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Fusion Family of Mixed Signal FPGAs
Flash Memory Block Diagram
A simplified diagram of the flash memory block is shown in Figure 2-33.

The logic consists of the following sub-blocks:

• Flash Array

Contains all stored data. The flash array contains 64 sectors, and each sector contains 33 pages
of data.

• Page Buffer

A page-wide volatile register. A page contains 8 blocks of data and an AUX block.

• Block Buffer

Contains the contents of the last block accessed. A block contains 128 data bits.

• ECC Logic

The FB stores error correction information with each block to perform single-bit error correction and
double-bit error detection on all data blocks.

Figure 2-33 • Flash Memory Block Diagram
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Fusion Family of Mixed Signal FPGAs
Care must be taken when choosing the right resistor for current measurement application. Note that
because of the 10× amplification, the maximum measurable difference between the AV and AC pads is
VAREF / 10. A larger AV-to-AC voltage drop will result in ADC saturation; that is, the digital code put out by
the ADC will stay fixed at the full scale value. Therefore, the user must select the external sense resistor
appropriately. Table 2-38 shows recommended resistor values for different current measurement ranges.
When choosing resistor values for a system, there is a trade-off between measurement accuracy and
power consumption. Choosing a large resistor will increase the voltage drop and hence increase
accuracy of the measurement; however the larger voltage drop dissipates more power (P = I2 × R).

The Current Monitor is a unipolar system, meaning that the differential voltage swing must be from 0 V to
VAREF/10. Therefore, the Current Monitor only supports differential voltage where |VAV-VAC| is greater
than 0 V. This results in the requirement that the potential of the AV pad must be larger than the potential
of the AC pad. This is straightforward for positive voltage systems. For a negative voltage system, it
means that the AV pad must be "more negative" than the AC pad. This is shown in Figure 2-73. 

In this case, both the AV pad and the AC pad are configured for negative operations and the output of the
differential amplifier still falls between 0 V and VAREF as required.  

Figure 2-72 • Positive Current Monitor
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Table 2-37 • Recommended Resistor for Different Current Range Measurement

Current Range Recommended Minimum Resistor Value (Ohms)

> 5 mA – 10 mA 10 – 20 

> 10 mA – 20 mA 5 – 10 

> 20 mA – 50 mA 2.5 – 5 

> 50 mA – 100 mA 1 – 2

> 100 mA – 200 mA 0.5 – 1

> 200 mA – 500 mA 0.3 – 0.5

> 500 mA – 1 A 0.1 – 0.2

> 1 A – 2 A 0.05 – 0.1

> 2 A – 4 A 0.025 – 0.05

> 4 A – 8 A 0.0125 – 0.025

> 8 A – 12 A 0.00625 – 0.02
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Fusion Family of Mixed Signal FPGAs
There are several popular ADC architectures, each with advantages and limitations. 
The analog-to-digital converter in Fusion devices is a switched-capacitor Successive Approximation
Register (SAR) ADC. It supports 8-, 10-, and 12-bit modes of operation with a cumulative sample rate up
to 600 k samples per second (ksps). Built-in bandgap circuitry offers 1% internal voltage reference
accuracy or an external reference voltage can be used.

As shown in Figure 2-81, a SAR ADC contains N capacitors with binary-weighted values.

To begin a conversion, all of the capacitors are quickly discharged. Then VIN is applied to all the
capacitors for a period of time (acquisition time) during which the capacitors are charged to a value very
close to VIN. Then all of the capacitors are switched to ground, and thus –VIN is applied across the
comparator. Now the conversion process begins. First, C is switched to VREF. Because of the binary
weighting of the capacitors, the voltage at the input of the comparator is then shown by EQ 11.

Voltage at input of comparator = –VIN + VREF / 2

EQ 11

If VIN is greater than VREF / 2, the output of the comparator is 1; otherwise, the comparator output is 0.
A register is clocked to retain this value as the MSB of the result. Next, if the MSB is 0, C is switched
back to ground; otherwise, it remains connected to VREF, and C / 2 is connected to VREF. The result at
the comparator input is now either –VIN + VREF / 4 or –VIN + 3 VREF / 4 (depending on the state of the
MSB), and the comparator output now indicates the value of the next most significant bit. This bit is
likewise registered, and the process continues for each subsequent bit until a conversion is completed.
The conversion process requires some acquisition time plus N + 1 ADC clock cycles to complete.

Figure 2-81 • Example SAR ADC Architecture
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Device Architecture
Integrated Voltage Reference
The Fusion device has an integrated on-chip 2.56 V reference voltage for the ADC. The value of this
reference voltage was chosen to make the prescaling and postscaling factors for the prescaler blocks
change in a binary fashion. However, if desired, an external reference voltage of up to 3.3 V can be
connected between the VAREF and ADCGNDREF pins. The VAREFSEL control pin is used to select the
reference voltage. 

ADC Clock
The speed of the ADC depends on its internal clock, ADCCLK, which is not accessible to users. The
ADCCLK is derived from SYSCLK. Input signal TVC[7:0], Time Divider Control, determines the speed of
the ADCCLK in relationship to SYSCLK, based on EQ 15.

