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Fusion Device Family Overview
Instant On
Flash-based Fusion devices are Level 0 Instant On. Instant On Fusion devices greatly simplify total
system design and reduce total system cost by eliminating the need for CPLDs. The Fusion Instant On
clocking (PLLs) replaces off-chip clocking resources. The Fusion mix of Instant On clocking and analog
resources makes these devices an excellent choice for both system supervisor and system management
functions. Instant On from a single 3.3 V source enables Fusion devices to initiate, control, and monitor
multiple voltage supplies while also providing system clocks. In addition, glitches and brownouts in
system power will not corrupt the Fusion device flash configuration. Unlike SRAM-based FPGAs, the
device will not have to be reloaded when system power is restored. This enables reduction or complete
removal of expensive voltage monitor and brownout detection devices from the PCB design. 
Flash-based Fusion devices simplify total system design and reduce cost and design risk, while
increasing system reliability. 

Firm Errors
Firm errors occur most commonly when high-energy neutrons, generated in the upper atmosphere, strike
a configuration cell of an SRAM FPGA. The energy of the collision can change the state of the
configuration cell and thus change the logic, routing, or I/O behavior in an unpredictable way. Another
source of radiation-induced firm errors is alpha particles. For an alpha to cause a soft or firm error, its
source must be in very close proximity to the affected circuit. The alpha source must be in the package
molding compound or in the die itself. While low-alpha molding compounds are being used increasingly,
this helps reduce but does not entirely eliminate alpha-induced firm errors.

Firm errors are impossible to prevent in SRAM FPGAs. The consequence of this type of error can be a
complete system failure. Firm errors do not occur in Fusion flash-based FPGAs. Once it is programmed,
the flash cell configuration element of Fusion FPGAs cannot be altered by high-energy neutrons and is
therefore immune to errors from them. 

Recoverable (or soft) errors occur in the user data SRAMs of all FPGA devices. These can easily be
mitigated by using error detection and correction (EDAC) circuitry built into the FPGA fabric.

Low Power
Flash-based Fusion devices exhibit power characteristics similar to those of an ASIC, making them an
ideal choice for power-sensitive applications. With Fusion devices, there is no power-on current surge
and no high current transition, both of which occur on many FPGAs.

Fusion devices also have low dynamic power consumption and support both low power standby mode
and very low power sleep mode, offering further power savings.

Advanced Flash Technology
The Fusion family offers many benefits, including nonvolatility and reprogrammability through an
advanced flash-based, 130-nm LVCMOS process with seven layers of metal. Standard CMOS design
techniques are used to implement logic and control functions. The combination of fine granularity,
enhanced flexible routing resources, and abundant flash switches allows very high logic utilization (much
higher than competing SRAM technologies) without compromising device routability or performance.
Logic functions within the device are interconnected through a four-level routing hierarchy.
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Fusion Family of Mixed Signal FPGAs
Embedded Memories

Flash Memory Blocks

The flash memory available in each Fusion device is composed of one to four flash blocks, each 2 Mbits
in density. Each block operates independently with a dedicated flash controller and interface. Fusion
flash memory blocks combine fast access times (60 ns random access and 10 ns access in Read-Ahead
mode) with a configurable 8-, 16-, or 32-bit datapath, enabling high-speed flash operation without wait
states. The memory block is organized in pages and sectors. Each page has 128 bytes, with 33 pages
comprising one sector and 64 sectors per block. The flash block can support multiple partitions. The only
constraint on size is that partition boundaries must coincide with page boundaries. The flexibility and
granularity enable many use models and allow added granularity in programming updates. 

Fusion devices support two methods of external access to the flash memory blocks. The first method is a
serial interface that features a built-in JTAG-compliant port, which allows in-system programmability
during user or monitor/test modes. This serial interface supports programming of an AES-encrypted
stream. Data protected with security measures can be passed through the JTAG interface, decrypted,
and then programmed in the flash block. The second method is a soft parallel interface. 

