1) x (LSB for a n-bit Conversion)

3. These are the only valid ranges for the Temperature Monitor Block Prescaler.

Table 2-58 details the settings available to control the MUX within each of the AV, AC, and AT circuits. This MUX determines whether the signal routed to the ADC is the direct analog input, prescaled signal, or output of either the Current Monitor Block or the Temperature Monitor Block.

Table 2-58 • Analog Multiplexer Truth Table—AV (x = 0), AC (x = 1), and AT (x = 3)

Control Lines Bx[4]	Control Lines Bx[3]	ADC Connected To
0	0	Prescaler
0	1	Direct input
1	0	Current amplifier temperature monitor
1	1	Not valid

Table 2-59 details the settings available to control the Direct Analog Input switch for the AV, AC, and AT pins.

Table 2-59 • Direct Analog Input Switch Control Truth Table—AV (x = 0), AC (x = 1), and AT (x = 3)

Control Lines Bx[5]	Direct Input Switch
0	Off
1	On

Table 2-60 details the settings available to control the polarity of the signals coming to the AV, AC, and AT pins. Note that the only valid setting for the AT pin is logic 0 to support positive voltages.

Table 2-60 • Voltage Polarity Control Truth Table—AV (x = 0), AC (x = 1), and AT (x = 3)*

Control Lines Bx[6]	Input Signal Polarity
0	Positive
1	Negative

Note: *The B3[6] signal for the AT pad should be kept at logic 0 to accept only positive voltages.

Double Data Rate (DDR) Support

Fusion Pro I/Os support 350 MHz DDR inputs and outputs. In DDR mode, new data is present on every transition of the clock signal. Clock and data lines have identical bandwidths and signal integrity requirements, making it very efficient for implementing very high-speed systems.

DDR interfaces can be implemented using HSTL, SSTL, LVDS, and LVPECL I/O standards. In addition, high-speed DDR interfaces can be implemented using LVDS I/O.

Input Support for DDR

The basic structure to support a DDR input is shown in Figure 2-101. Three input registers are used to capture incoming data, which is presented to the core on each rising edge of the I/O register clock.

Each I/O tile on Fusion devices supports DDR inputs.

Output Support for DDR

The basic DDR output structure is shown in Figure 2-102 on page 2-140. New data is presented to the output every half clock cycle. Note: DDR macros and I/O registers do not require additional routing. The combiner automatically recognizes the DDR macro and pushes its registers to the I/O register area at the edge of the chip. The routing delay from the I/O registers to the I/O buffers is already taken into account in the DDR macro.

Refer to the application note Using DDR for Fusion Devices for more information.

Figure 2-101 • DDR Input Register Support in Fusion Devices

Figure 2-102 • DDR Output Support in Fusion Devices

Device Architecture

Table 2-113 • 2.5 V LVCMOS High Slew

Commercial Temperature Range Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V Applicable to Pro I/Os

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
4 mA	Std.	0.60	8.82	0.04	1.51	1.66	0.43	8.13	8.82	2.72	2.29	10.37	11.05	ns
	-1	0.51	7.50	0.04	1.29	1.41	0.36	6.92	7.50	2.31	1.95	8.82	9.40	ns
	-2	0.45	6.58	0.03	1.13	1.24	0.32	6.07	6.58	2.03	1.71	7.74	8.25	ns
8 mA	Std.	0.60	5.27	0.04	1.51	1.66	0.43	5.27	5.27	3.10	3.03	7.50	7.51	ns
	–1	0.51	4.48	0.04	1.29	1.41	0.36	4.48	4.48	2.64	2.58	6.38	6.38	ns
	-2	0.45	3.94	0.03	1.13	1.24	0.32	3.93	3.94	2.32	2.26	5.60	5.61	ns
12 mA	Std.	0.66	3.74	0.04	1.51	1.66	0.43	3.81	3.49	3.37	3.49	6.05	5.73	ns
	-1	0.56	3.18	0.04	1.29	1.41	0.36	3.24	2.97	2.86	2.97	5.15	4.87	ns
	-2	0.49	2.80	0.03	1.13	1.24	0.32	2.85	2.61	2.51	2.61	4.52	4.28	ns
16 mA	Std.	0.66	3.53	0.04	1.51	1.66	0.43	3.59	3.12	3.42	3.62	5.83	5.35	ns
	–1	0.56	3.00	0.04	1.29	1.41	0.36	3.06	2.65	2.91	3.08	4.96	4.55	ns
	-2	0.49	2.63	0.03	1.13	1.24	0.32	2.68	2.33	2.56	2.71	4.35	4.00	ns
24 mA	Std.	0.66	3.26	0.04	1.51	1.66	0.43	3.32	2.48	3.49	4.11	5.56	4.72	ns
	-1	0.56	2.77	0.04	1.29	1.41	0.36	2.83	2.11	2.97	3.49	4.73	4.01	ns
	-2	0.49	2.44	0.03	1.13	1.24	0.32	2.48	1.85	2.61	3.07	4.15	3.52	ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

