

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	110592
Number of I/O	172
Number of Gates	600000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	484-BGA
Supplier Device Package	484-FPBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/afs600-1fg484

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Advanced Architecture

The proprietary Fusion architecture provides granularity comparable to standard-cell ASICs. The Fusion device consists of several distinct and programmable architectural features, including the following (Figure 1-1 on page 1-5):

- Embedded memories
 - Flash memory blocks
 - FlashROM
 - SRAM and FIFO
- Clocking resources
 - PLL and CCC
 - RC oscillator
 - Crystal oscillator
 - No-Glitch MUX (NGMUX)
- Digital I/Os with advanced I/O standards
- FPGA VersaTiles
- Analog components
 - ADC
 - Analog I/Os supporting voltage, current, and temperature monitoring
 - 1.5 V on-board voltage regulator
 - Real-time counter

The FPGA core consists of a sea of VersaTiles. Each VersaTile can be configured as a three-input logic lookup table (LUT) equivalent or a D-flip-flop or latch (with or without enable) by programming the appropriate flash switch interconnections. This versatility allows efficient use of the FPGA fabric. The VersaTile capability is unique to the Microsemi families of flash-based FPGAs. VersaTiles and larger functions are connected with any of the four levels of routing hierarchy. Flash switches are distributed throughout the device to provide nonvolatile, reconfigurable interconnect programming. Maximum core utilization is possible for virtually any design.

In addition, extensive on-chip programming circuitry allows for rapid (3.3 V) single-voltage programming of Fusion devices via an IEEE 1532 JTAG interface.

Unprecedented Integration

Integrated Analog Blocks and Analog I/Os

Fusion devices offer robust and flexible analog mixed signal capability in addition to the highperformance flash FPGA fabric and flash memory block. The many built-in analog peripherals include a configurable 32:1 input analog MUX, up to 10 independent MOSFET gate driver outputs, and a configurable ADC. The ADC supports 8-, 10-, and 12-bit modes of operation with a cumulative sample rate up to 600 k samples per second (Ksps), differential nonlinearity (DNL) < 1.0 LSB, and Total Unadjusted Error (TUE) of 0.72 LSB in 10-bit mode. The TUE is used for characterization of the conversion error and includes errors from all sources, such as offset and linearity. Internal bandgap circuitry offers 1% voltage reference accuracy with the flexibility of utilizing an external reference voltage. The ADC channel sampling sequence and sampling rate are programmable and implemented in the FPGA logic using Designer and Libero SoC software tool support.

Two channels of the 32-channel ADCMUX are dedicated. Channel 0 is connected internally to VCC and can be used to monitor core power supply. Channel 31 is connected to an internal temperature diode which can be used to monitor device temperature. The 30 remaining channels can be connected to external analog signals. The exact number of I/Os available for external connection signals is device-dependent (refer to the "Fusion Family" table on page I for details).

Crystal Oscillator

The Crystal Oscillator (XTLOSC) is source that generates the clock from an external crystal. The output of XTLOSC CLKOUT signal can be selected as an input to the PLL. Refer to the "Clock Conditioning Circuits" section for more details. The XTLOSC can operate in normal operations and Standby mode (RTC is running and 1.5 V is not present).

In normal operation, the internal FPGA_EN signal is '1' as long as 1.5 V is present for VCC. As such, the internal enable signal, XTL_EN, for Crystal Oscillator is enabled since FPGA_EN is asserted. The XTL_MODE has the option of using MODE or RTC_MODE, depending on SELMODE.

During Standby, 1.5 V is not available, as such, and FPGA_EN is '0'. SELMODE must be asserted in order for XTL_EN to be enabled; hence XTL_MODE relies on RTC_MODE. SELMODE and RTC_MODE must be connected to RTCXTLSEL and RTCXTLMODE from the AB respectively for correct operation during Standby (refer to the "Real-Time Counter System" section on page 2-31 for a detailed description).

The Crystal Oscillator can be configured in one of four modes:

- RC network, 32 KHz to 4 MHz
- Low gain, 32 to 200 KHz
- Medium gain, 0.20 to 2.0 MHz
- High gain, 2.0 to 20.0 MHz

In RC network mode, the XTAL1 pin is connected to an RC circuit, as shown in Figure 2-16 on page 2-18. The XTAL2 pin should be left floating. The RC value can be chosen based on Figure 2-18 for any desired frequency between 32 KHz and 4 MHz. The RC network mode can also accommodate an external clock source on XTAL1 instead of an RC circuit.

In Low gain, Medium gain, and High gain, an external crystal component or ceramic resonator can be added onto XTAL1 and XTAL2, as shown in Figure 2-16 on page 2-18. In the case where the Crystal Oscillator block is not used, the XTAL1 pin should be connected to GND and the XTAL2 pin should be left floating.

Note: *Internal signal—does not exist in macro.

