



Welcome to <u>E-XFL.COM</u>

#### Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

#### **Applications of Embedded - FPGAs**

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

#### Details

| Product Status                 | Active                                                                  |
|--------------------------------|-------------------------------------------------------------------------|
| Number of LABs/CLBs            | -                                                                       |
| Number of Logic Elements/Cells | -                                                                       |
| Total RAM Bits                 | 36864                                                                   |
| Number of I/O                  | 114                                                                     |
| Number of Gates                | 250000                                                                  |
| Voltage - Supply               | 1.425V ~ 1.575V                                                         |
| Mounting Type                  | Surface Mount                                                           |
| Operating Temperature          | 0°C ~ 85°C (TJ)                                                         |
| Package / Case                 | 256-LBGA                                                                |
| Supplier Device Package        | 256-FPBGA (17x17)                                                       |
| Purchase URL                   | https://www.e-xfl.com/product-detail/microchip-technology/afs250-2fg256 |
|                                |                                                                         |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

# **Related Documents**

# Datasheet

Core8051 www.microsemi.com/soc/ipdocs/Core8051\_DS.pdf

# **Application Notes**

 Fusion FlashROM

 http://www.microsemi.com/soc/documents/Fusion\_FROM\_AN.pdf

 Fusion SRAM/FIFO Blocks

 http://www.microsemi.com/soc/documents/Fusion\_RAM\_FIFO\_AN.pdf

 Using DDR in Fusion Devices

 http://www.microsemi.com/index.php?option=com\_docman&task=doc\_download&gid=129938

 Fusion Security

 http://www.microsemi.com/soc/documents/Fusion\_Security\_AN.pdf

 Using Fusion RAM as Multipliers

 http://www.microsemi.com/index.php?option=com\_docman&task=doc\_download&gid=129940

# Handbook

Cortex-M1 Handbook www.microsemi.com/soc/documents/CortexM1\_HB.pdf

# **User Guides**

Designer User Guide http://www.microsemi.com/soc/documents/designer\_UG.pdf Fusion FPGA Fabric User Guide http://www.microsemi.com/index.php?option=com\_docman&task=doc\_download&gid=130817 IGLOO, ProASIC3, SmartFusion and Fusion Macro Library Guide http://www.microsemi.com/soc/documents/pa3\_libguide\_ug.pdf SmartGen, FlashROM, Flash Memory System Builder, and Analog System Builder User Guide http://www.microsemi.com/soc/documents/genguide\_ug.pdf

# **White Papers**

Fusion Technology http://www.microsemi.com/soc/documents/Fusion\_Tech\_WP.pdf



# **Global Resource Characteristics**

## AFS600 VersaNet Topology

Clock delays are device-specific. Figure 2-15 is an example of a global tree used for clock routing. The global tree presented in Figure 2-15 is driven by a CCC located on the west side of the AFS600 device. It is used to drive all D-flip-flops in the device.



Figure 2-15 • Example of Global Tree Use in an AFS600 Device for Clock Routing

# Global Buffers with No Programmable Delays

The CLKBUF and CLKBUF\_LVPECL/LVDS macros are composite macros that include an I/O macro driving a global buffer, hardwired together (Figure 2-20).

The CLKINT macro provides a global buffer function driven by the FPGA core.

The CLKBUF, CLKBUF\_LVPECL/LVDS, and CLKINT macros are pass-through clock sources and do not use the PLL or provide any programmable delay functionality.

Many specific CLKBUF macros support the wide variety of single-ended and differential I/O standards supported by Fusion devices. The available CLKBUF macros are described in the *IGLOO*, *ProASIC3*, *SmartFusion and Fusion Macro Library Guide*.

| Clock Source                          | Clock Conditioning | Output |     |
|---------------------------------------|--------------------|--------|-----|
|                                       |                    |        | GLA |
| CLKBUF_LVDS/LVPECL Macro CLKBUF Macro | CLKINT Macro       |        | or  |
|                                       |                    | None   | GLB |
|                                       |                    |        | or  |
|                                       |                    |        | GLC |

Figure 2-20 • Global Buffers with No Programmable Delay

# Global Buffers with Programmable Delay

The CLKDLY macro is a pass-through clock source that does not use the PLL, but provides the ability to delay the clock input using a programmable delay (Figure 2-21 on page 2-25). The CLKDLY macro takes the selected clock input and adds a user-defined delay element. This macro generates an output clock phase shift from the input clock.

The CLKDLY macro can be driven by an INBUF macro to create a composite macro, where the I/O macro drives the global buffer (with programmable delay) using a hardwired connection. In this case, the I/O must be placed in one of the dedicated global I/O locations.

Many specific INBUF macros support the wide variety of single-ended and differential I/O standards supported by the Fusion family. The available INBUF macros are described in the *IGLOO*, *ProASIC3*, *SmartFusion and Fusion Macro Library Guide*.

The CLKDLY macro can be driven directly from the FPGA core.

The CLKDLY macro can also be driven from an I/O that is routed through the FPGA regular routing fabric. In this case, users must instantiate a special macro, PLLINT, to differentiate from the hardwired I/O connection described earlier.

The visual CLKDLY configuration in the SmartGen part of the Libero SoC and Designer tools allows the user to select the desired amount of delay and configures the delay elements appropriately. SmartGen also allows the user to select the input clock source. SmartGen will automatically instantiate the special macro, PLLINT, when needed.



# **Real-Time Counter System**

The RTC system enables Fusion devices to support standby and sleep modes of operation to reduce power consumption in many applications.

- Sleep mode, typical 10 µA
- · Standby mode (RTC running), typical 3 mA with 20 MHz

The RTC system is composed of five cores:

- RTC sub-block inside Analog Block (AB)
- Voltage Regulator and Power System Monitor (VRPSM)
- Crystal oscillator (XTLOSC); refer to the "Crystal Oscillator" section in the Fusion Clock Resources chapter of the *Fusion FPGA Fabric User Guide* for more detail.
- Crystal clock; does not require instantiation in RTL
- 1.5 V voltage regulator; does not require instantiation in RTL

All cores are powered by 3.3 V supplies, so the RTC system is operational without a 1.5 V supply during standby mode. Figure 2-27 shows their connection.



#### Notes:

- 1. Signals are hardwired internally and do not exist in the macro core.
- 2. User is only required to instantiate the VRPSM macro if the user wishes to specify PUPO behavior of the voltage regulator to be different from the default, or employ user logic to shut the voltage regulator off.