FPGA logic or an on-chip soft microprocessor can access flash memory through the parallel interface.
Since the flash parallel interface is implemented in the FPGA fabric, it can potentially be customized to
meet special user requirements. For more information, refer to the CoreCFI Handbook. The flash
memory parallel interface provides configurable byte-wide (×8), word-wide (×16), or dual-word-wide
(×32) data-port options. Through the programmable flash parallel interface, the on-chip and off-chip
memories can be cascaded for wider or deeper configurations. 

The flash memory has built-in security. The user can configure either the entire flash block or the small
blocks to protect against unintentional or intrusive attempts to change or destroy the storage contents.
Each on-chip flash memory block has a dedicated controller, enabling each block to operate
independently.

The flash block logic consists of the following sub-blocks:

• Flash block – Contains all stored data. The flash block contains 64 sectors and each sector
contains 33 pages of data.

• Page Buffer – Contains the contents of the current page being modified. A page contains 8 blocks
of data.

• Block Buffer – Contains the contents of the last block accessed. A block contains 128 data bits.

• ECC Logic – The flash memory stores error correction information with each block to perform
single-bit error correction and double-bit error detection on all data blocks.

User Nonvolatile FlashROM 
In addition to the flash blocks, Fusion devices have 1 Kbit of user-accessible, nonvolatile FlashROM 
on-chip. The FlashROM is organized as 8×128-bit pages. The FlashROM can be used in diverse system
applications: 

• Internet protocol addressing (wireless or fixed)

• System calibration settings

• Device serialization and/or inventory control

• Subscription-based business models (for example, set-top boxes)

• Secure key storage for communications algorithms protected by security

• Asset management/tracking

• Date stamping

• Version management

The FlashROM is written using the standard IEEE 1532 JTAG programming interface. Pages can be
individually programmed (erased and written). On-chip AES decryption can be used selectively over
public networks to load data such as security keys stored in the FlashROM for a user design. 

The FlashROM can be programmed (erased and written) via the JTAG programming interface, and its
contents can be read back either through the JTAG programming interface or via direct FPGA core
addressing.
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Fusion Device Family Overview
The FlashPoint tool in the Fusion development software solutions, Libero SoC and Designer, has
extensive support for flash memory blocks and FlashROM. One such feature is auto-generation of
sequential programming files for applications requiring a unique serial number in each part. Another
feature allows the inclusion of static data for system version control. Data for the FlashROM can be
generated quickly and easily using the Libero SoC and Designer software tools. Comprehensive
programming file support is also included to allow for easy programming of large numbers of parts with
differing FlashROM contents.

SRAM and FIFO
Fusion devices have embedded SRAM blocks along the north and south sides of the device. Each
variable-aspect-ratio SRAM block is 4,608 bits in size. Available memory configurations are 256×18,
512×9, 1k×4, 2k×2, and 4k×1 bits. The individual blocks have independent read and write ports that can
be configured with different bit widths on each port. For example, data can be written through a 4-bit port
and read as a single bitstream. The SRAM blocks can be initialized from the flash memory blocks or via
the device JTAG port (ROM emulation mode), using the UJTAG macro. 

In addition, every SRAM block has an embedded FIFO control unit. The control unit allows the SRAM
block to be configured as a synchronous FIFO without using additional core VersaTiles. The FIFO width
and depth are programmable. The FIFO also features programmable Almost Empty (AEMPTY) and
Almost Full (AFULL) flags in addition to the normal EMPTY and FULL flags. The embedded FIFO control
unit contains the counters necessary for the generation of the read and write address pointers. The
SRAM/FIFO blocks can be cascaded to create larger configurations.

Clock Resources

PLLs and Clock Conditioning Circuits (CCCs)
Fusion devices provide designers with very flexible clock conditioning capabilities. Each member of the
Fusion family contains six CCCs. In the two larger family members, two of these CCCs also include a
PLL; the smaller devices support one PLL.

The inputs of the CCC blocks are accessible from the FPGA core or from one of several inputs with
dedicated CCC block connections.