Figure 2-17 • XTLOSC Macro

Notes:

- 1. Visit the Microsemi SoC Products Group website for application notes concerning dynamic PLL reconfiguration. Refer to the "PLL Macro" section on page 2-27 for signal descriptions.
- 2. Many specific INBUF macros support the wide variety of single-ended and differential I/O standards for the Fusion family.
- 3. Refer to the IGLOO, ProASIC3, SmartFusion and Fusion Macro Library Guide for more information.

Figure 2-19 • Fusion CCC Options: Global Buffers with the PLL Macro

Table 2-11 • Available Selections of I/O Standards within CLKBUF and CLKBUF_LVDS/LVPECL Macros

CLKBUF Macros
CLKBUF_LVCMOS5
CLKBUF_LVCMOS33 ¹
CLKBUF_LVCMOS18
CLKBUF_LVCMOS15
CLKBUF_PCI
CLKBUF_LVDS ²
CLKBUF_LVPECL

Notes:

1. This is the default macro. For more details, refer to the IGLOO, ProASIC3, SmartFusion and Fusion Macro Library Guide.

2. The B-LVDS and M-LVDS standards are supported with CLKBUF_LVDS.

Real-Time Counter System

The RTC system enables Fusion devices to support standby and sleep modes of operation to reduce power consumption in many applications.

- Sleep mode, typical 10 µA
- · Standby mode (RTC running), typical 3 mA with 20 MHz

The RTC system is composed of five cores:

- RTC sub-block inside Analog Block (AB)
- Voltage Regulator and Power System Monitor (VRPSM)
- Crystal oscillator (XTLOSC); refer to the "Crystal Oscillator" section in the Fusion Clock Resources chapter of the *Fusion FPGA Fabric User Guide* for more detail.
- Crystal clock; does not require instantiation in RTL
- 1.5 V voltage regulator; does not require instantiation in RTL

All cores are powered by 3.3 V supplies, so the RTC system is operational without a 1.5 V supply during standby mode. Figure 2-27 shows their connection.

Notes:

- 1. Signals are hardwired internally and do not exist in the macro core.
- 2. User is only required to instantiate the VRPSM macro if the user wishes to specify PUPO behavior of the voltage regulator to be different from the default, or employ user logic to shut the voltage regulator off.

Figure 2-27 • Real-Time Counter System (not all the signals are shown for the AB macro)

Erase Page Operation

The Erase Page operation is initiated when the ERASEPAGE pin is asserted. The Erase Page operation allows the user to erase (set user data to zero) any page within the FB.

The use of the OVERWRITEPAGE and PAGELOSSPROTECT pins is the same for erase as for a Program Page operation.

As with the Program Page operation, a STATUS of '01' indicates that the addressed page is not erased.

A waveform for an Erase Page operation is shown in Figure 2-37.

Erase errors include the following:

- 1. Attempting to erase a page that is Overwrite Protected (STATUS = '01')
- 2. Attempting to erase a page that is not in the Page Buffer when the Page Buffer has entered Page Loss Protection mode (STATUS = '01')
- 3. The Write Count of the erased page exceeding the Write Threshold defined in the part specification (STATUS = '11')
- 4. The ECC Logic determining that there is an uncorrectable error within the erased page (STATUS = '10')

Figure 2-37 • FB Erase Page Waveform

Device Architecture

The following error indications are possible for Read operations:

- 1. STATUS = '01' when a single-bit data error was detected and corrected within the block addressed.
- 2. STATUS = '10' when a double-bit error was detected in the block addressed (note that the error is uncorrected).

In addition to data reads, users can read the status of any page in the FB by asserting PAGESTATUS along with REN. The format of the data returned by a page status read is shown in Table 2-23, and the definition of the page status bits is shown in Table 2-24.

Table 2-23 • Page Status Read Data Format

31	8	7	4	3	2	1	0
Write (Count	Rese	erved	Over Threshold	Read Protected	Write Protected	Overwrite Protected

Table 2-24 • Page Status Bit Definition

Page Status Bit(s)	Definition
31–8	The number of times the page addressed has been programmed/erased
7–4	Reserved; read as 0
3	Over Threshold indicator (see the "Program Operation" section on page 2-46)
2	Read Protected; read protect bit for page, which is set via the JTAG interface and only affects JTAG operations. This bit can be overridden by using the correct user key value.
1	Write Protected; write protect bit for page, which is set via the JTAG interface and only affects JTAG operations. This bit can be overridden by using the correct user key value.
0	Overwrite Protected; designates that the user has set the OVERWRITEPROTECT bit on the interface while doing a Program operation. The page cannot be written without first performing an Unprotect Page operation.

RAM512X18 Description

Figure 2-49 • RAM512X18

Figure 2-57 • FIFO Read

Fusion uses a remote diode as a temperature sensor. The Fusion Temperature Monitor uses a differential input; the AT pin and ATRTN (AT Return) pin are the differential inputs to the Temperature Monitor. There is one Temperature Monitor in each Quad. A simplified block diagram is shown in Figure 2-77.