Figure 2-27 • Real-Time Counter System (not all the signals are shown for the AB macro)

Data operations are performed in widths of 1 to 4 bytes. A write to a location in a page that is not already in the Page Buffer will cause the page to be read from the FB Array and stored in the Page Buffer. The block that was addressed during the write will be put into the Block Buffer, and the data written by WD will overwrite the data in the Block Buffer. After the data is written to the Block Buffer, the Block Buffer is then written to the Page Buffer to keep both buffers in sync. Subsequent writes to the same block will overwrite the Block Buffer and the Page Buffer. A write to another block in the page will cause the addressed block to be loaded from the Page Buffer, and the write will be performed as described previously.

The data width can be selected dynamically via the DATAWIDTH input bus. The truth table for the data width settings is detailed in Table 2-21. The minimum resolvable address is one 8-bit byte. For data widths greater than 8 bits, the corresponding address bits are ignored—when DATAWIDTH = 0 (2 bytes), ADDR[0] is ignored, and when DATAWIDTH = '10' or '11' (4 bytes), ADDR[1:0] are ignored. Data pins are LSB-oriented and unused WD data pins must be grounded.

#### Table 2-21 • Data Width Settings

| DATAWIDTH[1:0] | Data Width     |
|----------------|----------------|
| 00             | 1 byte [7:0]   |
| 01             | 2 byte [15:0]  |
| 10, 11         | 4 bytes [31:0] |

# Flash Memory Block Protection

## Page Loss Protection

When the PAGELOSSPROTECT pin is set to logic 1, it prevents writes to any page other than the current page in the Page Buffer until the page is either discarded or programmed.

A write to another page while the current page is Page Loss Protected will return a STATUS of '11'.

## **Overwrite Protection**

Any page that is Overwrite Protected will result in the STATUS being set to '01' when an attempt is made to either write, program, or erase it. To set the Overwrite Protection state for a page, set the OVERWRITEPROTECT pin when a Program operation is undertaken. To clear the Overwrite Protect state for a given page, an Unprotect Page operation must be performed on the page, and then the page must be programmed with the OVERWRITEPROTECT pin cleared to save the new page.

## LOCKREQUEST

The LOCKREQUEST signal is used to give the user interface control over simultaneous access of the FB from both the User and JTAG interfaces. When LOCKREQUEST is asserted, the JTAG interface will hold off any access attempts until LOCKREQUEST is deasserted.

# Flash Memory Block Operations

## FB Operation Priority

The FB provides for priority of operations when multiple actions are requested simultaneously. Table 2-22 shows the priority order (priority 0 is the highest).

| Table 2-22 • FB Operation |
|---------------------------|
|---------------------------|

| Operation             | Priority |
|-----------------------|----------|
| System Initialization | 0        |
| FB Reset              | 1        |
| Read                  | 2        |
| Write                 | 3        |
| Erase Page            | 4        |
| Program               | 5        |
| Unprotect Page        | 6        |
| Discard Page          | 7        |



Device Architecture

# Table 2-36 • Analog Block Pin Description (continued)

| Signal Name                                         | Number<br>of Bits | Direction | Function                                                     | Location of<br>Details |
|-----------------------------------------------------|-------------------|-----------|--------------------------------------------------------------|------------------------|
| GDON0 to GDON9                                      | 10                | Input     | Control to power MOS – 1 per quad                            | Analog Quad            |
| TMSTB0 to TMSTB9                                    | 10                | Input     | Temperature monitor strobe – 1 per quad; active high         | Analog Quad            |
| DAVOUTO, DACOUTO, DATOUTO                           | 30                | Output    | Digital outputs – 3 per quad                                 | Analog Quad            |
| to<br>DAVOUT9, DACOUT9, DATOUT9                     |                   |           |                                                              |                        |
| DENAV0, DENAC0, DENAT0 to<br>DENAV9, DENAC9, DENAT9 | 30                | Input     | Digital input enables – 3 per quad                           | Analog Quad            |
| AV0                                                 | 1                 | Input     | Analog Quad 0                                                | Analog Quad            |
| AC0                                                 | 1                 | Input     |                                                              | Analog Quad            |
| AG0                                                 | 1                 | Output    |                                                              | Analog Quad            |
| AT0                                                 | 1                 | Input     |                                                              | Analog Quad            |
| ATRETURN01                                          | 1                 | Input     | Temperature monitor return shared by Analog Quads 0 and 1    | Analog Quad            |
| AV1                                                 | 1                 | Input     | Analog Quad 1                                                | Analog Quad            |
| AC1                                                 | 1                 | Input     |                                                              | Analog Quad            |
| AG1                                                 | 1                 | Output    |                                                              | Analog Quad            |
| AT1                                                 | 1                 | Input     |                                                              | Analog Quad            |
| AV2                                                 | 1                 | Input     | Analog Quad 2                                                | Analog Quad            |
| AC2                                                 | 1                 | Input     |                                                              | Analog Quad            |
| AG2                                                 | 1                 | Output    |                                                              | Analog Quad            |
| AT2                                                 | 1                 | Input     |                                                              | Analog Quad            |
| ATRETURN23                                          | 1                 | Input     | Temperature monitor return shared by Analog Quads 2 and 3    | Analog Quad            |
| AV3                                                 | 1                 | Input     | Analog Quad 3                                                | Analog Quad            |
| AC3                                                 | 1                 | Input     |                                                              | Analog Quad            |
| AG3                                                 | 1                 | Output    |                                                              | Analog Quad            |
| AT3                                                 | 1                 | Input     |                                                              | Analog Quad            |
| AV4                                                 | 1                 | Input     | Analog Quad 4                                                | Analog Quad            |
| AC4                                                 | 1                 | Input     |                                                              | Analog Quad            |
| AG4                                                 | 1                 | Output    |                                                              | Analog Quad            |
| AT4                                                 | 1                 | Input     |                                                              | Analog Quad            |
| ATRETURN45                                          | 1                 | Input     | Temperature monitor return shared by<br>Analog Quads 4 and 5 | Analog Quad            |
| AV5                                                 | 1                 | Input     | Analog Quad 5                                                | Analog Quad            |
| AC5                                                 | 1                 | Input     |                                                              | Analog Quad            |
| AG5                                                 | 1                 | Output    |                                                              | Analog Quad            |
| AT5                                                 | 1                 | Input     |                                                              | Analog Quad            |
| AV6                                                 | 1                 | Input     | Analog Quad 6                                                | Analog Quad            |
| AC6                                                 | 1                 | Input     |                                                              | Analog Quad            |