Differential I/O Characteristics

Configuration of the I/O modules as a differential pair is handled by the Microsemi Designer software when the user instantiates a differential I/O macro in the design.

Differential I/Os can also be used in conjunction with the embedded Input Register (InReg), Output Register (OutReg), Enable Register (EnReg), and Double Data Rate (DDR). However, there is no support for bidirectional I/Os or tristates with these standards.

LVDS

Low-Voltage Differential Signal (ANSI/TIA/EIA-644) is a high-speed differential I/O standard. It requires that one data bit be carried through two signal lines, so two pins are needed. It also requires external resistor termination.

The full implementation of the LVDS transmitter and receiver is shown in an example in Figure 2-134. The building blocks of the LVDS transmitter–receiver are one transmitter macro, one receiver macro, three board resistors at the transmitter end, and one resistor at the receiver end. The values for the three driver resistors are different from those used in the LVPECL implementation because the output standard specifications are different.

Figure 2-134 • LVDS	Circuit Diagram and	Board-Level Implementatior
---------------------	----------------------------	----------------------------

Table 2-168 • I	Minimum and	Maximum	DC Input a	and Output Levels
-----------------	-------------	---------	------------	-------------------

DC Parameter	Description	Min.	Тур.	Max.	Units
VCCI	Supply Voltage	2.375	2.5	2.625	V
VOL	Output Low Voltage	0.9	1.075	1.25	V
VOH	Input High Voltage	1.25	1.425	1.6	V
IOL ¹	Output Low Voltage	0.65	0.91	1.16	mA
IOH ¹	Output High Voltage	0.65	0.91	1.16	mA
VI	Input Voltage	0		2.925	V
IIL ^{2,3}	Input Low Voltage			10	μA
IIH ^{2,4}	Input High Voltage			10	μA
VODIFF	Differential Output Voltage	250	350	450	mV
VOCM	Output Common Mode Voltage	1.125	1.25	1.375	V
VICM	Input Common Mode Voltage	0.05	1.25	2.35	V
VIDIFF	Input Differential Voltage	100	350		mV

Notes:

- 1. IOL/IOH defined by VODIFF/(Resistor Network)
- 2. Currents are measured at 85°C junction temperature.
- 3. ILL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.
- 4. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

Symbol	Parameter	Commercial	Industrial	Units
AV, AC	Unpowered, ADC reset asserted or unconfigured	-11.0 to 12.6	-11.0 to 12.0	V
	Analog input (+16 V to +2 V prescaler range)	-0.4 to 12.6	-0.4 to 12.0	V
	Analog input (+1 V to +0.125 V prescaler range)	-0.4 to 3.75	-0.4 to 3.75	V
	Analog input (–16 V to –2 V prescaler range)	-11.0 to 0.4	-11.0 to 0.4	V
	Analog input (–1 V to –0.125 V prescaler range)	-3.75 to 0.4	-3.75 to 0.4	V
	Analog input (direct input to ADC)	-0.4 to 3.75	-0.4 to 3.75	V
	Digital input	-0.4 to 12.6 -0.4 to 12.0		V
AG	Unpowered, ADC reset asserted or unconfigured	-11.0 to 12.6	-11.0 to 12.0	V
	Low Current Mode (1 μ A, 3 μ A, 10 μ A, 30 μ A)	-0.4 to 12.6	-0.4 to 12.0	V
	Low Current Mode (–1 μΑ, –3 μΑ, –10 μΑ, –30 μΑ)	-11.0 to 0.4	-11.0 to 0.4	V
	High Current Mode ³	-11.0 to 12.6	-11.0 to 12.0	V
AT	Unpowered, ADC reset asserted or unconfigured	–0.4 to 16.0	-0.4 to 15.0	V
	Analog input (+16 V, 4 V prescaler range)	-0.4 to 16.0	-0.4 to 15.0	V
	Analog input (direct input to ADC)	-0.4 to 3.75	-0.4 to 3.75	V
	Digital input	-0.4 to 16.0	-0.4 to 15.0	V
T _{STG} ⁴	Storage temperature	-65	°C	
T _J ⁴	Junction temperature	+	125	°C

Table 3-1 •	Absolute	Maximum	Ratings	(continued)
-------------	----------	---------	---------	-------------

Notes:

1. The device should be operated within the limits specified by the datasheet. During transitions, the input signal may undershoot or overshoot according to the limits shown in Table 3-4 on page 3-4.