EQ 15

TVC: Time Divider Control (0–255)

tADCCLK is the period of ADCCLK, and must be between 0.5 MHz and 10 MHz

tSYSCLK is the period of SYSCLK

The frequency of ADCCLK, fADCCLK, must be within 0.5 Hz to 10 MHz.

The inputs to the ADC are synchronized to SYSCLK. A conversion is initiated by asserting the
ADCSTART signal on a rising edge of SYSCLK. Figure 2-90 on page 2-112 and Figure 2-91 on
page 2-112 show the timing diagram for the ADC.

Acquisition Time or Sample Time Control
Acquisition time (tSAMPLE) specifies how long an analog input signal has to charge the internal capacitor
array. Figure 2-88 shows a simplified internal input sampling mechanism of a SAR ADC. 

The internal impedance (ZINAD), external source resistance (RSOURCE), and sample capacitor (CINAD)
form a simple RC network. As a result, the accuracy of the ADC can be affected if the ADC is given
insufficient time to charge the capacitor. To resolve this problem, you can either reduce the source
resistance or increase the sampling time by changing the acquisition time using the STC signal.

Table 2-42 • VAREF Bit Function

Name Bit Function

VAREF 0 Reference voltage selection

0 – Internal voltage reference selected. VAREF pin outputs 2.56 V.

1 – Input external voltage reference from VAREF and ADCGNDREF

tADCCLK 4 1 TVC+  tSYSCLK=

Table 2-43 • TVC Bits Function

Name Bits Function

TVC [7:0] SYSCLK divider control

Figure 2-88 • Simplified Sample and Hold Circuitry
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Fusion Family of Mixed Signal FPGAs
Temperature Monitor Using Analog Pad AT

External
Temperature
Monitor 
(external diode
2N3904, 
TJ = 25°C)4

Resolution 8-bit ADC 4 °C

10-bit ADC 1 °C

12-bit ADC 0.25 °C

Systematic Offset5 AFS090, AFS250, AFS600, 
AFS1500, uncalibrated7

5 °C

AFS090, AFS250, AFS600, 
AFS1500, calibrated7

±5 °C

Accuracy ±3 ±5 °C

External Sensor Source 
Current

High level, TMSTBx = 0 10 µA

Low level, TMSTBx = 1 100 µA

Max Capacitance on AT 
pad

1.3 nF

Internal
Temperature
Monitor

Resolution 8-bit ADC 4 °C

10-bit ADC 1 °C

12-bit ADC 0.25 °C

Systematic Offset5 AFS0907 5 °C

AFS250, AFS600, AFS15007 11 °C

Accuracy ±3 ±5 °C

tTMSHI Strobe High time 10 105 µs

tTMSLO Strobe Low time 5 µs

tTMSSET Settling time 5 µs

Table 2-49 • Analog Channel Specifications  (continued)
Commercial Temperature Range Conditions, TJ = 85°C (unless noted otherwise), 
Typical: VCC33A = 3.3 V, VCC = 1.5 V

Parameter Description Condition Min. Typ. Max. Units

Notes:

1. VRSM is the maximum voltage drop across the current sense resistor.
2. Analog inputs used as digital inputs can tolerate the same voltage limits as the corresponding analog pad. There is no

reliability concern on digital inputs as long as VIND does not exceed these limits.

3. VIND is limited to VCC33A + 0.2 to allow reaching 10 MHz input frequency.

4. An averaging of 1,024 samples (LPF setting in Analog System Builder) is required and the maximum capacitance
allowed across the AT pins is 500 pF.

5. The temperature offset is a fixed positive value.

6. The high current mode has a maximum power limit of 20 mW. Appropriate current limit resistors must be used, based on
voltage on the pad.

7. When using SmartGen Analog System Builder, CalibIP is required to obtain specified offset. For further details on
CalibIP, refer to the "Temperature, Voltage, and Current Calibration in Fusion FPGAs" chapter of the Fusion FPGA
Fabric User Guide.
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Fusion Family of Mixed Signal FPGAs
Table 2-68 • I/O Bank Support by Device

I/O Bank AFS090 AFS250 AFS600 AFS1500

Standard I/O N N – –

Advanced I/O E, W E, W E, W E, W

Pro I/O – – N N

Analog Quad S S S S

Note: E = East side of the device
W = West side of the device
N = North side of the device
S = South side of the device

Table 2-69 • Fusion VCCI Voltages and Compatible Standards

VCCI (typical) Compatible Standards

3.3 V LVTTL/LVCMOS 3.3, PCI 3.3, SSTL3 (Class I and II),* GTL+ 3.3, GTL 3.3,* LVPECL

2.5 V LVCMOS 2.5, LVCMOS 2.5/5.0, SSTL2 (Class I and II),* GTL+ 2.5,* GTL 2.5,* LVDS, BLVDS, M-
LVDS

1.8 V LVCMOS 1.8

1.5 V LVCMOS 1.5, HSTL (Class I),* HSTL (Class II)*

Note: *I/O standard supported by Pro I/O banks.