The CCC block has the following key features:

• Wide input frequency range (fIN_CCC) = 1.5 MHz to 350 MHz

• Output frequency range (fOUT_CCC) = 0.75 MHz to 350 MHz

• Clock phase adjustment via programmable and fixed delays from –6.275 ns to +8.75 ns

• Clock skew minimization (PLL)

• Clock frequency synthesis (PLL)

• On-chip analog clocking resources usable as inputs:

– 100 MHz on-chip RC oscillator

– Crystal oscillator

Additional CCC specifications:

• Internal phase shift = 0°, 90°, 180°, and 270° 

• Output duty cycle = 50% ± 1.5%

• Low output jitter. Samples of peak-to-peak period jitter when a single global network is used:

– 70 ps at 350 MHz

– 90 ps at 100 MHz

– 180 ps at 24 MHz

– Worst case < 2.5% × clock period

• Maximum acquisition time = 150 µs 

• Low power consumption of 5 mW
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Fusion Family of Mixed Signal FPGAs
Clocking Resources
The Fusion family has a robust collection of clocking peripherals, as shown in the block diagram in
Figure 2-16. These on-chip resources enable the creation, manipulation, and distribution of many clock
signals. The Fusion integrated RC oscillator produces a 100 MHz clock source with no external
components. For systems requiring more precise clock signals, the Fusion family supports an on-chip
crystal oscillator circuit. The integrated PLLs in each Fusion device can use the RC oscillator, crystal
oscillator, or another on-chip clock signal as a source. These PLLs offer a variety of capabilities to modify
the clock source (multiply, divide, synchronize, advance, or delay). Utilizing the CCC found in the popular
ProASIC3 family, Fusion incorporates six CCC blocks. The CCCs allow access to Fusion global and local
clock distribution nets, as described in the "Global Resources (VersaNets)" section on page 2-11.

Figure 2-16 • Fusion Clocking Options
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Fusion Family of Mixed Signal FPGAs
Modes of Operation
There are two read modes and one write mode:

• Read Nonpipelined (synchronous—1 clock edge): In the standard read mode, new data is driven
onto the RD bus in the same clock cycle following RA and REN valid. The read address is
registered on the read port clock active edge, and data appears at RD after the RAM access time.
Setting PIPE to OFF enables this mode.

• Read Pipelined (synchronous—2 clock edges): The pipelined mode incurs an additional clock
delay from the address to the data but enables operation at a much higher frequency. The read
address is registered on the read port active clock edge, and the read data is registered and
appears at RD after the second read clock edge. Setting PIPE to ON enables this mode.

• Write (synchronous—1 clock edge): On the write clock active edge, the write data is written into
the SRAM at the write address when WEN is High. The setup times of the write address, write
enables, and write data are minimal with respect to the write clock. Write and read transfers are
described with timing requirements in the "SRAM Characteristics" section on page 2-63 and the
"FIFO Characteristics" section on page 2-72.

RAM Initialization
Each SRAM block can be individually initialized on power-up by means of the JTAG port using the
UJTAG mechanism (refer to the "JTAG IEEE 1532" section on page 2-229 and the Fusion SRAM/FIFO
Blocks application note). The shift register for a target block can be selected and loaded with the proper
bit configuration to enable serial loading. The 4,608 bits of data can be loaded in a single operation. 
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Fusion Family of Mixed Signal FPGAs
FIFO Characteristics
Timing Waveforms      

Figure 2-57 • FIFO Read

Figure 2-58 • FIFO Write
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Device Architecture
Figure 2-59 • FIFO Reset

Figure 2-60 • FIFO EMPTY Flag and AEMPTY Flag Assertion
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Device Architecture
Figure 2-64 • Analog Block Macro
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Device Architecture
ADC Input Multiplexer
At the input to the Fusion ADC is a 32:1 multiplexer. Of the 32 input channels, up to 30 are user
definable. Two of these channels are hardwired internally. Channel 31 connects to an internal
temperature diode so the temperature of the Fusion device itself can be monitored. Channel 0 is wired to
the FPGA’s 1.5 V VCC supply, enabling the Fusion device to monitor its own power supply. Doing this
internally makes it unnecessary to use an analog I/O to support these functions. The balance of the MUX
inputs are connected to Analog Quads (see the "Analog Quad" section on page 2-80). Table 2-40 defines
which Analog Quad inputs are associated with which specific analog MUX channels. The number of
Analog Quads present is device-dependent; refer to the family list in the "Fusion Family" table on page I
of this datasheet for the number of quads per device. Regardless of the number of quads populated in a
device, the internal connections to both VCC and the internal temperature diode remain on Channels 0
and 31, respectively. To sample the internal temperature monitor, it must be strobed (similar to the AT
pads). The TMSTBINT pin on the Analog Block macro is the control for strobing the internal temperature
measurement diode.