### Figure 2-90 • Input Setup Time

#### Standard Conversion



## Notes:

1. Refer to EQ 20 on page 2-109 for the calculation on the sample time,  $t_{SAMPLE}$ .

2. See EQ 23 on page 2-109 for calculation of the conversion time,  $t_{CONV}$ .

3. Minimum time to issue an ADCSTART after DATAVALID is 1 SYSCLK period

Figure 2-91 • Standard Conversion Status Signal Timing Diagram



Device Architecture

# Table 2-52 • Calibrated Analog Channel Accuracy 1,2,3Worst-Case Industrial Conditions, TJ = 85°C

|               |                     | Condition                      | Total              | Channel Error   | (LSB)         |  |
|---------------|---------------------|--------------------------------|--------------------|-----------------|---------------|--|
| Analog<br>Pad | Prescaler Range (V) | Input Voltage <sup>4</sup> (V) | Negative Max.      | Median          | Positive Max. |  |
| P             | ositive Range       |                                | A                  | DC in 10-Bit Mo | ode           |  |
| AV, AC        | 16                  | 0.300 to 12.0                  | -6                 | 1               | 6             |  |
|               | 8                   | 0.250 to 8.00                  | -6                 | 0               | 6             |  |
|               | 4                   | 0.200 to 4.00                  | -7                 | -1              | 7             |  |
|               | 2                   | 0.150 to 2.00                  | -7                 | 0               | 7             |  |
|               | 1                   | 0.050 to 1.00                  | -6                 | -1              | 6             |  |
| AT            | 16                  | 0.300 to 16.0                  | -5                 | 0               | 5             |  |
|               | 4                   | 0.100 to 4.00                  | -7                 | -1              | 7             |  |
| Ne            | egative Range       |                                | ADC in 10-Bit Mode |                 |               |  |
| AV, AC        | 16                  | -0.400 to -10.5                | -7                 | 1               | 9             |  |
|               | 8                   | -0.350 to -8.00                | -7                 | -1              | 7             |  |
|               | 4                   | -0.300 to -4.00                | -7                 | -2              | 9             |  |
|               | 2                   | -0.250 to -2.00                | -7                 | -2              | 7             |  |
|               | 1                   | -0.050 to -1.00                | -16                | -1              | 20            |  |

Notes:

1. Channel Accuracy includes prescaler and ADC accuracies. For 12-bit mode, multiply the LSB count by 4. For 8-bit mode, divide the LSB count by 4. Overall accuracy remains the same.

2. Requires enabling Analog Calibration using SmartGen Analog System Builder. For further details, refer to the "Temperature, Voltage, and Current Calibration in Fusion FPGAs" chapter of the Fusion FPGA Fabric User Guide.

3. Calibrated with two-point calibration methodology, using 20% and 80% full-scale points.

4. The lower limit of the input voltage is determined by the prescaler input offset.

# **5 V Output Tolerance**

Fusion I/Os must be set to 3.3 V LVTTL or 3.3 V LVCMOS mode to reliably drive 5 V TTL receivers. It is also critical that there be NO external I/O pull-up resistor to 5 V, since this resistor would pull the I/O pad voltage beyond the 3.6 V absolute maximum value and consequently cause damage to the I/O.

When set to  $3.3 \vee LVTTL$  or  $3.3 \vee LVCMOS$  mode, Fusion I/Os can directly drive signals into  $5 \vee TTL$  receivers. In fact, VOL = 0.4 V and VOH = 2.4 V in both  $3.3 \vee LVTTL$  and  $3.3 \vee LVCMOS$  modes exceed the VIL = 0.8 V and VIH = 2 V level requirements of  $5 \vee TTL$  receivers. Therefore, level '1' and level '0' will be recognized correctly by  $5 \vee TTL$  receivers.

# Simultaneously Switching Outputs and PCB Layout

- Simultaneously switching outputs (SSOs) can produce signal integrity problems on adjacent signals that are not part of the SSO bus. Both inductive and capacitive coupling parasitics of bond wires inside packages and of traces on PCBs will transfer noise from SSO busses onto signals adjacent to those busses. Additionally, SSOs can produce ground bounce noise and VCCI dip noise. These two noise types are caused by rapidly changing currents through GND and VCCI package pin inductances during switching activities:
- Ground bounce noise voltage = L(GND) \* di/dt
- VCCI dip noise voltage = L(VCCI) \* di/dt

Any group of four or more input pins switching on the same clock edge is considered an SSO bus. The shielding should be done both on the board and inside the package unless otherwise described.

In-package shielding can be achieved in several ways; the required shielding will vary depending on whether pins next to SSO bus are LVTTL/LVCMOS inputs, LVTTL/LVCMOS outputs, or GTL/SSTL/HSTL/LVDS/LVPECL inputs and outputs. Board traces in the vicinity of the SSO bus have to be adequately shielded from mutual coupling and inductive noise that can be generated by the SSO bus. Also, noise generated by the SSO bus needs to be reduced inside the package.

PCBs perform an important function in feeding stable supply voltages to the IC and, at the same time, maintaining signal integrity between devices.

Key issues that need to considered are as follows:

- Power and ground plane design and decoupling network design
- Transmission line reflections and terminations



# Selectable Skew between Output Buffer Enable/Disable Time

The configurable skew block is used to delay the output buffer assertion (enable) without affecting deassertion (disable) time.







Figure 2-108 • Timing Diagram (option1: bypasses skew circuit)



Figure 2-109 • Timing Diagram (option 2: enables skew circuit)

## Table 2-78 • Fusion Standard I/O Standards—OUT\_DRIVE Settings

|                    |   | OUT_DRIVE (mA) |   |   |      |     |  |  |  |  |
|--------------------|---|----------------|---|---|------|-----|--|--|--|--|
| I/O Standards      | 2 | 4              | 6 | 8 | Slew |     |  |  |  |  |
| LVTTL/LVCMOS 3.3 V | 3 | 3              | 3 | 3 | High | Low |  |  |  |  |
| LVCMOS 2.5 V       | 3 | 3              | 3 | 3 | High | Low |  |  |  |  |
| LVCMOS 1.8 V       | 3 | 3              | - | - | High | Low |  |  |  |  |
| LVCMOS 1.5 V       | 3 | _              | - | - | High | Low |  |  |  |  |