Table 2-70 • Fusion VREF Voltages and Compatible Standards*

VREF (typical)  Compatible Standards

1.5 V SSTL3 (Class I and II)

1.25 V SSTL2 (Class I and II)

1.0 V GTL+ 2.5, GTL+ 3.3

0.8 V GTL 2.5, GTL 3.3

0.75 V HSTL (Class I), HSTL (Class II)

Note: *I/O standards supported by Pro I/O banks.
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Device Architecture
Table 2-85 • Fusion Pro I/O Attributes vs. I/O Standard Applications 
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LVTTL/LVCMOS 3.3 V 3 3 3 3 3 3 3 3 3 3

LVCMOS 2.5 V 3 3 3 3 3 3 3 3 3 3

LVCMOS 2.5/5.0 V 3 3 3 3 3 3 3 3 3 3

LVCMOS 1.8 V 3 3 3 3 3 3 3 3 3 3

LVCMOS 1.5 V 3 3 3 3 3 3 3 3 3 3

PCI (3.3 V) 3 3 3 3 3

PCI-X (3.3 V) 3 3 3 3 3 3

GTL+ (3.3 V) 3 3 3 3 3 3

GTL+ (2.5 V) 3 3 3 3 3 3

GTL (3.3 V) 3 3 3 3 3 3

GTL (2.5 V) 3 3 3 3 3 3

HSTL Class I 3 3 3 3 3 3

HSTL Class II 3 3 3 3 3 3

SSTL2 Class I and II 3 3 3 3 3 3

SSTL3 Class I and II 3 3 3 3 3 3

LVDS, BLVDS, M-LVDS 3 3 3 3 3

LVPECL 3 3 3 3
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Device Architecture
Figure 2-118 • Tristate Output Buffer Timing Model and Delays (example)

D

CLK

Q

D

CLK

Q

10% VCCI

tZL

Vtrip

50%

tHZ
90% VCCI

tZH

Vtrip

50% 50% tLZ

50%

EOUT

PAD

D

E 50%
tEOUT (R)

50%
tEOUT (F)

PAD
DOUT

EOUT

D

I/O Interface

E

tEOUT

tZLS

Vtrip

50%

tZHS

Vtrip

50%EOUT

PAD

D

E 50% 50%
tEOUT (R)

tEOUT (F)

50%

VCC

VCC

VCC

VCCI

VCC

VCC

VCC

VOH

VOL

VOL

tZL, tZH, tHZ, tLZ, tZLS, tZHS

tEOUT = MAX(tEOUT (R). tEOUT (F))
2-163 Revision 6



Device Architecture
Detailed I/O DC Characteristics

Table 2-95 • Input Capacitance

Symbol Definition Conditions Min. Max. Units

CIN Input capacitance VIN = 0, f = 1.0 MHz 8 pF

CINCLK Input capacitance on the clock pin VIN = 0, f = 1.0 MHz 8 pF

Table 2-96 • I/O Output Buffer Maximum Resistances 1 

Standard Drive Strength
RPULL-DOWN

(ohms) 2
RPULL-UP
(ohms) 3

Applicable to Pro I/O Banks

3.3 V LVTTL / 3.3 V LVCMOS 4 mA 100 300

8 mA 50 150

12 mA 25 75

16 mA 17 50

24 mA 11 33

2.5 V LVCMOS 4 mA 100 200

8 mA 50 100

12 mA 25 50

16 mA 20 40

24 mA 11 22

1.8 V LVCMOS 2 mA 200 225

4 mA 100 112

6 mA 50 56

8 mA 50 56

12 mA 20 22

16 mA 20 22

1.5 V LVCMOS 2 mA 200 224

4 mA 100 112

6 mA 67 75

8 mA 33 37

12 mA 33 37

3.3 V PCI/PCI-X Per PCI/PCI-X specification 25 75

3.3 V GTL 20 mA 11 –

2.5 V GTL 20 mA 14 –

3.3 V GTL+ 35 mA 12 –

2.5 V GTL+ 33 mA 15 –

Notes:

1. These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend
on VCC, drive strength selection, temperature, and process. For board design considerations and detailed output buffer
resistances, use the corresponding IBIS models located on the Microsemi SoC Products Group website:
http://www.microsemi.com/soc/techdocs/models/ibis.html.

2. R(PULL-DOWN-MAX) = VOLspec / IOLspec

3. R(PULL-UP-MAX) = (VCCImax – VOHspec) / IOHspec 
2-169 Revision 6
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Device Architecture
Table 2-130 • 1.5 V LVCMOS Low Slew
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,
Worst-Case VCCI = 1.4 V
Applicable to Advanced I/Os

Drive 
Strength

 Speed 
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS  Units 

2 mA  Std. 0.66 12.78 0.04 1.31 0.43 12.81 12.78 3.40 2.64 15.05 15.02  ns 

 –1 0.56 10.87 0.04 1.11 0.36 10.90 10.87 2.89 2.25 12.80 12.78  ns 

 –2 0.49 9.55 0.03 0.98 0.32 9.57 9.55 2.54 1.97 11.24 11.22  ns 

4 mA  Std. 0.66 10.01 0.04 1.31 0.43 10.19 9.55 3.75 3.27 12.43 11.78  ns 

 –1 0.56 8.51 0.04 1.11 0.36 8.67 8.12 3.19 2.78 10.57 10.02  ns 

 –2 0.49 7.47 0.03 0.98 0.32 7.61 7.13 2.80 2.44 9.28 8.80  ns 

8 mA  Std. 0.66 9.33 0.04 1.31 0.43 9.51 8.89 3.83 3.43 11.74 11.13  ns 

 –1 0.56 7.94 0.04 1.11 0.36 8.09 7.56 3.26 2.92 9.99 9.47  ns 

 –2 0.49 6.97 0.03 0.98 0.32 7.10 6.64 2.86 2.56 8.77 8.31  ns 

12 mA  Std. 0.66 8.91 0.04 1.31 0.43 9.07 8.89 3.95 4.05 11.31 11.13  ns 

 –1 0.56 7.58 0.04 1.11 0.36 7.72 7.57 3.36 3.44 9.62 9.47  ns 

 –2 0.49 6.65 0.03 0.98 0.32 6.78 6.64 2.95 3.02 8.45 8.31  ns 

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-9.