Figure 2-77 • Block Diagram for Temperature Monitor Circuit

The Fusion approach to measuring temperature is forcing two different currents through the diode with a ratio of 10:1. The switch that controls the different currents is controlled by the Temperature Monitor Strobe signal, TMSTB. Setting TMSTB to '1' will initiate a Temperature reading. The TMSTB should remain '1' until the ADC finishes sampling the voltage from the Temperature Monitor. The minimum sample time for the Temperature Monitor cannot be less than the minimum strobe high time minus the setup time. Figure 2-78 shows the timing diagram.

Note: When the IEEE 1149.1 Boundary Scan EXTEST instruction is executed, the AG pad drive strength ceases and becomes a 1 µA sink into the Fusion device.

Device Architecture

Table 2-52 • Calibrated Analog Channel Accuracy 1,2,3Worst-Case Industrial Conditions, TJ = 85°C

		Condition	Total	Channel Error	(LSB)		
Analog Pad	Prescaler Range (V)	Input Voltage ⁴ (V)	Negative Max.	Median	Positive Max.		
P	ositive Range		ADC in 10-Bit Mode				
AV, AC	16	0.300 to 12.0	-6	1	6		
	8	0.250 to 8.00	-6	0	6		
	4	0.200 to 4.00	-7	-1	7		
	2	0.150 to 2.00	-7	0	7		
	1	0.050 to 1.00	-6	-1	6		
AT	16	0.300 to 16.0	-5	0	5		
	4	0.100 to 4.00	-7	-1	7		
Ne	egative Range		A	DC in 10-Bit Mo	ode		
AV, AC	16	-0.400 to -10.5	-7	1	9		
	8	-0.350 to -8.00	-7	-1	7		
	4	-0.300 to -4.00	-7	-2	9		
	2	-0.250 to -2.00	-7	-2	7		
	1	-0.050 to -1.00	-16	-1	20		

Notes:

1. Channel Accuracy includes prescaler and ADC accuracies. For 12-bit mode, multiply the LSB count by 4. For 8-bit mode, divide the LSB count by 4. Overall accuracy remains the same.

2. Requires enabling Analog Calibration using SmartGen Analog System Builder. For further details, refer to the "Temperature, Voltage, and Current Calibration in Fusion FPGAs" chapter of the Fusion FPGA Fabric User Guide.

3. Calibrated with two-point calibration methodology, using 20% and 80% full-scale points.

4. The lower limit of the input voltage is determined by the prescaler input offset.

User I/Os

Introduction

Fusion devices feature a flexible I/O structure, supporting a range of mixed voltages (1.5 V, 1.8 V, 2.5 V, and 3.3 V) through a bank-selectable voltage. Table 2-68, Table 2-69, Table 2-70, and Table 2-71 on page 2-135 show the voltages and the compatible I/O standards. I/Os provide programmable slew rates, drive strengths, weak pull-up, and weak pull-down circuits. 3.3 V PCI and 3.3 V PCI-X are 5 V–tolerant. See the "5 V Input Tolerance" section on page 2-144 for possible implementations of 5 V tolerance.

All I/Os are in a known state during power-up, and any power-up sequence is allowed without current impact. Refer to the "I/O Power-Up and Supply Voltage Thresholds for Power-On Reset (Commercial and Industrial)" section on page 3-5 for more information. In low power standby or sleep mode (VCC is OFF, VCC33A is ON, VCCI is ON) or when the resource is not used, digital inputs are tristated, digital outputs are tristated, and digital bibufs (input/output) are tristated.

I/O Tile

The Fusion I/O tile provides a flexible, programmable structure for implementing a large number of I/O standards. In addition, the registers available in the I/O tile in selected I/O banks can be used to support high-performance register inputs and outputs, with register enable if desired (Figure 2-99 on page 2-133). The registers can also be used to support the JESD-79C DDR standard within the I/O structure (see the "Double Data Rate (DDR) Support" section on page 2-139 for more information).

As depicted in Figure 2-100 on page 2-138, all I/O registers share one CLR port. The output register and output enable register share one CLK port. Refer to the "I/O Registers" section on page 2-138 for more information.

I/O Banks and I/O Standards Compatibility

The digital I/Os are grouped into I/O voltage banks. There are three digital I/O banks on the AFS090 and AFS250 devices and four digital I/O banks on the AFS600 and AFS1500 devices. Figure 2-113 on page 2-158 and Figure 2-114 on page 2-159 show the bank configuration by device. The north side of the I/O in the AFS600 and AFS1500 devices comprises two banks of Pro I/Os. The Pro I/Os support a wide number of voltage-referenced I/O standards in addition to the multitude of single-ended and differential I/O standards common throughout all Microsemi digital I/Os. Each I/O voltage bank has dedicated I/O supply and ground voltages (VCCI/GNDQ for input buffers and VCCI/GND for output buffers). Because of these dedicated supplies, only I/Os with compatible standards can be assigned to the same I/O voltage bank. Table 2-69 and Table 2-70 on page 2-134 show the required voltage compatibility values for each of these voltages.