# Table 2-79 • Fusion Advanced I/O Standards—SLEW and OUT\_DRIVE Settings

|                    |   | OUT_DRIVE (mA) |   |   |    |    |      |     |  |  |  |
|--------------------|---|----------------|---|---|----|----|------|-----|--|--|--|
| I/O Standards      | 2 | 4              | 6 | 8 | 12 | 16 | Slew |     |  |  |  |
| LVTTL/LVCMOS 3.3 V | 3 | 3              | 3 | 3 | 3  | 3  | High | Low |  |  |  |
| LVCMOS 2.5 V       | 3 | 3              | 3 | 3 | 3  | -  | High | Low |  |  |  |
| LVCMOS 1.8 V       | 3 | 3              | 3 | 3 | -  | -  | High | Low |  |  |  |
| LVCMOS 1.5 V       | 3 | 3              | _ | _ | _  | _  | High | Low |  |  |  |

| Table 2- | .80 • Fu | sion Pro | I/O Sta | ndards- | -SLEW a | nd OUT | <b>DRIVE Set</b> | tings |
|----------|----------|----------|---------|---------|---------|--------|------------------|-------|
|          |          |          |         |         |         |        |                  |       |

|                    | OUT_DRIVE (mA) |   |   |   |    |    |    |      |     |  |
|--------------------|----------------|---|---|---|----|----|----|------|-----|--|
| I/O Standards      | 2              | 4 | 6 | 8 | 12 | 16 | 24 | Sle  | w   |  |
| LVTTL/LVCMOS 3.3 V | 3              | 3 | 3 | 3 | 3  | 3  | 3  | High | Low |  |
| LVCMOS 2.5 V       | 3              | 3 | 3 | 3 | 3  | 3  | 3  | High | Low |  |
| LVCMOS 2.5 V/5.0 V | 3              | 3 | 3 | 3 | 3  | 3  | 3  | High | Low |  |
| LVCMOS 1.8 V       | 3              | 3 | 3 | 3 | 3  | 3  | -  | High | Low |  |
| LVCMOS 1.5 V       | 3              | 3 | 3 | 3 | 3  | -  | _  | High | Low |  |

## SSTL3 Class II

Stub-Speed Terminated Logic for 3.3 V memory bus standard (JESD8-8). Fusion devices support Class II. This provides a differential amplifier input buffer and a push-pull output buffer.

| SSTL3 Class II |           | VIL        | VIH        |           | VOL       | VOH        | IOL | IOH | IOSL                    | IOSH                    | IIL <sup>1</sup> | IIH <sup>2</sup> |
|----------------|-----------|------------|------------|-----------|-----------|------------|-----|-----|-------------------------|-------------------------|------------------|------------------|
| Drive Strength | Min.<br>V | Max.<br>V  | Min.<br>V  | Max.<br>V | Max.<br>V | Min.<br>V  | mA  | mA  | Max.<br>mA <sup>3</sup> | Max.<br>mA <sup>3</sup> | μA <sup>4</sup>  | μA <sup>4</sup>  |
| 21 mA          | -0.3      | VREF – 0.2 | VREF + 0.2 | 3.6       | 0.5       | VCCI – 0.9 | 21  | 21  | 109                     | 103                     | 10               | 10               |

Table 2-165 • Minimum and Maximum DC Input and Output Levels

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.



## Figure 2-133 • AC Loading

#### Table 2-166 • AC Waveforms, Measuring Points, and Capacitive Loads

| Input Low (V) | Input High (V) | Measuring Point* (V) | VREF (typ.) (V) | VTT (typ.) (V) | C <sub>LOAD</sub> (pF) |
|---------------|----------------|----------------------|-----------------|----------------|------------------------|
| VREF – 0.2    | VREF + 0.2     | 1.5                  | 1.5             | 1.485          | 30                     |

Note: \*Measuring point = Vtrip. See Table 2-90 on page 2-166 for a complete table of trip points.

#### Timing Characteristics

Table 2-167 • SSTL3- Class II Commercial Temperature Range Conditions: T<sub>J</sub> = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V, VREF = 1.5 V

| Speed<br>Grade | t <sub>DOUT</sub> | t <sub>DP</sub> | t <sub>DIN</sub> | t <sub>PY</sub> | t <sub>EOUT</sub> | t <sub>ZL</sub> | t <sub>zH</sub> | t <sub>LZ</sub> | t <sub>HZ</sub> | t <sub>ZLS</sub> | t <sub>zHS</sub> | Units |
|----------------|-------------------|-----------------|------------------|-----------------|-------------------|-----------------|-----------------|-----------------|-----------------|------------------|------------------|-------|
| Std.           | 0.66              | 2.07            | 0.04             | 1.25            | 0.43              | 2.10            | 1.67            |                 |                 | 4.34             | 3.91             | ns    |
| -1             | 0.56              | 1.76            | 0.04             | 1.06            | 0.36              | 1.79            | 1.42            |                 |                 | 3.69             | 3.32             | ns    |
| -2             | 0.49              | 1.54            | 0.03             | 0.93            | 0.32              | 1.57            | 1.25            |                 |                 | 3.24             | 2.92             | ns    |

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.



# I/O Register Specifications Fully Registered I/O Buffers with Synchronous Enable and Asynchronous Preset

Figure 2-137 • Timing Model of Registered I/O Buffers with Synchronous Enable and Asynchronous Preset



