

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	110592
Number of I/O	119
Number of Gates	600000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	256-LBGA
Supplier Device Package	256-FPBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/afs600-1fg256

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

Fusion Device Family Overview

Introduction	1-1
General Description	1-1
Unprecedented Integration	1-4
Related Documents	1-10

Device Architecture

Fusion Stack Architecture	
Core Architecture	2-2
Clocking Resources	
Real-Time Counter System	
Embedded Memories	
Analog Block	
Analog Configuration MUX	
User I/Os	
Pin Descriptions	2-223
Security	

DC and Power Characteristics

General Specifications	3-1
Calculating Power Dissipation	
Power Consumption	3-32

Package Pin Assignments

QN108	 	 	 	 	 	 	 	 	 		 	 . 4-	1						
QN180	 	 	 	 	 	 	 	 	 		 	 . 4-	3						
PQ208	 	 	 	 	 	 	 	 	 		 	 . 4-	7						
FG256	 	 	 	 	 	 	 	 	 		 	 4-1	1						
FG484	 	 	 	 	 	 	 	 	 		 	 4-1	9						
FG676	 	 	 	 	 	 	 •••	 	 • • •	 	 	 • •	 • •	 	 	•••	 	 4-2	7

Datasheet Information

List of Changes	
Datasheet Categories	
Safety Critical, Life Support, and High-Reliability Applications Policy	/

Figure 2-9 • Efficient Long-Line Resources

			1
	VAREF		
	ADCGNDREF		
	AV0	DAVOUT0	
	AC0	DACOUTO	
	AT0	DATOUTO	
	•	•	
	AV9	DAVOUT9	<u> </u>
	AC9	DACOUT9	<u> </u>
	AT9	DATOUT9	<u> </u>
	ATRETURN01		
	•	AG0	<u> </u>
	Å TRETURN9	AG1	
	DENAV0	•	
	DENAC0	AG9	
	•		
	DENATU		
	CMSTBU		
	CSIMIB9		
	GDONU		
	•		
	GDON9		
	TMSTB0		
	•		
	TMSTB9		
	MODE[3:0]	BUSY	
	TVC[7:0]	CALIBRATE	<u> </u>
	STC[7:0]	DATAVALID	
	CHNUMBER[4:0]	SAMPLE	
	TMSTINT	RESULT[11:0]	<u> </u>
	ADCSTART	RTCMATCH	<u> </u>
	VAREFSEL	RTCXTLMODE	<u> </u>
	PWRDWN	RTCXTLSEL	<u> </u>
	ADCRESET	RTCPSMMATCH	<u> </u>
	RTCCLK		
	SYSCLK		
	ACMWEN	ACMRDATA[7:0]	<u> </u>
0	ACMRESET		
	ACMWDATA		
	ACMADDR		
	ACMCLK		
	ΔΓ	3	I
		,	

Figure 2-64 • Analog Block Macro

Voltage Monitor

The Fusion Analog Quad offers a robust set of voltage-monitoring capabilities unique in the FPGA industry. The Analog Quad comprises three analog input pads— Analog Voltage (AV), Analog Current (AC), and Analog Temperature (AT)—and a single gate driver output pad, Analog Gate (AG). There are many common characteristics among the analog input pads. Each analog input can be configured to connect directly to the input MUX of the ADC. When configured in this manner (Figure 2-66), there will be no prescaling of the input signal. Care must be taken in this mode not to drive the ADC into saturation by applying an input voltage greater than the reference voltage. The internal reference voltage of the ADC is 2.56 V. Optionally, an external reference can be supplied by the user. The external reference can be a maximum of 3.3 V DC.

Figure 2-66 • Analog Quad Direct Connect

The Analog Quad offers a wide variety of prescaling options to enable the ADC to resolve the input signals. Figure 2-67 shows the path through the Analog Quad for a signal that is to be prescaled prior to conversion. The ADC internal reference voltage and the prescaler factors were selected to make both prescaling and postscaling of the signals easy binary calculations (refer to Table 2-57 on page 2-130 for details). When an analog input pad is configured with a prescaler, there will be a 1 M Ω resistor to ground. This occurs even when the device is in power-down mode. In low power standby or sleep mode (VCC is OFF, VCC33A is ON, VCCI is ON) or when the resource is not used, analog inputs are pulled down to ground through a 1 M Ω resistor. The gate driver output is floating (or tristated), and there is no extra current on VCC33A.