For more information about I/O and global assignments to I/O banks, refer to the specific pin table of the device in the "Package Pin Assignments" on page 4-1 and the "User I/O Naming Convention" section on page 2-158.

Each Pro I/O bank is divided into minibanks. Any user I/O in a VREF minibank (a minibank is the region of scope of a VREF pin) can be configured as a VREF pin (Figure 2-99 on page 2-133). Only one VREF pin is needed to control the entire VREF minibank. The location and scope of the VREF minibanks can be determined by the I/O name. For details, see the "User I/O Naming Convention" section on page 2-158.

Table 2-70 on page 2-134 shows the I/O standards supported by Fusion devices and the corresponding voltage levels.

I/O standards are compatible if the following are true:

- Their VCCI values are identical.
- If both of the standards need a VREF, their VREF values must be identical (Pro I/O only).

Device Architecture

1.5 V LVCMOS (JESD8-11)

Low-Voltage CMOS for 1.5 V is an extension of the LVCMOS standard (JESD8-5) used for generalpurpose 1.5 V applications. It uses a 1.5 V input buffer and push-pull output buffer.

1.5 V LVCMOS		VIL	VIH		VOL	VOH	IOL	юн	IOSL	IOSH	IIL ¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
Applicable	to Pro I	/O Banks								1		
2 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	2	2	16	13	10	10
4 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	4	4	33	25	10	10
6 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	6	6	39	32	10	10
8 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	8	8	55	66	10	10
12 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	12	12	55	66	10	10
Applicable	to Adva	inced I/O Ban	iks						-	-		
2 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.575	0.25 * VCCI	0.75 * VCCI	2	2	16	13	10	10
4 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.575	0.25 * VCCI	0.75 * VCCI	4	4	33	25	10	10
6 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.575	0.25 * VCCI	0.75 * VCCI	6	6	39	32	10	10
8 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.575	0.25 * VCCI	0.75 * VCCI	8	8	55	66	10	10
12 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.575	0.25 * VCCI	0.75 * VCCI	12	12	55	66	10	10
Applicable	to Pro I	/O Banks	-		•	• •		-	-	-	-	
2 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	2	2	16	13	10	10

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.

2. I_{IH} is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Software default selection highlighted in gray.

Figure 2-122 • AC Loading

Table 2-127 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	C _{LOAD} (pF)
0	1.5	0.75	-	35

Note: *Measuring point = Vtrip. See Table 2-90 on page 2-166 for a complete table of trip points.

ATRTNx Temperature Monitor Return

AT returns are the returns for the temperature sensors. The cathode terminal of the external diodes should be connected to these pins. There is one analog return pin for every two Analog Quads. The x in the ATRTNx designator indicates the quad pairing (x = 0 for AQ1 and AQ2, x = 1 for AQ2 and AQ3, ..., x = 4 for AQ8 and AQ9). The signals that drive these pins are called out as ATRETURNxy in the software (where x and y refer to the quads that share the return signal). ATRTN is internally connected to ground. It can be left floating when it is unused. The maximum capacitance allowed across the AT pins is 500 pF.

GL Globals

GL I/Os have access to certain clock conditioning circuitry (and the PLL) and/or have direct access to the global network (spines). Additionally, the global I/Os can be used as Pro I/Os since they have identical capabilities. Unused GL pins are configured as inputs with pull-up resistors. See more detailed descriptions of global I/O connectivity in the "Clock Conditioning Circuits" section on page 2-22.

Refer to the "User I/O Naming Convention" section on page 2-158 for a description of naming of global pins.

JTAG Pins

Fusion devices have a separate bank for the dedicated JTAG pins. The JTAG pins can be run at any voltage from 1.5 V to 3.3 V (nominal). VCC must also be powered for the JTAG state machine to operate, even if the device is in bypass mode; VJTAG alone is insufficient. Both VJTAG and VCC to the Fusion part must be supplied to allow JTAG signals to transition the Fusion device.

Isolating the JTAG power supply in a separate I/O bank gives greater flexibility with supply selection and simplifies power supply and PCB design. If the JTAG interface is neither used nor planned to be used, the VJTAG pin together with the TRST pin could be tied to GND.

TCK Test Clock

Test clock input for JTAG boundary scan, ISP, and UJTAG. The TCK pin does not have an internal pullup/-down resistor. If JTAG is not used, Microsemi recommends tying off TCK to GND or VJTAG through a resistor placed close to the FPGA pin. This prevents JTAG operation in case TMS enters an undesired state.