## Table 2-174 • Parameter Definitions and Measuring Nodes

| Parameter<br>Name     | Parameter Definition                                             | Measuring Nodes<br>(from, to)* |
|-----------------------|------------------------------------------------------------------|--------------------------------|
| t <sub>OCLKQ</sub>    | Clock-to-Q of the Output Data Register                           | H, DOUT                        |
| tosud                 | Data Setup Time for the Output Data Register                     | F, H                           |
| t <sub>OHD</sub>      | Data Hold Time for the Output Data Register                      | F, H                           |
| t <sub>OSUE</sub>     | Enable Setup Time for the Output Data Register                   | G, H                           |
| t <sub>OHE</sub>      | Enable Hold Time for the Output Data Register                    | G, H                           |
| t <sub>OPRE2Q</sub>   | Asynchronous Preset-to-Q of the Output Data Register             | L,DOUT                         |
| t <sub>OREMPRE</sub>  | Asynchronous Preset Removal Time for the Output Data Register    | L, H                           |
| t <sub>ORECPRE</sub>  | Asynchronous Preset Recovery Time for the Output Data Register   | L, H                           |
| t <sub>OECLKQ</sub>   | Clock-to-Q of the Output Enable Register                         | H, EOUT                        |
| t <sub>OESUD</sub>    | Data Setup Time for the Output Enable Register                   | J, H                           |
| t <sub>OEHD</sub>     | Data Hold Time for the Output Enable Register                    | J, H                           |
| t <sub>OESUE</sub>    | Enable Setup Time for the Output Enable Register                 | K, H                           |
| t <sub>OEHE</sub>     | Enable Hold Time for the Output Enable Register                  | K, H                           |
| t <sub>OEPRE2Q</sub>  | Asynchronous Preset-to-Q of the Output Enable Register           | I, EOUT                        |
| t <sub>OEREMPRE</sub> | Asynchronous Preset Removal Time for the Output Enable Register  | I, H                           |
| t <sub>OERECPRE</sub> | Asynchronous Preset Recovery Time for the Output Enable Register | I, H                           |
| t <sub>ICLKQ</sub>    | Clock-to-Q of the Input Data Register                            | A, E                           |
| t <sub>ISUD</sub>     | Data Setup Time for the Input Data Register                      | C, A                           |
| t <sub>IHD</sub>      | Data Hold Time for the Input Data Register                       | C, A                           |
| t <sub>ISUE</sub>     | Enable Setup Time for the Input Data Register                    | B, A                           |
| t <sub>IHE</sub>      | Enable Hold Time for the Input Data Register                     | B, A                           |
| t <sub>IPRE2Q</sub>   | Asynchronous Preset-to-Q of the Input Data Register              | D, E                           |
| t <sub>IREMPRE</sub>  | Asynchronous Preset Removal Time for the Input Data Register     | D, A                           |
| t <sub>IRECPRE</sub>  | Asynchronous Preset Recovery Time for the Input Data Register    | D, A                           |

*Note:* \*See Figure 2-137 on page 2-212 for more information.

| Parameter          | Description                | Conditions                                                            | Temp.                  | Min | Тур  | Мах | Unit |
|--------------------|----------------------------|-----------------------------------------------------------------------|------------------------|-----|------|-----|------|
| ICC <sup>1</sup>   | 1.5 V quiescent current    | Operational standby <sup>4</sup> ,                                    | T <sub>J</sub> = 25°C  |     | 13   | 25  | mA   |
|                    |                            | VCC = 1.575 V                                                         | T <sub>J</sub> = 85°C  |     | 20   | 45  | mA   |
|                    |                            |                                                                       | T <sub>J</sub> =100°C  |     | 25   | 75  | mA   |
|                    |                            | Standby mode <sup>5</sup> or Sleep<br>mode <sup>6</sup> , VCC = 0 V   |                        |     | 0    | 0   | μA   |
| ICC33 <sup>2</sup> | 3.3 V analog supplies      | Operational standby <sup>4</sup> ,                                    | T <sub>J</sub> = 25°C  |     | 9.8  | 13  | mA   |
|                    | current                    | VCC33 = 3.63 V                                                        | T <sub>J</sub> = 85°C  |     | 10.7 | 14  | mA   |
|                    |                            |                                                                       | T <sub>J</sub> = 100°C |     | 10.8 | 15  | mA   |
|                    |                            | Operational standby,                                                  | T <sub>J</sub> = 25°C  |     | 0.31 | 2   | mA   |
|                    |                            | only Analog Quad and -3.3 V<br>output ON, VCC33 = 3.63 V              | T <sub>J</sub> = 85°C  |     | 0.35 | 2   | mA   |
|                    |                            |                                                                       | T <sub>J</sub> = 100°C |     | 0.45 | 2   | mA   |
|                    |                            | Standby mode <sup>5</sup> ,<br>VCC33 = 3.63 V                         | T <sub>J</sub> = 25°C  |     | 2.8  | 3.6 | mA   |
|                    |                            |                                                                       | T <sub>J</sub> = 85°C  |     | 2.9  | 4   | mA   |
|                    |                            |                                                                       | T <sub>J</sub> = 100°C |     | 3.5  | 6   | mA   |
|                    |                            | Sleep mode <sup>6</sup> , V <sub>CC33</sub> = 3.63 V                  | T <sub>J</sub> = 25°C  |     | 17   | 19  | μA   |
|                    |                            |                                                                       | T <sub>J</sub> = 85°C  |     | 18   | 20  | μA   |
|                    |                            |                                                                       | T <sub>J</sub> = 100°C |     | 24   | 25  | μA   |
| ICCI <sup>3</sup>  | I/O quiescent current      | Operational standby <sup>4</sup> ,                                    | T <sub>J</sub> = 25°C  |     | 417  | 648 | μA   |
|                    |                            | VCCIX = 3.63 V                                                        | T <sub>J</sub> = 85°C  |     | 417  | 648 | μA   |
|                    |                            |                                                                       | T <sub>J</sub> = 100°C |     | 417  | 649 | μA   |
| IJTAG              | JTAG I/O quiescent current | Operational standby <sup>4</sup> ,                                    | T <sub>J</sub> = 25°C  |     | 80   | 100 | μA   |
|                    |                            | VJ1AG = 3.63 V                                                        | T <sub>J</sub> = 85°C  |     | 80   | 100 | μA   |
|                    |                            |                                                                       | T <sub>J</sub> = 100°C |     | 80   | 100 | μA   |
|                    |                            | Standby mode <sup>5</sup> or Sleep<br>mode <sup>6</sup> , VJTAG = 0 V |                        |     | 0    | 0   | μA   |

| Table 3-9 • | AFS600 Quiescent Supply Current Characteristics |
|-------------|-------------------------------------------------|
|-------------|-------------------------------------------------|

Notes:

1. ICC is the 1.5 V power supplies, ICC and ICC15A.

2. ICC33A includes ICC33A, ICC33PMP, and ICCOSC.

3. ICCI includes all ICCI0, ICCI1, ICCI2, and ICCI4.

4. Operational standby is when the Fusion device is powered up, all blocks are used, no I/O is toggling, Voltage Regulator is loaded with 200 mA, VCC33PMP is ON, XTAL is ON, and ADC is ON.