These scaling factors hold true whether the particular pad is configured to accept a positive or negative voltage. Note that whereas the AV and AC pads support the same prescaling factors, the AT pad supports a reduced set of prescaling factors and supports positive voltages only.

Analog-to-Digital Converter Block

At the heart of the Fusion analog system is a programmable Successive Approximation Register (SAR) ADC. The ADC can support 8-, 10-, or 12-bit modes of operation. In 12-bit mode, the ADC can resolve 500 ksps. All results are MSB-justified in the ADC. The input to the ADC is a large 32:1 analog input multiplexer. A simplified block diagram of the Analog Quads, analog input multiplexer, and ADC is shown in Figure 2-79. The ADC offers multiple self-calibrating modes to ensure consistent high performance both at power-up and during runtime.

Figure 2-79 • ADC Block Diagram

This process results in a binary approximation of VIN. Generally, there is a fixed interval T, the sampling period, between the samples. The inverse of the sampling period is often referred to as the sampling frequency $f_S = 1 / T$. The combined effect is illustrated in Figure 2-82.

Figure 2-82 • Conversion Example

Figure 2-82 demonstrates that if the signal changes faster than the sampling rate can accommodate, or if the actual value of VIN falls between counts in the result, this information is lost during the conversion. There are several techniques that can be used to address these issues.

First, the sampling rate must be chosen to provide enough samples to adequately represent the input signal. Based on the Nyquist-Shannon Sampling Theorem, the minimum sampling rate must be at least twice the frequency of the highest frequency component in the target signal (Nyquist Frequency). For example, to recreate the frequency content of an audio signal with up to 22 KHz bandwidth, the user must sample it at a minimum of 44 ksps. However, as shown in Figure 2-82, significant post-processing of the data is required to interpolate the value of the waveform during the time between each sample.

Similarly, to re-create the amplitude variation of a signal, the signal must be sampled with adequate resolution. Continuing with the audio example, the dynamic range of the human ear (the ratio of the amplitude of the threshold of hearing to the threshold of pain) is generally accepted to be 135 dB, and the dynamic range of a typical symphony orchestra performance is around 85 dB. Most commercial recording media provide about 96 dB of dynamic range using 16-bit sample resolution. But 16-bit fidelity does not necessarily mean that you need a 16-bit ADC. As long as the input is sampled at or above the Nyquist Frequency, post-processing techniques can be used to interpolate intermediate values and reconstruct the original input signal to within desired tolerances.

If sophisticated digital signal processing (DSP) capabilities are available, the best results are obtained by implementing a reconstruction filter, which is used to interpolate many intermediate values with higher resolution than the original data. Interpolating many intermediate values increases the effective number of samples, and higher resolution increases the effective number of bits in the sample. In many cases, however, it is not cost-effective or necessary to implement such a sophisticated reconstruction algorithm. For applications that do not require extremely fine reproduction of the input signal, alternative methods can enhance digital sampling results with relatively simple post-processing. The details of such techniques are out of the scope of this chapter; refer to the *Improving ADC Results through Oversampling and Post-Processing of Data* white paper for more information.

Analog MUX Channel	Signal	Analog Quad Number
16	AV5	
17	AC5	Analog Quad 5
18	AT5	
19	AV6	
20	AC6	Analog Quad 6
21	AT6	
22	AV7	
23	AC7	Analog Quad 7
24	AT7	
25	AV8	
26	AC8	Analog Quad 8
27	AT8	
28	AV9	
29	AC9	Analog Quad 9
30	AT9	
31	Internal temperature monitor	

Table 2-40 • Analog MUX Channels (continued)

The ADC can be powered down independently of the FPGA core, as an additional control or for powersaving considerations, via the PWRDWN pin of the Analog Block. The PWRDWN pin controls only the comparators in the ADC.

ADC Modes

The Fusion ADC can be configured to operate in 8-, 10-, or 12-bit modes, power-down after conversion, and dynamic calibration. This is controlled by MODE[3:0], as defined in Table 2-41 on page 2-106.

The output of the ADC is the RESULT[11:0] signal. In 8-bit mode, the Most Significant 8 Bits RESULT[11:4] are used as the ADC value and the Least Significant 4 Bits RESULT[3:0] are logical '0's. In 10-bit mode, RESULT[11:2] are used the ADC value and RESULT[1:0] are logical 0s.