To determine which channel is selected for conversion, there is a five-pin interface on the Analog Block,
CHNUMBER[4:0], defined in Table 2-39.

Table 2-40 shows the correlation between the analog MUX input channels and the analog input pins. 

Table 2-39 • Channel Selection

Channel Number CHNUMBER[4:0]

0 00000

1 00001

2 00010

3 00011

.

.

.

.

.

.

30 11110

31 11111

Table 2-40 • Analog MUX Channels

Analog MUX Channel Signal Analog Quad Number

0 Vcc_analog

1 AV0

Analog Quad 02 AC0

3 AT0

4 AV1

Analog Quad 15 AC1

6 AT1

7 AV2

Analog Quad 28 AC2

9 AT2

10 AV3

Analog Quad 311 AC3

12 AT3

13 AV4

Analog Quad 414 AC4

15 AT4
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Device Architecture
The optimal setting for the system running at 66 MHz with an ADC for 10-bit mode chosen is shown in
Table 2-47:

Timing Diagrams  

Table 2-47 • Optimal Setting at 66 MHz in 10-Bit Mode

TVC[7:0] = 1 = 0x01

STC[7:0] = 3 = 0x03

MODE[3:0] = b'0100 = 0x4*

Note: No power-down after every conversion is chosen in this case; however, if the application is power-sensitive,
the MODE[2] can be set to '0', as described above, and it will not affect any performance.

Note: *Refer to EQ 15 on page 2-107 for the calculation on the period of ADCCLK, tADCCLK.

Figure 2-89 • Power-Up Calibration Status Signal Timing Diagram
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Fusion Family of Mixed Signal FPGAs
Table 2-93 • Summary of I/O Timing Characteristics – Software Default Settings 
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,
Worst-Case VCCI = I/O Standard Dependent
Applicable to Advanced I/Os
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3.3 V LVTTL/ 
3.3 V LVCMOS 

12 mA High 35 pF  – 0.49 2.64 0.03 0.90 0.32 2.69 2.11 2.40 2.68 4.36 3.78 ns

2.5 V LVCMOS 12 mA High 35 pF  – 0.49 2.66 0.03 0.98 0.32 2.71 2.56 2.47 2.57 4.38 4.23 ns

1.8 V LVCMOS 12 mA High 35 pF  – 0.49 2.64 0.03 0.91 0.32 2.69 2.27 2.76 3.05 4.36 3.94 ns

1.5 V LVCMOS 12 mA High 35 pF  – 0.49 3.05 0.03 1.07 0.32 3.10 2.67 2.95 3.14 4.77 4.34 ns

3.3 V PCI Per PCI 
spec

High 10 pF 25 2 0.49 2.00 0.03 0.65 0.32 2.04 1.46 2.40 2.68 3.71 3.13 ns

3.3 V PCI-X Per PCI-X 
spec

High 10 pF 25 2 0.49 2.00 0.03 0.62 0.32 2.04 1.46 2.40 2.68 3.71 3.13 ns

LVDS 24 mA High  – – 0.49 1.37 0.03 1.20 N/A N/A N/A N/A N/A N/A N/A ns

LVPECL 24 mA High  – – 0.49 1.34 0.03 1.05 N/A N/A N/A N/A N/A N/A N/A ns

Notes:

1. For specific junction temperature and voltage-supply levels, refer to Table 3-6 on page 3-7 for derating values. 
2. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-123 on page 2-197

for connectivity. This resistor is not required during normal operation. 