Note that to operate at all VJTAG voltages, 500 Ω to 1 k Ω will satisfy the requirements. Refer to Table 2-183 for more information.

VJTAG	Tie-Off Resistance ^{2, 3}
VJTAG at 3.3 V	200 Ω to 1 kΩ
VJTAG at 2.5 V	200 Ω to 1 kΩ
VJTAG at 1.8 V	500 Ω to 1 kΩ
VJTAG at 1.5 V	500 Ω to 1 kΩ

Table 2-183 • Recommended Tie-Off Values for the TCK and TRST Pins

Notes:

- 1. Equivalent parallel resistance if more than one device is on JTAG chain.
- 2. The TCK pin can be pulled up/down.
- 3. The TRST pin can only be pulled down.

TDI Test Data Input

Serial input for JTAG boundary scan, ISP, and UJTAG usage. There is an internal weak pull-up resistor on the TDI pin.

TDO Test Data Output

Serial output for JTAG boundary scan, ISP, and UJTAG usage.

DC and Power Characteristics

Parameter	Description	Conditions	Temp.	Min.	Тур.	Max.	Unit
IJTAG	JTAG I/O quiescent	Operational standby ⁴ ,	T _J = 25°C		80	100	μA
IJTAG J C IPP F ICCNVM E	current	VJTAG = 3.63 V	T _J = 85°C		80	100	μA
			T _J = 100°C		80	100	μA
IPP		Standby mode ⁵ or Sleep mode ⁶ , VJTAG = 0 V			0	0	μA
IPP	Programming supply current	Non-programming mode, VPUMP = 3.63 V	T _J = 25°C		39	80	μA
			T _J = 85°C		40	80	μA
			T _J = 100°C		40	80	μA
		Standby mode ⁵ or Sleep mode ⁶ , VPUMP = 0 V			0	0	μA
ICCNVM	Embedded NVM	Reset asserted, V _{CCNVM} = 1.575 V	T _J = 25°C		50	150	μA
	current		Т _Ј =85°С		50	150	μA
			T _J = 100°C		50	150	μA
ICCPLL	1.5 V PLL quiescent	Operational standby	T _J = 25°C		130	200	μA
	current	, VCCPLL = 1.575 V	T _J = 85°C		130	200	μA
			T _J = 100°C		130	200	μA

Table 3-8 •	AFS1500 Quiescent	Supply Current	Characteristics	(continued)
-------------	-------------------	-----------------------	-----------------	-------------

Notes:

1. ICC is the 1.5 V power supplies, ICC and ICC15A.

2. ICC33A includes ICC33A, ICC33PMP, and ICCOSC.

3. ICCI includes all ICCI0, ICCI1, ICCI2, and ICCI4.

4. Operational standby is when the Fusion device is powered up, all blocks are used, no I/O is toggling, Voltage Regulator is loaded with 200 mA, VCC33PMP is ON, XTAL is ON, and ADC is ON.

5. XTAL is configured as high gain, VCC = VJTAG = VPUMP = 0 V.

6. Sleep Mode, VCC = VJTAG = VPUMP = 0 V.

DC and Power Characteristics

Parameter	Description	Conditions	Temp.	Min	Тур	Мах	Unit
ICCNVM	Embedded NVM current	Reset asserted,	T _J = 25°C		10	40	μA
		VCCNVM = 1.575 V	T _J = 85°C		14	40	μA
			T _J = 100°C		14	40	μA
ICCPLL	1.5 V PLL quiescent current	Operational standby,	T _J = 25°C		65	100	μA
		VCCPLL = 1.575 V	T _J = 85°C		65	100	μA
			T _J = 100°C		65	100	μA

Table 3-11 • AFS090 Quiescent Supply Current Characteristics (continued)

Notes:

1. ICC is the 1.5 V power supplies, ICC, ICCPLL, ICC15A, ICCNVM.

2. ICC33A includes ICC33A, ICC33PMP, and ICCOSC.

- 3. ICCI includes all ICCI0, ICCI1, and ICCI2.
- 4. Operational standby is when the Fusion device is powered up, all blocks are used, no I/O is toggling, Voltage Regulator is loaded with 200 mA, VCC33PMP is ON, XTAL is ON, and ADC is ON.