Table 2-41 • Mode Bits Function	Table	2-41	Mode	Bits	Function
---------------------------------	-------	------	------	------	----------

Name	Bits	Function
MODE	3	 0 – Internal calibration after every conversion; two ADCCLK cycles are used after the conversion. 1 – No calibration after every conversion
MODE	2	0 – Power-down after conversion 1 – No Power-down after conversion
MODE	1:0	00 – 10-bit 01 – 12-bit 10 – 8-bit 11 – Unused

Table 2-50 • ADC Characteristics in Direct Input Mode (continued)

Commercial Temperature Range Conditions, $T_J = 85^{\circ}C$ (unless noted otherwise), Typical: VCC33A = 3.3 V, VCC = 1.5 V

Parameter	Description	Condition	Min.	Тур.	Max.	Units
Dynamic Pe	erformance					
SNR	Signal-to-Noise Ratio	8-bit mode	48.0	49.5		dB
		10-bit mode	58.0	60.0		dB
		12-bit mode	62.9	64.5		dB
SINAD	Signal-to-Noise Distortion	8-bit mode	47.6	49.5		dB
		10-bit mode	57.4	59.8		dB
		12-bit mode	62.0	64.2		dB
THD	Total Harmonic Distortion	8-bit mode		-74.4	-63.0	dBc
		10-bit mode		-78.3	-63.0	dBc
		12-bit mode		-77.9	-64.4	dBc
ENOB	Effective Number of Bits	8-bit mode	7.6	7.9		bits
		10-bit mode	9.5	9.6		bits
		12-bit mode	10.0	10.4		bits
Conversion	Rate					
	Conversion Time	8-bit mode	1.7			μs
		10-bit mode	1.8			μs
		12-bit mode	2			μs
	Sample Rate	8-bit mode			600	Ksps
		10-bit mode			550	Ksps
		12-bit mode			500	Ksps

Notes:

1. Accuracy of the external reference is $2.56 V \pm 4.6 mV$.

2. Data is based on characterization.

3. The sample rate is time-shared among active analog inputs.

Timing Characteristics

Table 2-55 • Analog Configuration Multiplexer (ACM) TimingCommercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{CLKQACM}	Clock-to-Q of the ACM	19.73	22.48	26.42	ns
t _{SUDACM}	Data Setup time for the ACM	4.39	5.00	5.88	ns
t _{HDACM}	Data Hold time for the ACM	0.00	0.00	0.00	ns
t _{SUAACM}	Address Setup time for the ACM	4.73	5.38	6.33	ns
t _{HAACM}	Address Hold time for the ACM	0.00	0.00	0.00	ns
t _{SUEACM}	Enable Setup time for the ACM	3.93	4.48	5.27	ns
t _{HEACM}	Enable Hold time for the ACM	0.00	0.00	0.00	ns
t _{MPWARACM}	Asynchronous Reset Minimum Pulse Width for the ACM	10.00	10.00	10.00	ns
t _{REMARACM}	Asynchronous Reset Removal time for the ACM	12.98	14.79	17.38	ns
t _{RECARACM}	Asynchronous Reset Recovery time for the ACM	12.98	14.79	17.38	ns
t _{MPWCLKACM}	Clock Minimum Pulse Width for the ACM	45.00	45.00	45.00	ns
t _{FMAXCLKACM}	lock Maximum Frequency for the ACM	10.00	10.00	10.00	MHz

Figure 2-117 • Output Buffer Model and Delays (example)

1.5 V LVCMOS (JESD8-11)

Low-Voltage CMOS for 1.5 V is an extension of the LVCMOS standard (JESD8-5) used for generalpurpose 1.5 V applications. It uses a 1.5 V input buffer and push-pull output buffer.

Table 2-126 • Minimum	and Maximum	DC Input and	Output Levels
-----------------------	-------------	---------------------	----------------------

1.5 V LVCMOS		VIL	VIH		VOL	VOH	IOL	юн	IOSL	IOSH	IIL¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
Applicable to Pro I/O Banks												
2 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	2	2	16	13	10	10
4 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	4	4	33	25	10	10
6 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	6	6	39	32	10	10
8 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	8	8	55	66	10	10
12 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	12	12	55	66	10	10
Applicable	to Adva	inced I/O Ban	iks						-	-		
2 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.575	0.25 * VCCI	0.75 * VCCI	2	2	16	13	10	10
4 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.575	0.25 * VCCI	0.75 * VCCI	4	4	33	25	10	10
6 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.575	0.25 * VCCI	0.75 * VCCI	6	6	39	32	10	10
8 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.575	0.25 * VCCI	0.75 * VCCI	8	8	55	66	10	10
12 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.575	0.25 * VCCI	0.75 * VCCI	12	12	55	66	10	10
Applicable	to Pro I	/O Banks	-		•	-		-	-	-		
2 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	2	2	16	13	10	10