2. Analog data not valid beyond 3.65 V.

3. The high current mode has a maximum power limit of 20 mW. Appropriate current limit resistors must be used, based on voltage on the pad.

4. For flash programming and retention maximum limits, refer to Table 3-5 on page 3-5. For recommended operating limits refer to Table 3-2 on page 3-3.

RC Oscillator Dynamic Contribution—**P**_{RC-OSC}

Operating Mode

P_{RC-OSC} = PAC19

Standby Mode and Sleep Mode

 $P_{RC-OSC} = 0 W$

Analog System Dynamic Contribution—P_{AB}

Operating Mode

P_{AB} = PAC20

Standby Mode and Sleep Mode

 $P_{AB} = 0 W$

Guidelines

Toggle Rate Definition

A toggle rate defines the frequency of a net or logic element relative to a clock. It is a percentage. If the toggle rate of a net is 100%, this means that the net switches at half the clock frequency. Below are some examples:

- The average toggle rate of a shift register is 100%, as all flip-flop outputs toggle at half of the clock frequency.
- The average toggle rate of an 8-bit counter is 25%:
 - Bit 0 (LSB) = 100%
 - Bit 1 = 50%
 - Bit 2 = 25%
 - ...
 - Bit 7 (MSB) = 0.78125%
 - Average toggle rate = (100% + 50% + 25% + 12.5% + . . . 0.78125%) / 8.

Enable Rate Definition

Output enable rate is the average percentage of time during which tristate outputs are enabled. When non-tristate output buffers are used, the enable rate should be 100%.

Table 3-16 • Toggle Rate Guidelines Recommended for Power Calculation

Component	Definition	Guideline
α_1	Toggle rate of VersaTile outputs	10%
α ₂	I/O buffer toggle rate	10%

Table 3-17 • Enable Rate Guidelines Recommended for Power Calculation

Component	Definition	Guideline
β ₁	I/O output buffer enable rate	100%
β ₂	RAM enable rate for read operations	12.5%
β ₃	RAM enable rate for write operations	12.5%
β ₄	NVM enable rate for read operations	0%