5. XTAL is configured as high gain, VCC = VJTAG = VPUMP = 0 V.

6. Sleep Mode, VCC = VJTAG = VPUMP = 0 V.



Package Pin Assignments

| QN180      |                 |                 |  |  |  |  |
|------------|-----------------|-----------------|--|--|--|--|
| Pin Number | AFS090 Function | AFS250 Function |  |  |  |  |
| C21        | AG2             | AG2             |  |  |  |  |
| C22        | NC              | NC              |  |  |  |  |
| C23        | NC              | NC              |  |  |  |  |
| C24        | NC              | NC              |  |  |  |  |
| C25        | NC              | AT5             |  |  |  |  |
| C26        | GNDAQ           | GNDAQ           |  |  |  |  |
| C27        | NC              | NC              |  |  |  |  |
| C28        | NC              | NC              |  |  |  |  |
| C29        | NC              | NC              |  |  |  |  |
| C30        | NC              | NC              |  |  |  |  |
| C31        | GND             | GND             |  |  |  |  |
| C32        | NC              | NC              |  |  |  |  |
| C33        | NC              | NC              |  |  |  |  |
| C34        | NC              | NC              |  |  |  |  |
| C35        | GND             | GND             |  |  |  |  |
| C36        | GDB0/IO39NPB1V0 | GDA0/IO54NPB1V0 |  |  |  |  |
| C37        | GDA1/IO37NSB1V0 | GDC0/IO52NSB1V0 |  |  |  |  |
| C38        | GCA0/IO36NDB1V0 | GCA0/IO49NDB1V0 |  |  |  |  |
| C39        | GCB1/IO35PPB1V0 | GCB1/IO48PPB1V0 |  |  |  |  |
| C40        | GND             | GND             |  |  |  |  |
| C41        | GCA2/IO32NPB1V0 | IO41NPB1V0      |  |  |  |  |
| C42        | GBB2/IO31NDB1V0 | IO40NDB1V0      |  |  |  |  |
| C43        | NC              | NC              |  |  |  |  |
| C44        | NC              | GBA1/IO39RSB0V0 |  |  |  |  |
| C45        | NC              | GBB0/IO36RSB0V0 |  |  |  |  |
| C46        | GND             | GND             |  |  |  |  |
| C47        | NC              | IO30RSB0V0      |  |  |  |  |
| C48        | IO22RSB0V0      | IO27RSB0V0      |  |  |  |  |
| C49        | GND             | GND             |  |  |  |  |
| C50        | IO13RSB0V0      | IO16RSB0V0      |  |  |  |  |
| C51        | IO09RSB0V0      | IO12RSB0V0      |  |  |  |  |
| C52        | IO06RSB0V0      | IO09RSB0V0      |  |  |  |  |
| C53        | GND             | GND             |  |  |  |  |
| C54        | NC              | GAB1/IO03RSB0V0 |  |  |  |  |
| C55        | NC              | GAA0/IO00RSB0V0 |  |  |  |  |
| C56        | NC              | NC              |  |  |  |  |

| QN180      |                 |                 |  |  |  |  |
|------------|-----------------|-----------------|--|--|--|--|
| Pin Number | AFS090 Function | AFS250 Function |  |  |  |  |
| D1         | NC              | NC              |  |  |  |  |
| D2         | NC              | NC              |  |  |  |  |
| D3         | NC              | NC              |  |  |  |  |
| D4         | NC              | NC              |  |  |  |  |

Fusion Family of Mixed Signal FPGAs

|               | PQ208           |                 | PQ208         |                 |                 |
|---------------|-----------------|-----------------|---------------|-----------------|-----------------|
| Pin<br>Number | AFS250 Function | AFS600 Function | Pin<br>Number | AFS250 Function | AFS600 Function |
| 74            | AV2             | AV4             | 111           | VCCNVM          | VCCNVM          |
| 75            | AC2             | AC4             | 112           | VCC             | VCC             |
| 76            | AG2             | AG4             | 112           | VCC             | VCC             |
| 77            | AT2             | AT4             | 113           | VPUMP           | VPUMP           |
| 78            | ATRTN1          | ATRTN2          | 114           | GNDQ            | NC              |
| 79            | AT3             | AT5             | 115           | VCCIB1          | ТСК             |
| 80            | AG3             | AG5             | 116           | ТСК             | TDI             |
| 81            | AC3             | AC5             | 117           | TDI             | TMS             |
| 82            | AV3             | AV5             | 118           | TMS             | TDO             |
| 83            | AV4             | AV6             | 119           | TDO             | TRST            |
| 84            | AC4             | AC6             | 120           | TRST            | VJTAG           |
| 85            | AG4             | AG6             | 121           | VJTAG           | IO57NDB2V0      |
| 86            | AT4             | AT6             | 122           | IO57NDB1V0      | GDC2/IO57PDB2V0 |
| 87            | ATRTN2          | ATRTN3          | 123           | GDC2/IO57PDB1V0 | IO56NDB2V0      |
| 88            | AT5             | AT7             | 124           | IO56NDB1V0      | GDB2/IO56PDB2V0 |
| 89            | AG5             | AG7             | 125           | GDB2/IO56PDB1V0 | IO55NDB2V0      |
| 90            | AC5             | AC7             | 126           | VCCIB1          | GDA2/IO55PDB2V0 |
| 91            | AV5             | AV7             | 127           | GND             | GDA0/IO54NDB2V0 |
| 92            | NC              | AV8             | 128           | IO55NDB1V0      | GDA1/IO54PDB2V0 |
| 93            | NC              | AC8             | 129           | GDA2/IO55PDB1V0 | VCCIB2          |
| 94            | NC              | AG8             | 130           | GDA0/IO54NDB1V0 | GND             |
| 95            | NC              | AT8             | 131           | GDA1/IO54PDB1V0 | VCC             |
| 96            | NC              | ATRTN4          | 132           | GDB0/IO53NDB1V0 | GCA0/IO45NDB2V0 |
| 97            | NC              | AT9             | 133           | GDB1/IO53PDB1V0 | GCA1/IO45PDB2V0 |
| 98            | NC              | AG9             | 134           | GDC0/IO52NDB1V0 | GCB0/IO44NDB2V0 |
| 99            | NC              | AC9             | 135           | GDC1/IO52PDB1V0 | GCB1/IO44PDB2V0 |
| 100           | NC              | AV9             | 136           | IO51NSB1V0      | GCC0/IO43NDB2V  |
| 101           | GNDAQ           | GNDAQ           |               |                 | 0               |
| 102           | VCC33A          | VCC33A          | 137           | VCCIB1          | GCC1/IO43PDB2V0 |
| 103           | ADCGNDREF       | ADCGNDREF       | 138           | GND             | IO42NDB2V0      |
| 104           | VAREF           | VAREF           | 139           | VCC             | IO42PDB2V0      |
| 105           | PUB             | PUB             | 140           | IO50NDB1V0      | IO41NDB2V0      |
| 106           | VCC33A          | VCC33A          | 141           | IO50PDB1V0      | GCC2/IO41PDB2V0 |
| 107           | GNDA            | GNDA            | 142           | GCA0/IO49NDB1V0 | VCCIB2          |
| 108           | PTEM            | PTEM            | 143           | GCA1/IO49PDB1V0 | GND             |
| 109           | PTBASE          | PTBASE          | 144           | GCB0/IO48NDB1V0 | VCC             |
| 110           | GNDNVM          | GNDNVM          | 145           | GCB1/IO48PDB1V0 | IO40NDB2V0      |
| ι             |                 | L]              | 146           | GCC0/IO47NDB1V0 | GCB2/IO40PDB2V0 |