Table 2-131 • 1.5 V LVCMOS High Slew
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, 
Worst-Case VCCI = 1.4 V
Applicable to Advanced I/Os

Drive 
Strength

 Speed 
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS  Units 

2 mA  Std. 0.66 8.36 0.04 1.44 0.43 6.82 8.36 3.39 2.77 9.06 10.60  ns 

 –1 0.56 7.11 0.04 1.22 0.36 5.80 7.11 2.88 2.35 7.71 9.02  ns 

 –2 0.49 6.24 0.03 1.07 0.32 5.10 6.24 2.53 2.06 6.76 7.91  ns 

4 mA  Std. 0.66 5.31 0.04 1.44 0.43 4.85 5.31 3.74 3.40 7.09 7.55  ns 

 –1 0.56 4.52 0.04 1.22 0.36 4.13 4.52 3.18 2.89 6.03 6.42  ns 

 –2 0.49 3.97 0.03 1.07 0.32 3.62 3.97 2.79 2.54 5.29 5.64  ns 

8 mA  Std. 0.66 4.67 0.04 1.44 0.43 4.55 4.67 3.82 3.56 6.78 6.90  ns 

 –1 0.56 3.97 0.04 1.22 0.36 3.87 3.97 3.25 3.03 5.77 5.87  ns 

 –2 0.49 3.49 0.03 1.07 0.32 3.40 3.49 2.85 2.66 5.07 5.16  ns 

12 mA  Std. 0.66 4.08 0.04 1.44 0.43 4.15 3.58 3.94 4.20 6.39 5.81  ns 

 –1 0.56 3.47 0.04 1.22 0.36 3.53 3.04 3.36 3.58 5.44 4.95  ns 

 –2 0.49 3.05 0.03 1.07 0.32 3.10 2.67 2.95 3.14 4.77 4.34  ns 

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-9.
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Device Architecture
Differential I/O Characteristics
Configuration of the I/O modules as a differential pair is handled by the Microsemi Designer
software when the user instantiates a differential I/O macro in the design.

Differential I/Os can also be used in conjunction with the embedded Input Register (InReg), Output
Register (OutReg), Enable Register (EnReg), and Double Data Rate (DDR). However, there is no
support for bidirectional I/Os or tristates with these standards.

LVDS
Low-Voltage Differential Signal (ANSI/TIA/EIA-644) is a high-speed differential I/O standard. It requires
that one data bit be carried through two signal lines, so two pins are needed. It also requires external
resistor termination. 

The full implementation of the LVDS transmitter and receiver is shown in an example in Figure 2-134.
The building blocks of the LVDS transmitter–receiver are one transmitter macro, one receiver macro,
three board resistors at the transmitter end, and one resistor at the receiver end. The values for the three
driver resistors are different from those used in the LVPECL implementation because the output standard
specifications are different.    

Figure 2-134 • LVDS Circuit Diagram and Board-Level Implementation

Table 2-168 • Minimum and Maximum DC Input and Output Levels

DC Parameter Description Min. Typ. Max. Units

VCCI Supply Voltage 2.375  2.5  2.625 V

VOL Output Low Voltage  0.9  1.075  1.25 V

VOH Input High Voltage  1.25  1.425  1.6 V

IOL 1 Output Low Voltage 0.65 0.91 1.16 mA

IOH 1 Output High Voltage 0.65 0.91 1.16 mA

VI Input Voltage  0   2.925 V

IIL 2,3 Input Low Voltage 10 A

IIH 2,4 Input High Voltage 10 A

VODIFF Differential Output Voltage  250  350  450 mV

VOCM Output Common Mode Voltage  1.125  1.25  1.375 V

VICM Input Common Mode Voltage  0.05  1.25  2.35 V

VIDIFF Input Differential Voltage  100  350  mV

Notes:

1. IOL/IOH defined by VODIFF/(Resistor Network)
2. Currents are measured at 85°C junction temperature.  

3. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

4. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is
larger when operating outside recommended ranges.
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Fusion Family of Mixed Signal FPGAs
Timing Characteristics 

BLVDS/M-LVDS
Bus LVDS (BLVDS) and Multipoint LVDS (M-LVDS) specifications extend the existing LVDS standard to
high-performance multipoint bus applications. Multidrop and multipoint bus configurations can contain
any combination of drivers, receivers, and transceivers. Microsemi LVDS drivers provide the higher drive
current required by BLVDS and M-LVDS to accommodate the loading. The driver requires series
terminations for better signal quality and to control voltage swing. Termination is also required at both
ends of the bus, since the driver can be located anywhere on the bus. These configurations can be
implemented using TRIBUF_LVDS and BIBUF_LVDS macros along with appropriate terminations.
Multipoint designs using Microsemi LVDS macros can achieve up to 200 MHz with a maximum of 20
loads. A sample application is given in Figure 2-135. The input and output buffer delays are available in
the LVDS section in Table 2-171.