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

2. I_{IH} is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Software default selection highlighted in gray.

Figure 2-122 • AC Loading

Table 2-127 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	C _{LOAD} (pF)
0	1.5	0.75	-	35

Note: *Measuring point = Vtrip. See Table 2-90 on page 2-166 for a complete table of trip points.

SSTL2 Class I

Stub-Speed Terminated Logic for 2.5 V memory bus standard (JESD8-9). Fusion devices support Class I. This provides a differential amplifier input buffer and a push-pull output buffer.

Table 2-156 • Minimum and Maximum DC Input and Output Levels

SSTL2 Class I	s I VIL VIH		VOL	VOH	IOL	IOH	IOSL	IOSH	IIL¹	IIH ²		
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
15 mA	-0.3	VREF – 0.2	VREF + 0.2	3.6	0.54	VCCI – 0.62	15	15	87	83	10	10

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

Figure 2-130 • AC Loading

Table 2-157	•	AC Waveforms	Measuring Poi	ints and Ca	nacitive I oads
	-	AC Waveloinis,	weasuring FU	into, anu ca	pacitive Luaus

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	VTT (typ.) (V)	C _{LOAD} (pF)
VREF – 0.2	VREF + 0.2	1.25	1.25	1.25	30

Note: *Measuring point = Vtrip. See Table 2-90 on page 2-166 for a complete table of trip points.

Timing Characteristics

Table 2-158 • SSTL 2 Class I

```
Commercial Temperature Range Conditions: T_J = 70^{\circ}C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V, VREF = 1.25 V
```

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	0.66	2.13	0.04	1.33	0.43	2.17	1.85			4.40	4.08	ns
-1	0.56	1.81	0.04	1.14	0.36	1.84	1.57			3.74	3.47	ns
-2	0.49	1.59	0.03	1.00	0.32	1.62	1.38			3.29	3.05	ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

Figure 3-1 • I/O State as a Function of VCCI and VCC Voltage Levels

Power per I/O Pin

Table 3-12 • Summary of I/O Input Buffer Power (per pin)—Default I/O Software Settings

	VCCI (V)	Static Power PDC7 (mW) ¹	Dynamic Power PAC9 (µW/MHz) ²
Applicable to Pro I/O Banks	<u>. </u>		
Single-Ended			
3.3 V LVTTL/LVCMOS	3.3	_	17.39
3.3 V LVTTL/LVCMOS – Schmitt trigger	3.3	-	25.51
2.5 V LVCMOS	2.5	-	5.76
2.5 V LVCMOS – Schmitt trigger	2.5	-	7.16
1.8 V LVCMOS	1.8	-	2.72
1.8 V LVCMOS – Schmitt trigger	1.8	-	2.80
1.5 V LVCMOS (JESD8-11)	1.5	-	2.08
1.5 V LVCMOS (JESD8-11) – Schmitt trigger	1.5	-	2.00
3.3 V PCI	3.3	-	18.82
3.3 V PCI – Schmitt trigger	3.3	-	20.12
3.3 V PCI-X	3.3	-	18.82
3.3 V PCI-X – Schmitt trigger	3.3	_	20.12
Voltage-Referenced	<u> </u>		
3.3 V GTL	3.3	2.90	8.23
2.5 V GTL	2.5	2.13	4.78
3.3 V GTL+	3.3	2.81	4.14
2.5 V GTL+	2.5	2.57	3.71
HSTL (I)	1.5	0.17	2.03
HSTL (II)	1.5	0.17	2.03
SSTL2 (I)	2.5	1.38	4.48
SSTL2 (II)	2.5	1.38	4.48
SSTL3 (I)	3.3	3.21	9.26
SSTL3 (II)	3.3	3.21	9.26
Differential			•
LVDS	2.5	2.26	1.50
LVPECL	3.3	5.71	2.17

Notes:

1. PDC7 is the static power (where applicable) measured on VCCI.

2. PAC9 is the total dynamic power measured on VCC and VCCI.

Dynamic Power Consumption of Various Internal Resources

Table 3-14 • Different Components Contributing to the Dynamic Power Consumption in Fusion Devices