5. XTAL is configured as high gain, VCC = VJTAG = VPUMP = 0 V.

6. Sleep Mode, VCC = VJTAG = VPUMP = 0 V.

Dynamic Power Consumption of Various Internal Resources

Table 3-14 • Different Components Contributing to the Dynamic Power Consumption in Fusion Devices

		Device-Specific Power Supply Dynamic Contributions			6			
Parameter	Definition	Name	Setting	AFS1500	AFS600	AFS250	AFS090	Units
PAC1	Clock contribution of a Global Rib	VCC	1.5 V	14.5	12.8	11	11	µW/MHz
PAC2	Clock contribution of a Global Spine	VCC	1.5 V	2.5	1.9	1.6	0.8	µW/MHz
PAC3	Clock contribution of a VersaTile row	VCC	1.5 V	0.81			µW/MHz	
PAC4	Clock contribution of a VersaTile used as a sequential module	VCC	1.5 V	0.11			µW/MHz	
PAC5	First contribution of a VersaTile used as a sequential module	VCC	1.5 V	0.07			µW/MHz	
PAC6	Second contribution of a VersaTile used as a sequential module	VCC	1.5 V	0.29			µW/MHz	
PAC7	Contribution of a VersaTile used as a combinatorial module	VCC	1.5 V	0.29			µW/MHz	
PAC8	Average contribution of a routing net	VCC	1.5 V	0.70			µW/MHz	
PAC9	Contribution of an I/O input pin (standard dependent)	VCCI		See	Table 3-12	on page 3	-18	
PAC10	Contribution of an I/O output pin (standard dependent)	VCCI		See	Table 3-13	on page 3	-20	
PAC11	Average contribution of a RAM block during a read operation	VCC	1.5 V		25	5		µW/MHz
PAC12	Average contribution of a RAM block during a write operation	VCC	1.5 V	30			µW/MHz	
PAC13	Dynamic Contribution for PLL	VCC	1.5 V	2.6			µW/MHz	
PAC15	Contribution of NVM block during a read operation (F < $33MHz$)	VCC	1.5 V	358			µW/MHz	
PAC16	1st contribution of NVM block during a read operation (F > 33 MHz)	VCC	1.5 V	12.88		mW		
PAC17	2nd contribution of NVM block during a read operation (F > 33 MHz)	VCC	1.5 V	4.8		µW/MHz		
PAC18	Crystal Oscillator contribution	VCC33A	3.3 V	0.63			mW	
PAC19	RC Oscillator contribution	VCC33A	3.3 V	3.3			mW	
PAC20	Analog Block dynamic power contribution of ADC	VCC	1.5 V		3			mW

RAM Dynamic Contribution—P_{MEMORY}

Operating Mode

 $P_{MEMORY} = (N_{BLOCKS} * PAC11 * \beta_2 * F_{READ-CLOCK}) + (N_{BLOCKS} * PAC12 * \beta_3 * F_{WRITE-CLOCK})$ $N_{BLOCKS} \text{ is the number of RAM blocks used in the design.}$

F_{READ-CLOCK} is the memory read clock frequency.

 β_2 is the RAM enable rate for read operations—guidelines are provided in Table 3-17 on page 3-27.

 β_3 the RAM enable rate for write operations—guidelines are provided in Table 3-17 on page 3-27.

 $\mathsf{F}_{\mathsf{WRITE}\text{-}\mathsf{CLOCK}}$ is the memory write clock frequency.

Standby Mode and Sleep Mode

P_{MEMORY} = 0 W

PLL/CCC Dynamic Contribution—PPLL

Operating Mode

P_{PLL} = PAC13 * F_{CLKOUT}

F_{CLKIN} is the input clock frequency.

F_{CLKOUT} is the output clock frequency.¹

Standby Mode and Sleep Mode

 $P_{PLL} = 0 W$

Nonvolatile Memory Dynamic Contribution—P_{NVM}

Operating Mode

The NVM dynamic power consumption is a piecewise linear function of frequency.

 $P_{NVM} = N_{NVM-BLOCKS} * \beta_4 * PAC15 * F_{READ-NVM}$ when $F_{READ-NVM} \le 33$ MHz,

 $P_{NVM} = N_{NVM-BLOCKS} * \beta_4 * (PAC16 + PAC17 * F_{READ-NVM} \text{ when } F_{READ-NVM} > 33 \text{ MHz}$

N_{NVM-BLOCKS} is the number of NVM blocks used in the design (2 inAFS600).

 β_4 is the NVM enable rate for read operations. Default is 0 (NVM mainly in idle state). F_{READ-NVM} is the NVM read clock frequency.

Standby Mode and Sleep Mode

P_{NVM} = 0 W

Crystal Oscillator Dynamic Contribution—P_{XTL-OSC}

Operating Mode

 $P_{XTL-OSC} = PAC18$

Standby Mode

 $P_{XTL-OSC} = PAC18$

Sleep Mode

 $P_{XTL-OSC} = 0 W$

The PLL dynamic contribution depends on the input clock frequency, the number of output clock signals generated by the PLL, and the frequency of each output clock. If a PLL is used to generate more than one output clock, include each output clock in the formula output clock by adding its corresponding contribution (P_{AC14} * F_{CLKOUT} product) to the total PLL contribution.