Example: For a bus consisting of 20 equidistant loads, the following terminations provide the required
differential voltage, in worst-case industrial operating conditions at the farthest receiver: RS = 60  and
RT = 70 , given Z0 = 50  (2") and Zstub = 50  (~1.5").

Table 2-169 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V) Input High (V) Measuring Point* (V) VREF (typ.) (V)

1.075 1.325 Cross point –

Note: *Measuring point = Vtrip. See Table 2-90 on page 2-166 for a complete table of trip points.

Table 2-170 • LVDS
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, 
Worst-Case VCCI = 2.3 V
Applicable to Pro I/Os

Speed Grade tDOUT tDP tDIN tPY Units

 Std. 0.66 2.10 0.04 1.82 ns

 –1 0.56 1.79 0.04 1.55 ns

 –2 0.49 1.57 0.03 1.36 ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-9.

Figure 2-135 • BLVDS/M-LVDS Multipoint Application Using LVDS I/O Buffers
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Fusion Family of Mixed Signal FPGAs
Timing Characteristics

Figure 2-145 • Output DDR Timing Diagram
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Table 2-182 • Output DDR Propagation Delays
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

Parameter Description –2 –1 Std. Units

tDDROCLKQ Clock-to-Out of DDR for Output DDR 0.70 0.80 0.94 ns

tDDROSUD1 Data_F Data Setup for Output DDR 0.38 0.43 0.51 ns

tDDROSUD2 Data_R Data Setup for Output DDR 0.38 0.43 0.51 ns

tDDROHD1 Data_F Data Hold for Output DDR 0.00 0.00 0.00 ns

tDDROHD2 Data_R Data Hold for Output DDR 0.00 0.00 0.00 ns

tDDROCLR2Q Asynchronous Clear-to-Out for Output DDR 0.80 0.91 1.07 ns

tDDROREMCLR Asynchronous Clear Removal Time for Output DDR 0.00 0.00 0.00 ns

tDDRORECCLR Asynchronous Clear Recovery Time for Output DDR 0.22 0.25 0.30 ns

tDDROWCLR1 Asynchronous Clear Minimum Pulse Width for Output DDR 0.22 0.25 0.30 ns

tDDROCKMPWH Clock Minimum Pulse Width High for the Output DDR 0.36 0.41 0.48 ns

tDDROCKMPWL Clock Minimum Pulse Width Low for the Output DDR 0.32 0.37 0.43 ns

FDDOMAX Maximum Frequency for the Output DDR 1404 1232 1048 MHz

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-9.
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Fusion Family of Mixed Signal FPGAs
XTAL2 Crystal Oscillator Circuit Input

Input to crystal oscillator circuit. Pin for connecting external crystal, ceramic resonator, RC network, or
external clock input. When using an external crystal or ceramic oscillator, external capacitors are also
recommended (Please refer to the crystal oscillator manufacturer for proper capacitor value).

If using external RC network or clock input, XTAL1 should be used and XTAL2 left unconnected. In the
case where the Crystal Oscillator block is not used, the XTAL1 pin should be connected to GND and the
XTAL2 pin should be left floating.

Security
Fusion devices have a built-in 128-bit AES decryption core. The decryption core facilitates highly secure,
in-system programming of the FPGA core array fabric and the FlashROM. The FlashROM and the FPGA
core fabric can be programmed independently from each other, allowing the FlashROM to be updated
without the need for change to the FPGA core fabric. The AES master key is stored in on-chip nonvolatile
memory (flash). The AES master key can be preloaded into parts in a security-protected programming
environment (such as the Microsemi in-house programming center), and then "blank" parts can be
shipped to an untrusted programming or manufacturing center for final personalization with an AES-
encrypted bitstream. Late stage product changes or personalization can be implemented easily and with
high level security by simply sending a STAPL file with AES-encrypted data. Highly secure remote field
updates over public networks (such as the Internet) are possible by sending and programming a STAPL
file with AES-encrypted data. For more information, refer to the Fusion Security application note.

128-Bit AES Decryption
The 128-bit AES standard (FIPS-197) block cipher is the National Institute of Standards and Technology
(NIST) replacement for DES (Data Encryption Standard FIPS46-2). AES has been designed to protect
sensitive government information well into the 21st century. It replaces the aging DES, which NIST
adopted in 1977 as a Federal Information Processing Standard used by federal agencies to protect
sensitive, unclassified information. The 128-bit AES standard has 3.4 × 1038 possible 128-bit key
variants, and it has been estimated that it would take 1,000 trillion years to crack 128-bit AES cipher text
using exhaustive techniques. Keys are stored (protected with security) in Fusion devices in nonvolatile
flash memory. All programming files sent to the device can be authenticated by the part prior to
programming to ensure that bad programming data is not loaded into the part that may possibly damage
it. All programming verification is performed on-chip, ensuring that the contents of Fusion devices remain
as secure as possible.