Table 2-94 • Summary of I/O Timing Characteristics – Software Default Settings 
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, 
Worst-Case VCCI = I/O Standard Dependent
Applicable to Standard I/Os
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3.3 V LVTTL/
3.3 V LVCMOS

8 mA  High  35 pF – 0.49 3.29 0.03 0.75 0.32 3.36 2.80 1.79 2.01 ns

2.5 V LVCMOS 8 mA  High  35pF – 0.49 3.56 0.03 0.96 0.32 3.40 3.56 1.78 1.91 ns

1.8 V LVCMOS 4 mA  High  35pF – 0.49 4.74 0.03 0.90 0.32 4.02 4.74 1.80 1.85 ns

1.5 V LVCMOS 2 mA  High  35pF – 0.49 5.71 0.03 1.06 0.32 4.71 5.71 1.83 1.83 ns

Note: For specific junction temperature and voltage-supply levels, refer to Table 3-6 on page 3-7 for derating values. 
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Device Architecture
Applicable to Standard I/O Banks

3.3 V LVTTL / 3.3 V LVCMOS 2 mA 100 300

4 mA 100 300

6 mA 50 150

8 mA 50 150

2.5 V LVCMOS 2 mA 100 200

4 mA 100 200

6 mA 50 100

8 mA 50 100

1.8 V LVCMOS 2 mA 200 225

4 mA 100 112

1.5 V LVCMOS 2 mA 200 224

Table 2-97 • I/O Weak Pull-Up/Pull-Down Resistances
Minimum and Maximum Weak Pull-Up/Pull-Down Resistance Values 

VCCI

R(WEAK PULL-UP)
1

(ohms)
R(WEAK PULL-DOWN)

2

(ohms)

Min. Max. Min. Max.

3.3 V 10 k 45 k 10 k 45 k

2.5 V 11 k 55 k 12 k 74 k

1.8 V 18 k 70 k 17 k 110 k

1.5 V 19 k 90 k 19 k 140 k

Notes:

1. R(WEAK PULL-UP-MAX) = (VCCImax – VOHspec) / IWEAK PULL-UP-MIN
2. R(WEAK PULL-DOWN-MAX) = VOLspec / IWEAK PULL-DOWN-MIN

Table 2-96 • I/O Output Buffer Maximum Resistances 1  (continued)

Standard Drive Strength
RPULL-DOWN

(ohms) 2
RPULL-UP
(ohms) 3

Notes:

1. These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend
on VCC, drive strength selection, temperature, and process. For board design considerations and detailed output buffer
resistances, use the corresponding IBIS models located on the Microsemi SoC Products Group website:
http://www.microsemi.com/soc/techdocs/models/ibis.html.

2. R(PULL-DOWN-MAX) = VOLspec / IOLspec

3. R(PULL-UP-MAX) = (VCCImax – VOHspec) / IOHspec 
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Device Architecture
1.8 V LVCMOS
Low-Voltage CMOS for 1.8 V is an extension of the LVCMOS standard (JESD8-5) used for general-
purpose 1.8 V applications. It uses a 1.8 V input buffer and push-pull output buffer.

Table 2-118 • Minimum and Maximum DC Input and Output Levels

1.8 V 
LVCMOS VIL VIH VOL VOH IOL IOH IOSL IOSH IIL1 IIH2

Drive 
Strength

Min.
V

Max.
V

Min.
V

Max.
V

Max.
V

Min.
V mA mA

Max.
mA3

Max.
mA3 µA4 µA4

Applicable to Pro I/O Banks

2 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.45 VCCI – 0.45 2 2 11 9 10 10

4 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.45 VCCI – 0.45 4 4 22 17 10 10

6 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.45 VCCI – 0.45 6 6 44 35 10 10

8 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.45 VCCI – 0.45 8 8 51 45 10 10

12 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.45 VCCI – 0.45 12 12 74 91 10 10

16 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.45 VCCI – 0.45 16 16 74 91 10 10

Applicable to Advanced I/O Banks

2 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.9 0.45 VCCI – 0.45 2 2 11 9 10 10

4 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.9 0.45 VCCI – 0.45 4 4 22 17 10 10

6 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.9 0.45 VCCI – 0.45 6 6 44 35 10 10

8 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.9 0.45 VCCI – 0.45 8 8 51 45 10 10

12 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.9 0.45 VCCI – 0.45 12 12 74 91 10 10

16 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.9 0.45 VCCI – 0.45 16 16 74 91 10 10

Applicable to Standard I/O Banks

2 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.45 VCCI – 0.45 2 2 11 9 10 10

4 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.45 VCCI – 0.45 4 4 22 17 10 10

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is

larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Software default selection highlighted in gray.