FG256					
Pin Number	AFS090 Function	AFS250 Function	AFS600 Function	AFS1500 Function	
K9	VCC	VCC	VCC	VCC	
K10	GND	GND	GND	GND	
K11	NC	GDC2/IO57PPB1V0	GDC2/IO57PPB2V0	GDC2/IO84PPB2V0	
K12	GND	GND	GND	GND	
K13	NC	GDA0/IO54NDB1V0	GDA0/IO54NDB2V0	GDA0/IO81NDB2V0	
K14	NC	GDA2/IO55PPB1V0	GDA2/IO55PPB2V0	GDA2/IO82PPB2V0	
K15	VCCIB1	VCCIB1	VCCIB2	VCCIB2	
K16	NC	GDB1/IO53PPB1V0	GDB1/IO53PPB2V0	GDB1/IO80PPB2V0	
L1	NC	GEC1/IO63PDB3V0	GEC1/IO63PDB4V0	GEC1/IO90PDB4V0	
L2	NC	GEC0/IO63NDB3V0	GEC0/IO63NDB4V0	GEC0/IO90NDB4V0	
L3	NC	GEB1/IO62PDB3V0	GEB1/IO62PDB4V0	GEB1/IO89PDB4V0	
L4	NC	GEB0/IO62NDB3V0	GEB0/IO62NDB4V0	GEB0/IO89NDB4V0	
L5	NC	IO60NDB3V0	IO60NDB4V0	IO87NDB4V0	
L6	NC	GEC2/IO60PDB3V0	GEC2/IO60PDB4V0	GEC2/IO87PDB4V0	
L7	GNDA	GNDA	GNDA	GNDA	
L8	AC0	AC0	AC2	AC2	
L9	AV2	AV2	AV4	AV4	
L10	AC3	AC3	AC5	AC5	
L11	PTEM	PTEM	PTEM	PTEM	
L12	TDO	TDO	TDO	TDO	
L13	VJTAG	VJTAG	VJTAG	VJTAG	
L14	NC	IO57NPB1V0	IO57NPB2V0	IO84NPB2V0	
L15	GDB2/IO41PPB1V0	GDB2/IO56PPB1V0	GDB2/IO56PPB2V0	GDB2/IO83PPB2V0	
L16	NC	IO55NPB1V0	IO55NPB2V0	IO82NPB2V0	
M1	GND	GND	GND	GND	
M2	NC	GEA1/IO61PDB3V0	GEA1/IO61PDB4V0	GEA1/IO88PDB4V0	
M3	NC	GEA0/IO61NDB3V0	GEA0/IO61NDB4V0	GEA0/IO88NDB4V0	
M4	VCCIB3	VCCIB3	VCCIB4	VCCIB4	
M5	NC	IO58NPB3V0	IO58NPB4V0	IO85NPB4V0	
M6	NC	NC	AV0	AV0	
M7	NC	NC	AC1	AC1	
M8	AG1	AG1	AG3	AG3	
M9	AC2	AC2	AC4	AC4	
M10	AC4	AC4	AC6	AC6	
M11	NC	AG5	AG7	AG7	
M12	VPUMP	VPUMP	VPUMP	VPUMP	
M13	VCCIB1	VCCIB1	VCCIB2	VCCIB2	
M14	TMS	TMS	TMS	TMS	

Package Pin Assignments

	FG484			FG484			
Pin Number	AFS600 Function	AFS1500 Function	Pin Number	AFS600 Function	AFS1500 Function		
L17	VCCIB2	VCCIB2	N8	GND	GND		
L18	IO46PDB2V0	IO69PDB2V0	N9	GND	GND		
L19	GCA1/IO45PDB2V0	GCA1/IO64PDB2V0	N10	VCC	VCC		
L20	VCCIB2	VCCIB2	N11	GND	GND		
L21	GCC0/IO43NDB2V0	GCC0/IO62NDB2V0	N12	VCC	VCC		
L22	GCC1/IO43PDB2V0	GCC1/IO62PDB2V0	N13	GND	GND		
M1	NC	IO103PDB4V0	N14	VCC	VCC		
M2	XTAL1	XTAL1	N15	GND	GND		
M3	VCCIB4	VCCIB4	N16	GDB2/IO56PDB2V0	GDB2/IO83PDB2V0		
M4	GNDOSC	GNDOSC	N17	NC	IO78PDB2V0		
M5	GFC0/IO72NDB4V0	GFC0/IO107NDB4V0	N18	GND	GND		
M6	VCCIB4	VCCIB4	N19	IO47NDB2V0	IO72NDB2V0		
M7	GFB0/IO71NDB4V0	GFB0/IO106NDB4V0	N20	IO47PDB2V0	IO72PDB2V0		
M8	VCCIB4	VCCIB4	N21	GND	GND		
M9	VCC	VCC	N22	IO49PDB2V0	IO71PDB2V0		
M10	GND	GND	P1	GFA1/IO70PDB4V0	GFA1/IO105PDB4V0		
M11	VCC	VCC	P2	GFA0/IO70NDB4V0	GFA0/IO105NDB4V0		
M12	GND	GND	P3	IO68NDB4V0	IO101NDB4V0		
M13	VCC	VCC	P4	IO65PDB4V0	IO96PDB4V0		
M14	GND	GND	P5	IO65NDB4V0	IO96NDB4V0		
M15	VCCIB2	VCCIB2	P6	NC	IO99NDB4V0		
M16	IO48NDB2V0	IO70NDB2V0	P7	NC	IO97NDB4V0		
M17	VCCIB2	VCCIB2	P8	VCCIB4	VCCIB4		
M18	IO46NDB2V0	IO69NDB2V0	P9	VCC	VCC		
M19	GCA0/IO45NDB2V0	GCA0/IO64NDB2V0	P10	GND	GND		
M20	VCCIB2	VCCIB2	P11	VCC	VCC		
M21	GCB0/IO44NDB2V0	GCB0/IO63NDB2V0	P12	GND	GND		
M22	GCB1/IO44PDB2V0	GCB1/IO63PDB2V0	P13	VCC	VCC		
N1	NC	IO103NDB4V0	P14	GND	GND		
N2	GND	GND	P15	VCCIB2	VCCIB2		
N3	IO68PDB4V0	IO101PDB4V0	P16	IO56NDB2V0	IO83NDB2V0		
N4	NC	IO100NPB4V0	P17	NC	IO78NDB2V0		
N5	GND	GND	P18	GDA1/IO54PDB2V0	GDA1/IO81PDB2V0		
N6	NC	IO99PDB4V0	P19	GDB1/IO53PDB2V0	GDB1/IO80PDB2V0		
N7	NC	IO97PDB4V0	P20	IO51NDB2V0	IO73NDB2V0		