Package Pin Assignments

| FG484         |                 |                  | FG484         |                 |                  |  |
|---------------|-----------------|------------------|---------------|-----------------|------------------|--|
| Pin<br>Number | AFS600 Function | AFS1500 Function | Pin<br>Number | AFS600 Function | AFS1500 Function |  |
| A1            | GND             | GND              | AA14          | AG7             | AG7              |  |
| A2            | VCC             | NC               | AA15          | AG8             | AG8              |  |
| A3            | GAA1/IO01PDB0V0 | GAA1/IO01PDB0V0  | AA16          | GNDA            | GNDA             |  |
| A4            | GAB0/IO02NDB0V0 | GAB0/IO02NDB0V0  | AA17          | AG9             | AG9              |  |
| A5            | GAB1/IO02PDB0V0 | GAB1/IO02PDB0V0  | AA18          | VAREF           | VAREF            |  |
| A6            | IO07NDB0V1      | IO07NDB0V1       | AA19          | VCCIB2          | VCCIB2           |  |
| A7            | IO07PDB0V1      | IO07PDB0V1       | AA20          | PTEM            | PTEM             |  |
| A8            | IO10PDB0V1      | IO09PDB0V1       | AA21          | GND             | GND              |  |
| A9            | IO14NDB0V1      | IO13NDB0V2       | AA22          | VCC             | NC               |  |
| A10           | IO14PDB0V1      | IO13PDB0V2       | AB1           | GND             | GND              |  |
| A11           | IO17PDB1V0      | IO24PDB1V0       | AB2           | VCC             | NC               |  |
| A12           | IO18PDB1V0      | IO26PDB1V0       | AB3           | NC              | IO94NSB4V0       |  |
| A13           | IO19NDB1V0      | IO27NDB1V1       | AB4           | GND             | GND              |  |
| A14           | IO19PDB1V0      | IO27PDB1V1       | AB5           | VCC33N          | VCC33N           |  |
| A15           | IO24NDB1V1      | IO35NDB1V2       | AB6           | AT0             | AT0              |  |
| A16           | IO24PDB1V1      | IO35PDB1V2       | AB7           | ATRTN0          | ATRTN0           |  |
| A17           | GBC0/IO26NDB1V1 | GBC0/IO40NDB1V2  | AB8           | AT1             | AT1              |  |
| A18           | GBA0/IO28NDB1V1 | GBA0/IO42NDB1V2  | AB9           | AT2             | AT2              |  |
| A19           | IO29NDB1V1      | IO43NDB1V2       | AB10          | ATRTN1          | ATRTN1           |  |
| A20           | IO29PDB1V1      | IO43PDB1V2       | AB11          | AT3             | AT3              |  |
| A21           | VCC             | NC               | AB12          | AT6             | AT6              |  |
| A22           | GND             | GND              | AB13          | ATRTN3          | ATRTN3           |  |
| AA1           | VCC             | NC               | AB14          | AT7             | AT7              |  |
| AA2           | GND             | GND              | AB15          | AT8             | AT8              |  |
| AA3           | VCCIB4          | VCCIB4           | AB16          | ATRTN4          | ATRTN4           |  |
| AA4           | VCCIB4          | VCCIB4           | AB17          | AT9             | AT9              |  |
| AA5           | PCAP            | PCAP             | AB18          | VCC33A          | VCC33A           |  |
| AA6           | AG0             | AG0              | AB19          | GND             | GND              |  |
| AA7           | GNDA            | GNDA             | AB20          | NC              | IO76NPB2V0       |  |
| AA8           | AG1             | AG1              | AB21          | VCC             | NC               |  |
| AA9           | AG2             | AG2              | AB22          | GND             | GND              |  |
| AA10          | GNDA            | GNDA             | B1            | VCC             | NC               |  |
| AA11          | AG3             | AG3              | B2            | GND             | GND              |  |
| AA12          | AG6             | AG6              | B3            | GAA0/IO01NDB0V0 | GAA0/IO01NDB0V0  |  |
| AA13          | GNDA            | GNDA             | B4            | GND             | GND              |  |