AES decryption can also be used on the 1,024-bit FlashROM to allow for remote updates of the
FlashROM contents. This allows for easy support of subscription model products and protects them with
measures designed to provide the highest level of security available. See the application note Fusion
Security for more details.

AES for Flash Memory
AES decryption can also be used on the flash memory blocks. This provides the best available security
during update of the flash memory blocks. During runtime, the encrypted data can be clocked in via the
JTAG interface. The data can be passed through the internal AES decryption engine, and the decrypted
data can then be stored in the flash memory block.

Programming 
Programming can be performed using various programming tools, such as Silicon Sculptor II (BP Micro
Systems) or FlashPro3 (Microsemi). 

The user can generate STP programming files from the Designer software and can use these files to
program a device.

Fusion devices can be programmed in-system. During programming, VCCOSC is needed in order to
power the internal 100 MHz oscillator. This oscillator is used as a source for the 20 MHz oscillator that is
used to drive the charge pump for programming.
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DC and Power Characteristics
Table 3-2 • Recommended Operating Conditions1

Symbol Parameter2 Commercial Industrial Units

TJ Junction temperature 0 to +85 –40 to +100 °C

VCC 1.5 V DC core supply voltage 1.425 to 1.575 1.425 to 1.575 V

VJTAG JTAG DC voltage 1.4 to 3.6 1.4 to 3.6 V

VPUMP Programming voltage Programming mode3 3.15 to 3.45 3.15 to 3.45 V

Operation4 0 to 3.6 0 to 3.6 V

VCCPLL Analog power supply (PLL) 1.425 to 1.575 1.425 to 1.575 V

VCCI 1.5 V DC supply voltage 1.425 to 1.575 1.425 to 1.575 V

1.8 V DC supply voltage 1.7 to 1.9 1.7 to 1.9 V

2.5 V DC supply voltage 2.3 to 2.7 2.3 to 2.7 V

3.3 V DC supply voltage 3.0 to 3.6 3.0 to 3.6 V

LVDS differential I/O 2.375 to 2.625 2.375 to 2.625 V

LVPECL differential I/O 3.0 to 3.6 3.0 to 3.6 V

VCC33A +3.3 V power supply 2.97 to 3.63 2.97 to 3.63 V

VCC33PMP +3.3 V power supply 2.97 to 3.63 2.97 to 3.63 V

VAREF Voltage reference for ADC 2.527 to 2.593 2.527 to 2.593 V

VCC15A 5 Digital power supply for the analog system 1.425 to 1.575 1.425 to 1.575 V

VCCNVM Embedded flash power supply 1.425 to 1.575 1.425 to 1.575 V

VCCOSC Oscillator power supply 2.97 to 3.63 2.97 to 3.63 V

AV, AC 6 Unpowered, ADC reset asserted or unconfigured –10.5 to 12.0 –10.5 to 11.6 V

Analog input (+16 V to +2 V prescaler range) –0.3 to 12.0 –0.3 to 11.6 V

Analog input (+1 V to + 0.125 V prescaler range) –0.3 to 3.6 –0.3 to 3.6 V

Analog input (–16 V to –2 V prescaler range) –10.5 to 0.3 –10.5 to 0.3 V

Analog input (–1 V to –0.125 V prescaler range) –3.6 to 0.3 –3.6 to 0.3 V

Analog input (direct input to ADC) –0.3 to 3.6 –0.3 to 3.6 V

Digital input –0.3 to 12.0 –0.3 to 11.6 V

AG 6 Unpowered, ADC reset asserted or unconfigured –10.5 to 12.0 –10.5 to 11.6 V

Low Current Mode (1 µA, 3 µA, 10 µA, 30 µA) –0.3 to 12.0 –0.3 to 11.6 V

Low Current Mode (–1 µA, –3 µA, –10 µA, –30 µA) –10.5 to 0.3 –10.5 to 0.3 V

High Current Mode 7 –10.5 to 12.0 –10.5 to 11.6 V

AT 6 Unpowered, ADC reset asserted or unconfigured –0.3 to 15.5 –0.3 to 14.5 V

Analog input (+16 V, +4 V prescaler range) –0.3 to 15.5 –0.3 to 14.5 V

Analog input (direct input to ADC) –0.3 to 3.6 –0.3 to 3.6 V

Digital input –0.3 to 15.5 –0.3 to 14.5 V

Notes:

1. The ranges given here are for power supplies only. The recommended input voltage ranges specific to each I/O
standard are given in Table 2-85 on page 2-157. 

2. All parameters representing voltages are measured with respect to GND unless otherwise specified.

3. The programming temperature range supported is Tambient = 0°C to 85°C.

4. VPUMP can be left floating during normal operation (not programming mode).

5. Violating the VCC15A recommended voltage supply during an embedded flash program cycle can corrupt the page being
programmed.

6. The input voltage may overshoot by up to 500 mV above the Recommended Maximum (150 mV in Direct mode),
provided the duration of the overshoot is less than 50% of the operating lifetime of the device.

7. The AG pad should also conform to the limits as specified in Table 2-48 on page 2-114.
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DC and Power Characteristics
PS-CELL = NS-CELL * (PAC5 + (1 / 2) * PAC6) * FCLK

NS-CELL is the number of VersaTiles used as sequential modules in the design. When a multi-tile
sequential cell is used, it should be accounted for as 1.

1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 3-16 on page 3-27.