		Power	Supply	Device-Specific y Dynamic Contributions				
Parameter	Definition	Name	Setting	AFS1500	AFS600	AFS250	AFS090	Units
PAC1	Clock contribution of a Global Rib	VCC	1.5 V	14.5	12.8	11	11	µW/MHz
PAC2	Clock contribution of a Global Spine	VCC	1.5 V	2.5	1.9	1.6	0.8	µW/MHz
PAC3	Clock contribution of a VersaTile row	VCC	1.5 V		0.8	1		µW/MHz
PAC4	Clock contribution of a VersaTile used as a sequential module	VCC	1.5 V		0.1	1		µW/MHz
PAC5	First contribution of a VersaTile used as a sequential module	VCC	1.5 V		0.0	7		µW/MHz
PAC6	Second contribution of a VersaTile used as a sequential module	VCC	1.5 V		0.2	9		µW/MHz
PAC7	Contribution of a VersaTile used as a combinatorial module	VCC	1.5 V			µW/MHz		
PAC8	Average contribution of a routing net	VCC	1.5 V			µW/MHz		
PAC9	Contribution of an I/O input pin (standard dependent)	VCCI	See Table 3-12 on page 3-18					
PAC10	Contribution of an I/O output pin (standard dependent)	VCCI		See	Table 3-13	on page 3	-20	
PAC11	Average contribution of a RAM block during a read operation	VCC	1.5 V		25	5		µW/MHz
PAC12	Average contribution of a RAM block during a write operation	VCC	1.5 V		30)		µW/MHz
PAC13	Dynamic Contribution for PLL	VCC	1.5 V		2.6	6		µW/MHz
PAC15	Contribution of NVM block during a read operation (F < 33MHz)	VCC	1.5 V		35	8		µW/MHz
PAC16	1st contribution of NVM block during a read operation (F > 33 MHz)	VCC	1.5 V	12.88				mW
PAC17	2nd contribution of NVM block during a read operation (F > 33 MHz)	VCC	1.5 V	4.8				µW/MHz
PAC18	Crystal Oscillator contribution	VCC33A	3.3 V	3.3 V 0.63				mW
PAC19	RC Oscillator contribution	VCC33A	3.3 V		3.3	3		mW
PAC20	Analog Block dynamic power contribution of ADC	VCC	1.5 V		3			mW

Total Static Power Consumption—PSTAT

Number of Quads used: $N_{QUADS} = 4$ Number of NVM blocks available (AFS600): $N_{NVM-BLOCKS} = 2$ Number of input pins used: $N_{INPUTS} = 30$ Number of output pins used: $N_{OUTPUTS} = 40$

Operating Mode

 $\mathsf{P}_{\mathsf{STAT}} = \mathsf{PDC1} + (\mathsf{N}_{\mathsf{NVM-BLOCKS}} * \mathsf{PDC4}) + \mathsf{PDC5} + (\mathsf{N}_{\mathsf{QUADS}} * \mathsf{PDC6}) + (\mathsf{N}_{\mathsf{INPUTS}} * \mathsf{PDC7}) + (\mathsf{N}_{\mathsf{OUTPUTS}} * \mathsf{PDC8})$

P_{STAT} = 7.50 mW + (2 * 1.19 mW) + 8.25 mW + (4 * 3.30 mW) + (30 * 0.00) + (40 * 0.00)

P_{STAT} = 31.33 mW

Standby Mode

P_{STAT} = PDC2

 $P_{STAT} = 0.03 \text{ mW}$

Sleep Mode

 $P_{STAT} = PDC3$

 $P_{STAT} = 0.03 \text{ mW}$

Total Power Consumption—PTOTAL

In operating mode, the total power consumption of the device is 174.39 mW:

 $P_{TOTAL} = P_{STAT} + P_{DYN}$

P_{TOTAL} = 143.06 mW + 31.33 mW

P_{TOTAL} = 174.39 mW

In standby mode, the total power consumption of the device is limited to 0.66 mW:

 $P_{TOTAL} = P_{STAT} + P_{DYN}$

 $P_{TOTAL} = 0.03 \text{ mW} + 0.63 \text{ mW}$

 $P_{TOTAL} = 0.66 \text{ mW}$

In sleep mode, the total power consumption of the device drops as low as 0.03 mW:

 $P_{TOTAL} = P_{STAT} + P_{DYN}$ $P_{TOTAL} = 0.03 \text{ mW}$

Package Pin Assignments

	QN108		QN108	QN108			
Pin Number	AFS090 Function	Pin Number	AFS090 Function	Pin Number	AFS090 Function		
A1	NC	A39	GND	B21	AC2		
A2	GNDQ	A40	GCB1/IO35PDB1V0	B22	ATRTN1		
A3	GAA2/IO52PDB3V0	A41	GCB2/IO33PDB1V0	B23	AG3		
A4	GND	A42	GBA2/IO31PDB1V0	B24	AV3		
A5	GFA1/IO47PDB3V0	A43	NC	B25	VCC33A		
A6	GEB1/IO45PDB3V0	A44	GBA1/IO30RSB0V0	B26	VAREF		
A7	VCCOSC	A45	GBB1/IO28RSB0V0	B27	PUB		
A8	XTAL2	A46	GND	B28	VCC33A		
A9	GEA1/IO44PPB3V0	A47	VCC	B29	PTBASE		
A10	GEA0/IO44NPB3V0	A48	GBC1/IO26RSB0V0	B30	VCCNVM		
A11	GEB2/IO42PDB3V0	A49	IO21RSB0V0	B31	VCC		
A12	VCCNVM	A50	IO19RSB0V0	B32	TDI		
A13	VCC15A	A51	IO09RSB0V0	B33	TDO		
A14	PCAP	A52	GAC0/IO04RSB0V0	B34	VJTAG		
A15	NC	A53	VCCIB0	B35	GDC0/IO38NDB1V		
A16	GNDA	A54	GND		0		
A17	AV0	A55	GAB0/IO02RSB0V0	B36	VCCIB1		
A18	AG0	A56	GAA0/IO00RSB0V0	B37	GCB0/IO35NDB1V0		
A19	ATRTN0	B1	VCOMPLA	B38	GCC2/IO33NDB1V		
A20	AT1	B2	VCCIB3	B39	GBB2/IO31NDB1V0		
A21	AC1	B3	GAB2/IO52NDB3V0	B40	VCCIB1		
A22	AV2	B4	VCCIB3	B 10 B41	GNDO		
A23	AG2	B5	GFA0/IO47NDB3V0	B42	GBA0/IO29RSB0\/0		
A24	AT2	B6	GEB0/IO45NDB3V0	B43	VCCIB0		
A25	AT3	B7	XTAL1	B44	GBB0/IO27RSB0V0		
A26	AC3	B8	GNDOSC	B45	GBC0/IO25RSB0V0		
A27	GNDAQ	B9	GEC2/IO43PSB3V0	B46	IO20RSB0V0		
A28	ADCGNDREF	B10	GEA2/IO42NDB3V0	B47	IO10RSB0V0		
A29	NC	B11	VCC	B48	GAC1/IO05RSB0V0		
A30	GNDA	B12	GNDNVM	B49	GAB1/IO03RSB0V0		
A31	PTEM	B13	NCAP	B 10	VCC		
A32	GNDNVM	B14	VCC33PMP	B51	GAA1/IO01RSB0\/0		
A33	VPUMP	B15	VCC33N	B52	VCCPLA		
A34	TCK	B16	GNDAQ	202	1001 21		
A35	TMS	B17	AC0				
A36	TRST	B18	AT0				
A37	GDB1/IO39PSB1V0	B19	AG1				
A38	GDC1/IO38PDB1V0	B20	AV1				