5 – Datasheet Information

List of Changes

The following table lists critical changes that were made in each revision of the Fusion datasheet.

Revision	Changes	Page		
Revision 6 (March 2014)	Note added for the discontinuance of QN108 and QN180 packages to the "Package I/Os: Single-/Double-Ended (Analog)" table and the "Temperature Grade Offerings" table (SAR 55113, PDN 1306).			
	Updated details about page programming time in the "Program Operation" section (SAR 49291).	2-46		
	ADC_START changed to ADCSTART in the "ADC Operation" section (SAR 44104).	2-104		
Revision 5 (January 2014)	Calibrated offset values (AFS090, AFS250) of the external temperature monitor in Table 2-49 • Analog Channel Specifications have been updated (SAR 51464).			
	Specifications for the internal temperature monitor in Table 2-49 • Analog Channel Specifications have been updated (SAR 50870).	2-117		
Revision 4 (January 2013)	The "Product Ordering Codes" section has been updated to mention "Y" as "Blank" mentioning "Device Does Not Include License to Implement IP Based on the Cryptography Research, Inc. (CRI) Patent Portfolio" (SAR 43177).	Ш		
	The note in Table 2-12 • Fusion CCC/PLL Specification referring the reader to SmartGen was revised to refer instead to the online help associated with the core (SAR 42563).			
	Table 2-49 • Analog Channel Specifications was modified to update the uncalibrated offset values (AFS250) of the external and internal temperature monitors (SAR 43134).			
	In Table 2-57 • Prescaler Control Truth Table—AV ($x = 0$), AC ($x = 1$), and AT ($x = 3$), changed the column heading from 'Full-Scale Voltage' to 'Full Scale Voltage in 10-Bit Mode', and added and updated Notes as required (SAR 20812).	2-130		
	The values for the Speed Grade (-1 and Std.) for FDDRIMAX (Table 2-180 • Input DDR Propagation Delays) and values for the Speed Grade (-2 and Std.) for FDDOMAX (Table 2-182 • Output DDR Propagation Delays) had been inadvertently interchanged. This has been rectified (SAR 38514).	2-220, 2-222		
	Added description about what happens if a user connects VAREF to an external 3.3 V on their board to the "VAREF Analog Reference Voltage" section (SAR 35188).	2-225		
	Added a note to Table 3-2 • Recommended Operating Conditions1 (SAR 43429): The programming temperature range supported is $T_{ambient} = 0^{\circ}C$ to 85°C.	3-3		
	Added the Package Thermal details for AFS600-PQ208 and AFS250-PQ208 to Table 3-6 • Package Thermal Resistance (SAR 37816). Deleted the Die Size column from the table (SAR 43503).	3-7		
	Libero Integrated Design Environment (IDE) was changed to Libero System-on-Chip (SoC) throughout the document (SAR 42495).	NA		
Devision 0	Live at Power-Up (LAPU) has been replaced with 'Instant On'.	1 . 15.7		
Revision 3 (August 2012)	Microblade U1AFS250 and U1AFS1500 devices were added to the product tables.	I – IV		
(A sentence pertaining to the analog I/Os was added to the "Specifying I/O States During Programming" section (SAR 34831).	1-9		