FCLK is the global clock signal frequency.

Standby Mode and Sleep Mode

PS-CELL = 0 W

Combinatorial Cells Dynamic Contribution—PC-CELL

Operating Mode

PC-CELL = NC-CELL* (1 / 2) * PAC7 * FCLK

NC-CELL is the number of VersaTiles used as combinatorial modules in the design.

1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 3-16 on page 3-27.

FCLK is the global clock signal frequency.

Standby Mode and Sleep Mode

PC-CELL = 0 W

Routing Net Dynamic Contribution—PNET

Operating Mode

PNET = (NS-CELL + NC-CELL) * (1 / 2) * PAC8 * FCLK

NS-CELL is the number VersaTiles used as sequential modules in the design.

NC-CELL is the number of VersaTiles used as combinatorial modules in the design.

1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 3-16 on page 3-27.

FCLK is the global clock signal frequency.

Standby Mode and Sleep Mode

PNET = 0 W

I/O Input Buffer Dynamic Contribution—PINPUTS

Operating Mode

PINPUTS = NINPUTS * (2 / 2) * PAC9 * FCLK

NINPUTS is the number of I/O input buffers used in the design.

2 is the I/O buffer toggle rate—guidelines are provided in Table 3-16 on page 3-27.

FCLK is the global clock signal frequency.

Standby Mode and Sleep Mode

PINPUTS = 0 W

I/O Output Buffer Dynamic Contribution—POUTPUTS

Operating Mode

POUTPUTS = NOUTPUTS * (2 / 2) * 1 * PAC10 * FCLK

NOUTPUTS is the number of I/O output buffers used in the design.

2 is the I/O buffer toggle rate—guidelines are provided in Table 3-16 on page 3-27.

1 is the I/O buffer enable rate—guidelines are provided in Table 3-17 on page 3-27.

FCLK is the global clock signal frequency.

Standby Mode and Sleep Mode

POUTPUTS = 0 W
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Fusion Family of Mixed Signal FPGAs
Power Consumption
Table 3-18 • Power Consumption 

Parameter Description Condition Min. Typical Max. Units

Crystal Oscillator

ISTBXTAL Standby Current of Crystal
Oscillator

10 µA

IDYNXTAL Operating Current RC 0.6 mA

0.032–0.2 0.19 mA

0.2–2.0 0.6 mA

2.0–20.0 0.6 mA

RC Oscillator

IDYNRC Operating Current 1 mA

ACM

Operating Current (fixed
clock)

200 µA/MHz

Operating Current (user
clock)

30 µA

NVM System

NVM Array Operating Power Idle 795 µA

Read 
operation 

See
Table 3-15 on 

page 3-23.

 See
Table 3-15 on 

page 3-23.

Erase 900 µA

Write 900 µA

PNVMCTRL NVM Controller Operating
Power

20 µW/MHz
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Package Pin Assignments
C9 IO07PDB0V1