Package Pin Assignments

	PQ208		PQ208		
Pin Number	AFS250 Function	AFS600 Function	Pin Number	AFS250 Function	AFS600 Function
147	GCC1/IO47PDB1V0	IO39NDB2V0	184	IO18RSB0V0	IO10PPB0V1
148	IO42NDB1V0	GCA2/IO39PDB2V0	185	IO17RSB0V0	IO09PPB0V1
149	GBC2/IO42PDB1V0	IO31NDB2V0	186	IO16RSB0V0	IO10NPB0V1
150	VCCIB1	GBB2/IO31PDB2V0	187	IO15RSB0V0	IO09NPB0V1
151	GND	IO30NDB2V0	188	VCCIB0	IO08PPB0V1
152	VCC	GBA2/IO30PDB2V0	189	GND	IO07PPB0V1
153	IO41NDB1V0	VCCIB2	190	VCC	IO08NPB0V1
154	GBB2/IO41PDB1V0	GNDQ	191	IO14RSB0V0	IO07NPB0V1
155	IO40NDB1V0	VCOMPLB	192	IO13RSB0V0	IO06PPB0V0
156	GBA2/IO40PDB1V0	VCCPLB	193	IO12RSB0V0	IO05PPB0V0
157	GBA1/IO39RSB0V0	VCCIB1	194	IO11RSB0V0	IO06NPB0V0
158	GBA0/IO38RSB0V0	GNDQ	195	IO10RSB0V0	IO04PPB0V0
159	GBB1/IO37RSB0V0	GBB1/IO27PPB1V1	196	IO09RSB0V0	IO05NPB0V0
160	GBB0/IO36RSB0V0	GBA1/IO28PPB1V1	197	IO08RSB0V0	IO04NPB0V0
161	GBC1/IO35RSB0V0	GBB0/IO27NPB1V1	198	IO07RSB0V0	GAC1/IO03PDB0V0
162	VCCIB0	GBA0/IO28NPB1V1	199	IO06RSB0V0	GAC0/IO03NDB0V0
163	GND	VCCIB1	200	GAC1/IO05RSB0V0	VCCIB0
164	VCC	GND	201	VCCIB0	GND
165	GBC0/IO34RSB0V0	VCC	202	GND	VCC
166	IO33RSB0V0	GBC1/IO26PDB1V1	203	VCC	GAB1/IO02PDB0V0
167	IO32RSB0V0	GBC0/IO26NDB1V1	204	GAC0/IO04RSB0V0	GAB0/IO02NDB0V0
168	IO31RSB0V0	IO24PPB1V1	205	GAB1/IO03RSB0V0	GAA1/IO01PDB0V0
169	IO30RSB0V0	IO23PPB1V1	206	GAB0/IO02RSB0V0	GAA0/IO01NDB0V0
170	IO29RSB0V0	IO24NPB1V1	207	GAA1/IO01RSB0V0	GNDQ
171	IO28RSB0V0	IO23NPB1V1	208	GAA0/IO00RSB0V0	VCCIB0
172	IO27RSB0V0	IO22PPB1V0			
173	IO26RSB0V0	IO21PPB1V0			
174	IO25RSB0V0	IO22NPB1V0			
175	VCCIB0	IO21NPB1V0			
176	GND	IO20PSB1V0			
177	VCC	IO19PSB1V0			
178	IO24RSB0V0	IO14NSB0V1			
179	IO23RSB0V0	IO12PDB0V1			
180	IO22RSB0V0	IO12NDB0V1			
181	IO21RSB0V0	VCCIB0			
182	IO20RSB0V0	GND			
183	IO19RSB0V0	VCC			

Fusion Family of Mixed Signal FPGAs

Revision	Changes	Page			
Advance v0.3 (continued)	The "Temperature Monitor" section was updated.	2-96			
	EQ 2 is new.	2-103			
	The "ADC Description" section was updated.	2-102			
	Figure 2-16 • Fusion Clocking Options was updated.	2-20			
	Table 2-46 · Analog Channel Specifications was updated.	2-118			
	The notes in Table 2-72 • Fusion Standard and Advanced I/O – Hot-Swap and 5 V Input Tolerance Capabilities were updated.				
	The "Simultaneously Switching Outputs and PCB Layout" section is new.	2-149			
	LVPECL and LVDS were updated in Table 2-81 • Fusion Standard and Advanced I/O Attributes vs. I/O Standard Applications.				
	LVPECL and LVDS were updated in Table 2-82 • Fusion Pro I/O Attributes vs. I/O Standard Applications.	2-158			
	The "Timing Model" was updated.				
	All voltage-referenced Minimum and Maximum DC Input and Output Level tables were updated.				
	All Timing Characteristic tables were updated				
	Table 2-83 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial Conditions was updated.				
	Table 2-79 • Summary of I/O Timing Characteristics – Software Default Settings was updated.				
	Table 2-93 • I/O Output Buffer Maximum Resistances ¹ was updated.	2-171			
	The "BLVDS/M-LVDS" section is new. BLVDS and M-LVDS are two new I/O standards included in the datasheet.	2-211			
	The "CoreMP7 and Cortex-M1 Software Tools" section is new.	2-257			
	Table 2-83 • Summary of Maximum and Minimum DC Input and Output LevelsApplicable to Commercial and Industrial Conditions was updated.	2-165			
	Table 2-79 • Summary of I/O Timing Characteristics – Software Default Settings was updated.	2-134			
	Table 2-93 • I/O Output Buffer Maximum Resistances ¹ was updated.	2-171			
	The "BLVDS/M-LVDS" section is new. BLVDS and M-LVDS are two new I/O standards included in the datasheet.	2-211			
	The "108-Pin QFN" table for the AFS090 device is new.	3-2			
	The "180-Pin QFN" table for the AFS090 device is new.	3-4			
	The "208-Pin PQFP" table for the AFS090 device is new.	3-8			
	The "256-Pin FBGA" table for the AFS090 device is new.	3-12			
	The "256-Pin FBGA" table for the AFS250 device is new.				