| Revision                   | Changes                                                                                                                                                                                                                                                                                                                                                                                              | Page             |  |  |
|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--|--|
| Revision 3<br>(continued)  | The "RC Oscillator" section was revised to correct a sentence that did not differentiate accuracy for commercial and industrial temperature ranges, which is given in Table 2-9 • Electrical Characteristics of RC Oscillator (SAR 33722).                                                                                                                                                           | 2-19             |  |  |
|                            | Figure 2-57 • FIFO Read and Figure 2-58 • FIFO Write are new (SAR 34840).                                                                                                                                                                                                                                                                                                                            | 2-72             |  |  |
|                            | The first paragraph of the "Offset" section was removed; it was intended to be replaced by the paragraph following it (SAR 22647).                                                                                                                                                                                                                                                                   | 2-95             |  |  |
|                            | IOL and IOH values for 3.3 V GTL+ and 2.5 V GTL+ were corrected in Table 2-86 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial Conditions (SAR 39813).                                                                                                                                                                                            | 2-164            |  |  |
|                            | The drive strength, IOL, and IOH for 3.3 V GTL and 2.5 V GTL were changed from 25 mA to 20 mA in the following tables (SAR 37373):                                                                                                                                                                                                                                                                   |                  |  |  |
|                            | Table 2-86         Summary of Maximum and Minimum DC Input and Output Levels           Applicable to Commercial and Industrial Conditions,                                                                                                                                                                                                                                                           | 2-164            |  |  |
|                            | Table 2-92 • Summary of I/O Timing Characteristics – Software Default Settings                                                                                                                                                                                                                                                                                                                       | 2-167            |  |  |
|                            | Table 2-96 • I/O Output Buffer Maximum Resistances 1                                                                                                                                                                                                                                                                                                                                                 |                  |  |  |
|                            | Table 2-138 • Minimum and Maximum DC Input and Output Levels                                                                                                                                                                                                                                                                                                                                         |                  |  |  |
|                            | Table 2-141 • Minimum and Maximum DC Input and Output Levels                                                                                                                                                                                                                                                                                                                                         | 2-200            |  |  |
|                            | The following sentence was deleted from the "2.5 V LVCMOS" section (SAR 34800): "It uses a 5 V-tolerant input buffer and push-pull output buffer."                                                                                                                                                                                                                                                   | 2-181            |  |  |
|                            | Corrected the inadvertent error in maximum values for LVPECL VIH and VIL and revised them to "3.6" in Table 2-171 • Minimum and Maximum DC Input and Output Levels, making these consistent with Table 3-1 • Absolute Maximum Ratings, and Table 3-4 • Overshoot and Undershoot Limits 1 (SAR 37687).                                                                                                | 2-211            |  |  |
|                            | The maximum frequency for global clock parameter was removed from Table 2-5 • AFS1500 Global Resource Timing through Table 2-8 • AFS090 Global Resource Timing because a frequency on the global is only an indication of what the global network can do. There are other limiters such as the SRAM, I/Os, and PLL. SmartTime software should be used to determine the design frequency (SAR 36955). | 2-16 to<br>2-17  |  |  |
| Revision 2<br>(March 2012) | The phrase "without debug" was removed from the "Soft ARM Cortex-M1 Fusion Devices (M1)" section (SAR 21390).                                                                                                                                                                                                                                                                                        | I                |  |  |
|                            | The "In-System Programming (ISP) and Security" section, "Security" section, "Flash Advantages" section, and "Security" section were revised to clarify that although no existing security measures can give an absolute guarantee, Microsemi FPGAs implement the best security available in the industry (SAR 34679).                                                                                | l, 1-2,<br>2-228 |  |  |
|                            | The Y security option and Licensed DPA Logo was added to the "Product Ordering Codes" section. The trademarked Licensed DPA Logo identifies that a product is covered by a DPA counter-measures license from Cryptography Research (SAR 34721).                                                                                                                                                      | III              |  |  |
|                            | The "Specifying I/O States During Programming" section is new (SAR 34693).                                                                                                                                                                                                                                                                                                                           | 1-9              |  |  |
|                            | The following information was added before Figure 2-17 • XTLOSC Macro:                                                                                                                                                                                                                                                                                                                               | 2-20             |  |  |
|                            | In the case where the Crystal Oscillator block is not used, the XTAL1 pin should be connected to GND and the XTAL2 pin should be left floating (SAR 24119).                                                                                                                                                                                                                                          |                  |  |  |
|                            | Table 2-12 • Fusion CCC/PLL Specification was updated. A note was added indicating that when the CCC/PLL core is generated by Microsemi core generator software, not all delay values of the specified delay increments are available (SAR 34814).                                                                                                                                                   | 2-28             |  |  |



Datasheet Information

| Revision                       | Changes                                                                                                                                                                                                                                                           | Page       |
|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Advance v1.0<br>(continued)    | This change table states that in the "208-Pin PQFP" table listed under the Advance v0.8 changes, the AFS090 device had a pin change. That is incorrect. Pin 102 was updated for AFS250 and AFS600. The function name changed from $V_{CC33ACAP}$ to $V_{CC33A}$ . | 3-8        |
| Advance v0.9<br>(October 2007) | In the "Package I/Os: Single-/Double-Ended (Analog)" table, the AFS1500/M7AFS1500 I/O counts were updated for the following devices: FG484: 223/109<br>FG676: 252/126                                                                                             | II         |
|                                | In the "108-Pin QFN" table, the function changed from $V_{CC33ACAP}$ to $V_{CC33A}$ for the following pin: B25                                                                                                                                                    | 3-2        |
|                                | In the "180-Pin QFN" table, the function changed from V <sub>CC33ACAP</sub> to V <sub>CC33A</sub> for the following pins: AFS090: B29 AFS250: B29                                                                                                                 | 3-4        |
|                                | In the "208-Pin PQFP" table, the function changed from V <sub>CC33ACAP</sub> to V <sub>CC33A</sub> for the following pins: AFS090: 102 AFS250: 102                                                                                                                | 3-8        |
|                                | In the "256-Pin FBGA" table, the function changed from $V_{CC33ACAP}$ to $V_{CC33A}$ for the following pins:<br>AFS090: T14<br>AFS250: T14<br>AFS600: T14<br>AFS1500: T14                                                                                         | 3-12       |
| Advance v0.9<br>(continued)    | In the "484-Pin FBGA" table, the function changed from V <sub>CC33ACAP</sub> to V <sub>CC33A</sub> for the following pins:<br>AFS600: AB18<br>AFS1500: AB18                                                                                                       | 3-20       |
|                                | In the "676-Pin FBGA" table, the function changed from V <sub>CC33ACAP</sub> to V <sub>CC33A</sub> for the following pins: AFS1500: AD20                                                                                                                          | 3-28       |
| Advance v0.8<br>(June 2007)    | Figure 2-16 • Fusion Clocking Options and the "RC Oscillator" section were updated to change GND_OSC and VCC_OSC to GNDOSC and VCCOSC.                                                                                                                            | 2-20, 2-21 |
|                                | Figure 2-19 • Fusion CCC Options: Global Buffers with the PLL Macro was updated to change the positions of OADIVRST and OADIVHALF, and a note was added.                                                                                                          | 2-25       |
|                                | The "Crystal Oscillator" section was updated to include information about controlling and enabling/disabling the crystal oscillator.                                                                                                                              | 2-22       |
|                                | Table 2-11 $\cdot$ Electrical Characteristics of the Crystal Oscillator was updated to change the typical value of I <sub>DYNXTAL</sub> for 0.032–0.2 MHz to 0.19.                                                                                                | 2-24       |
|                                | The "1.5 V Voltage Regulator" section was updated to add "or floating" in the paragraph stating that an external pull-down is required on TRST to power down the VR.                                                                                              | 2-41       |
|                                | The "1.5 V Voltage Regulator" section was updated to include information on powering down with the VR.                                                                                                                                                            | 2-41       |