C10 IO09PDB0V1

C11 IO13NDB0V2

C12 IO13PDB0V2

C13 IO24PDB1V0

C14 IO26PDB1V0

C15 IO27NDB1V1

C16 IO27PDB1V1

C17 IO35NDB1V2

C18 IO35PDB1V2

C19 GBC0/IO40NDB1V2

C20 GBA0/IO42NDB1V2

C21 IO43NDB1V2

C22 IO43PDB1V2

C23 NC

C24 GND

C25 NC

C26 NC

D1 NC

D2 NC

D3 NC

D4 GND

D5 GAA0/IO01NDB0V0

D6 GND

D7 IO04NDB0V0

D8 IO04PDB0V0

D9 GND

D10 IO09NDB0V1

D11 IO11PDB0V1

D12 GND

D13 IO24NDB1V0

D14 IO26NDB1V0

D15 GND

D16 IO31NDB1V1

D17 IO31PDB1V1

D18 GND

FG676

Pin Number AFS1500 Function

D19 GBC1/IO40PDB1V2

D20 GBA1/IO42PDB1V2

D21 GND

D22 VCCPLB

D23 GND

D24 NC

D25 NC

D26 NC

E1 GND

E2 IO122NPB4V0

E3 IO121PDB4V0

E4 IO122PPB4V0

E5 IO00NDB0V0

E6 IO00PDB0V0

E7 VCCIB0

E8 IO05NDB0V1

E9 IO05PDB0V1

E10 VCCIB0

E11 IO11NDB0V1

E12 IO14PDB0V2

E13 VCCIB0

E14 VCCIB1

E15 IO29NDB1V1

E16 IO29PDB1V1

E17 VCCIB1

E18 IO37NDB1V2

E19 GBB0/IO41NDB1V2

E20 VCCIB1

E21 VCOMPLB

E22 GBA2/IO44PDB2V0

E23 IO48PPB2V0

E24 GBB2/IO45PDB2V0

E25 NC

E26 GND

F1 NC

F2 VCCIB4

FG676

Pin Number AFS1500 Function

F3 IO121NDB4V0

F4 GND

F5 IO123NDB4V0

F6 GAC2/IO123PDB4V0

F7 GAA2/IO125PDB4V0

F8 GAC0/IO03NDB0V0

F9 GAC1/IO03PDB0V0

F10 IO10NDB0V1

F11 IO10PDB0V1

F12 IO14NDB0V2

F13 IO23NDB1V0

F14 IO23PDB1V0

F15 IO32NPB1V1

F16 IO34NDB1V1

F17 IO34PDB1V1

F18 IO37PDB1V2

F19 GBB1/IO41PDB1V2

F20 VCCIB2

F21 IO47PPB2V0

F22 IO44NDB2V0

F23 GND

F24 IO45NDB2V0

F25 VCCIB2

F26 NC

G1 NC

G2 IO119PPB4V0

G3 IO120NDB4V0

G4 IO120PDB4V0

G5 VCCIB4

G6 GAB2/IO124PDB4V0

G7 IO125NDB4V0

G8 GND

G9 VCCIB0

G10 IO08NDB0V1

G11 IO08PDB0V1

G12 GND

FG676

Pin Number AFS1500 Function
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Datasheet Information
Advance v1.0
(continued)

This change table states that in the "208-Pin PQFP" table listed under the Advance
v0.8 changes, the AFS090 device had a pin change. That is incorrect. Pin 102 was
updated for AFS250 and AFS600. The function name changed from VCC33ACAP to
VCC33A.

3-8

Advance v0.9
(October 2007)

In the "Package I/Os: Single-/Double-Ended (Analog)" table, the
AFS1500/M7AFS1500 I/O counts were updated for the following devices:

FG484: 223/109

FG676: 252/126

II

In the "108-Pin QFN" table, the function changed from VCC33ACAP to VCC33A for the
following pin:

B25

3-2

In the "180-Pin QFN" table, the function changed from VCC33ACAP to VCC33A for the
following pins:

AFS090: B29

AFS250: B29

3-4

In the "208-Pin PQFP" table, the function changed from VCC33ACAP to VCC33A for the
following pins:

AFS090: 102

AFS250: 102

3-8

In the "256-Pin FBGA" table, the function changed from VCC33ACAP to VCC33A for the
following pins:

AFS090: T14

AFS250: T14

AFS600: T14

AFS1500: T14

3-12

Advance v0.9
(continued)

In the "484-Pin FBGA" table, the function changed from VCC33ACAP to VCC33A for the
following pins:

AFS600: AB18

AFS1500: AB18

3-20

In the "676-Pin FBGA" table, the function changed from VCC33ACAP to VCC33A for the
following pins:

AFS1500: AD20

3-28

Advance v0.8
(June 2007)

Figure 2-16 • Fusion Clocking Options and the "RC Oscillator" section were updated
to change GND_OSC and VCC_OSC to GNDOSC and VCCOSC.

2-20, 2-21

Figure 2-19 • Fusion CCC Options: Global Buffers with the PLL Macro was updated
to change the positions of OADIVRST and OADIVHALF, and a note was added.

2-25

The "Crystal Oscillator" section was updated to include information about controlling
and enabling/disabling the crystal oscillator.

2-22

Table 2-11 · Electrical Characteristics of the Crystal Oscillator was updated to
change the typical value of IDYNXTAL for 0.032–0.2 MHz to 0.19.

2-24

The "1.5 V Voltage Regulator" section was updated to add "or floating" in the
paragraph stating that an external pull-down is required on TRST to power down the
VR.

2-41

The "1.5 V Voltage Regulator" section was updated to include information on
powering down with the VR.

2-41

Revision Changes Page
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Fusion Family of Mixed Signal FPGAs
Advance v0.6
(continued)

The "Analog-to-Digital Converter Block" section was updated with the following
statement:
"All results are MSB justified in the ADC."

2-99

The information about the ADCSTART signal was updated in the "ADC Description"
section.

2-102

Table 2-46 · Analog Channel Specifications was updated. 2-118

Table 2-47 · ADC Characteristics in Direct Input Mode was updated. 2-121

Table 2-51 •  ACM Address Decode Table for Analog Quad was updated. 2-127

In Table 2-53 • Analog Quad ACM Byte Assignment, the Function and Default
Setting for Bit 6 in Byte 3 was updated.

2-130

The "Introduction" section was updated to include information about digital inputs,
outputs, and bibufs.

2-133

In Table 2-69 • Fusion Pro I/O Features, the programmable delay descriptions were
updated for the following features:

Single-ended receiver

Voltage-referenced differential receiver 

LVDS/LVPECL differential receiver features

2-137

The "User I/O Naming Convention" section was updated to include "V" and "z"
descriptions

2-159

The "VCC33PMP Analog Power Supply (3.3 V)" section was updated to include
information about avoiding high current draw.

2-224

The "VCCNVM Flash Memory Block Power Supply (1.5 V)" section was updated to
include information about avoiding high current draw.

2-224

The "VMVx I/O Supply Voltage (quiet)" section was updated to include this
statement: VMV and VCCI must be connected to the same power supply and VCCI
pins within a given I/O bank.

2-185

The "PUB Push Button" section was updated to include information about leaving
the pin floating if it is not used.

2-228

The "PTBASE Pass Transistor Base" section was updated to include information
about leaving the pin floating if it is not used.

2-228

The "PTEM Pass Transistor Emitter" section was updated to include information
about leaving the pin floating if it is not used.

2-228

The heading was incorrect in the "208-Pin PQFP" table. It should be AFS250 and not
AFS090.

3-8
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