	PQ208			PQ208	
Pin Number	AFS250 Function	AFS600 Function	Pin Number	AFS250 Function	AFS600 Function
1	VCCPLA	VCCPLA	38	IO60NDB3V0	GEB0/IO62NDB4V0
2	VCOMPLA	VCOMPLA	39	GND	GEA1/IO61PDB4V0
3	GNDQ	GAA2/IO85PDB4V0	40	VCCIB3	GEA0/IO61NDB4V0
4	VCCIB3	IO85NDB4V0	41	GEB2/IO59PDB3V0	GEC2/IO60PDB4V0
5	GAA2/IO76PDB3V0	GAB2/IO84PDB4V0	42	IO59NDB3V0	IO60NDB4V0
6	IO76NDB3V0	IO84NDB4V0	43	GEA2/IO58PDB3V0	VCCIB4
7	GAB2/IO75PDB3V0	GAC2/IO83PDB4V0	44	IO58NDB3V0	GNDQ
8	IO75NDB3V0	IO83NDB4V0	45	VCC	VCC
9	NC	IO77PDB4V0	45	VCC	VCC
10	NC	IO77NDB4V0	46	VCCNVM	VCCNVM
11	VCC	IO76PDB4V0	47	GNDNVM	GNDNVM
12	GND	IO76NDB4V0	48	GND	GND
13	VCCIB3	VCC	49	VCC15A	VCC15A
14	IO72PDB3V0	GND	50	PCAP	PCAP
15	IO72NDB3V0	VCCIB4	51	NCAP	NCAP
16	GFA2/IO71PDB3V0	GFA2/IO75PDB4V0	52	VCC33PMP	VCC33PMP
17	IO71NDB3V0	IO75NDB4V0	53	VCC33N	VCC33N
18	GFB2/IO70PDB3V0	GFC2/IO73PDB4V0	54	GNDA	GNDA
19	IO70NDB3V0	IO73NDB4V0	55	GNDAQ	GNDAQ
20	GFC2/IO69PDB3V0	VCCOSC	56	NC	AV0
21	IO69NDB3V0	XTAL1	57	NC	AC0
22	VCC	XTAL2	58	NC	AG0
23	GND	GNDOSC	59	NC	AT0
24	VCCIB3	GFC1/IO72PDB4V0	60	NC	ATRTN0
25	GFC1/IO68PDB3V0	GFC0/IO72NDB4V0	61	NC	AT1
26	GFC0/IO68NDB3V0	GFB1/IO71PDB4V0	62	NC	AG1
27	GFB1/IO67PDB3V0	GFB0/IO71NDB4V0	63	NC	AC1
28	GFB0/IO67NDB3V0	GFA1/IO70PDB4V0	64	NC	AV1
29	VCCOSC	GFA0/IO70NDB4V0	65	AV0	AV2
30	XTAL1	IO69PDB4V0	66	AC0	AC2
31	XTAL2	IO69NDB4V0	67	AG0	AG2
32	GNDOSC	VCC	68	AT0	AT2
33	GEB1/IO62PDB3V0	GND	69	ATRTN0	ATRTN1
34	GEB0/IO62NDB3V0	VCCIB4	70	AT1	AT3
35	GEA1/IO61PDB3V0	GEC1/IO63PDB4V0	71	AG1	AG3
36	GEA0/IO61NDB3V0	GEC0/IO63NDB4V0	72	AC1	AC3
37	GEC2/IO60PDB3V0	GEB1/IO62PDB4V0	73	AV1	AV3

FG676			FG676	FG676		
Pin Number	AFS1500 Function	Pin Number	AFS1500 Function	Pin Number	AFS1500 Function	
G13	IO22NDB1V0	H23	IO50NDB2V0	K7	IO114PDB4V0	
G14	IO22PDB1V0	H24	IO51PDB2V0	K8	IO117NDB4V0	
G15	GND	H25	NC	К9	GND	
G16	IO32PPB1V1	H26	GND	K10	VCC	
G17	IO36NPB1V2	J1	NC	K11	VCCIB0	
G18	VCCIB1	J2	VCCIB4	K12	GND	
G19	GND	J3	IO115PDB4V0	K13	VCCIB0	
G20	IO47NPB2V0	J4	GND	K14	VCCIB1	
G21	IO49PDB2V0	J5	IO116NDB4V0	K15	GND	
G22	VCCIB2	J6	IO116PDB4V0	K16	VCCIB1	
G23	IO46NDB2V0	J7	VCCIB4	K17	GND	
G24	GBC2/IO46PDB2V0	J8	IO117PDB4V0	K18	GND	
G25	IO48NPB2V0	J9	VCCIB4	K19	IO53NDB2V0	
G26	NC	J10	GND	K20	IO57PDB2V0	
H1	GND	J11	IO06NDB0V1	K21	GCA2/IO59PDB2V0	
H2	NC	J12	IO06PDB0V1	K22	VCCIB2	
H3	IO118NDB4V0	J13	IO16NDB0V2	K23	IO54NDB2V0	
H4	IO118PDB4V0	J14	IO16PDB0V2	K24	IO54PDB2V0	
H5	IO119NPB4V0	J15	IO28NDB1V1	K25	NC	
H6	IO124NDB4V0	J16	IO28PDB1V1	K26	NC	
H7	GND	J17	GND	L1	GND	
H8	VCOMPLA	J18	IO38PPB1V2	L2	NC	
H9	VCCPLA	J19	IO53PDB2V0	L3	IO112PPB4V0	
H10	VCCIB0	J20	VCCIB2	L4	IO113NDB4V0	
H11	IO12NDB0V1	J21	IO52PDB2V0	L5	GFB2/IO109PDB4V0	
H12	IO12PDB0V1	J22	IO52NDB2V0	L6	GFA2/IO110PDB4V0	
H13	VCCIB0	J23	GND	L7	IO112NPB4V0	
H14	VCCIB1	J24	IO51NDB2V0	L8	IO104PDB4V0	
H15	IO30NDB1V1	J25	VCCIB2	L9	IO111PDB4V0	
H16	IO30PDB1V1	J26	NC	L10	VCCIB4	
H17	VCCIB1	K1	NC	L11	GND	
H18	IO36PPB1V2	K2	NC	L12	VCC	
H19	IO38NPB1V2	K3	IO115NDB4V0	L13	GND	
H20	GND	K4	IO113PDB4V0	L14	VCC	
H21	IO49NDB2V0	K5	VCCIB4	L15	GND	
H22	IO50PDB2V0	K6	IO114NDB4V0	L16	VCC	

5 – Datasheet Information

List of Changes

The following table lists critical changes that were made in each revision of the Fusion datasheet.

Revision	Changes	Page
Revision 6 (March 2014)	Note added for the discontinuance of QN108 and QN180 packages to the "Package I/Os: Single-/Double-Ended (Analog)" table and the "Temperature Grade Offerings" table (SAR 55113, PDN 1306).	II and IV
	Updated details about page programming time in the "Program Operation" section (SAR 49291).	2-46
	ADC_START changed to ADCSTART in the "ADC Operation" section (SAR 44104).	2-104
Revision 5 (January 2014)	Calibrated offset values (AFS090, AFS250) of the external temperature monitor in Table 2-49 • Analog Channel Specifications have been updated (SAR 51464).	2-117
	Specifications for the internal temperature monitor in Table 2-49 • Analog Channel Specifications have been updated (SAR 50870).	2-117
Revision 4 (January 2013)	The "Product Ordering Codes" section has been updated to mention "Y" as "Blank" mentioning "Device Does Not Include License to Implement IP Based on the Cryptography Research, Inc. (CRI) Patent Portfolio" (SAR 43177).	III
	The note in Table 2-12 • Fusion CCC/PLL Specification referring the reader to SmartGen was revised to refer instead to the online help associated with the core (SAR 42563).	2-28
	Table 2-49 • Analog Channel Specifications was modified to update the uncalibrated offset values (AFS250) of the external and internal temperature monitors (SAR 43134).	2-117
	In Table 2-57 • Prescaler Control Truth Table—AV ($x = 0$), AC ($x = 1$), and AT ($x = 3$), changed the column heading from 'Full-Scale Voltage' to 'Full Scale Voltage in 10-Bit Mode', and added and updated Notes as required (SAR 20812).	2-130
	The values for the Speed Grade (-1 and Std.) for FDDRIMAX (Table 2-180 • Input DDR Propagation Delays) and values for the Speed Grade (-2 and Std.) for FDDOMAX (Table 2-182 • Output DDR Propagation Delays) had been inadvertently interchanged. This has been rectified (SAR 38514).	2-220, 2-222
	Added description about what happens if a user connects VAREF to an external 3.3 V on their board to the "VAREF Analog Reference Voltage" section (SAR 35188).	2-225
	Added a note to Table 3-2 • Recommended Operating Conditions1 (SAR 43429): The programming temperature range supported is $T_{ambient} = 0^{\circ}C$ to 85°C.	3-3
	Added the Package Thermal details for AFS600-PQ208 and AFS250-PQ208 to Table 3-6 • Package Thermal Resistance (SAR 37816). Deleted the Die Size column from the table (SAR 43503).	3-7
	Libero Integrated Design Environment (IDE) was changed to Libero System-on-Chip (SoC) throughout the document (SAR 42495). Live at Power-Up (LAPU) has been replaced with 'Instant On'.	NA
Revision 3 (August 2012)	Microblade U1AFS250 and U1AFS1500 devices were added to the product tables.	I – IV
	A sentence pertaining to the analog I/Os was added to the "Specifying I/O States During Programming" section (SAR 34831).	1-9