Figure 2-121 • AC Loading

Table 2-119 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V) Input Low (V) Measuring Point* (V) VREF (typ.) (V) CLOAD (pF)

0 1.8 0.9 – 35

Note: *Measuring point = Vtrip. See Table 2-90 on page 2-166 for a complete table of trip points.

Test Point
Test Point

Enable PathData Path 35 pF

R = 1 k R to VCCI for tLZ / tZL / tZLS
R to GND for tHZ / tZH / tZHS

35 pF for tZH / tZHS / tZL / tZLS
35 pF for tHZ / tLZ
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Device Architecture
Differential I/O Characteristics
Configuration of the I/O modules as a differential pair is handled by the Microsemi Designer
software when the user instantiates a differential I/O macro in the design.

Differential I/Os can also be used in conjunction with the embedded Input Register (InReg), Output
Register (OutReg), Enable Register (EnReg), and Double Data Rate (DDR). However, there is no
support for bidirectional I/Os or tristates with these standards.

LVDS
Low-Voltage Differential Signal (ANSI/TIA/EIA-644) is a high-speed differential I/O standard. It requires
that one data bit be carried through two signal lines, so two pins are needed. It also requires external
resistor termination. 

The full implementation of the LVDS transmitter and receiver is shown in an example in Figure 2-134.
The building blocks of the LVDS transmitter–receiver are one transmitter macro, one receiver macro,
three board resistors at the transmitter end, and one resistor at the receiver end. The values for the three
driver resistors are different from those used in the LVPECL implementation because the output standard
specifications are different.    

Figure 2-134 • LVDS Circuit Diagram and Board-Level Implementation

Table 2-168 • Minimum and Maximum DC Input and Output Levels

DC Parameter Description Min. Typ. Max. Units

VCCI Supply Voltage 2.375  2.5  2.625 V

VOL Output Low Voltage  0.9  1.075  1.25 V

VOH Input High Voltage  1.25  1.425  1.6 V

IOL 1 Output Low Voltage 0.65 0.91 1.16 mA

IOH 1 Output High Voltage 0.65 0.91 1.16 mA

VI Input Voltage  0   2.925 V

IIL 2,3 Input Low Voltage 10 A

IIH 2,4 Input High Voltage 10 A

VODIFF Differential Output Voltage  250  350  450 mV

VOCM Output Common Mode Voltage  1.125  1.25  1.375 V

VICM Input Common Mode Voltage  0.05  1.25  2.35 V

VIDIFF Input Differential Voltage  100  350  mV

Notes:

1. IOL/IOH defined by VODIFF/(Resistor Network)
2. Currents are measured at 85°C junction temperature.  

3. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

4. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is
larger when operating outside recommended ranges.
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Device Architecture
LVPECL
Low-Voltage Positive Emitter-Coupled Logic (LVPECL) is another differential I/O standard. It requires
that one data bit be carried through two signal lines. Like LVDS, two pins are needed. It also requires
external resistor termination. 

The full implementation of the LVDS transmitter and receiver is shown in an example in Figure 2-136.
The building blocks of the LVPECL transmitter–receiver are one transmitter macro, one receiver macro,
three board resistors at the transmitter end, and one resistor at the receiver end. The values for the three
driver resistors are different from those used in the LVDS implementation because the output standard
specifications are different.   

Timing Characteristics 

Figure 2-136 • LVPECL Circuit Diagram and Board-Level Implementation

Table 2-171 • Minimum and Maximum DC Input and Output Levels

DC Parameter Description Min. Max. Min. Max. Min. Max. Units

VCCI Supply Voltage 3.0  3.3  3.6 V

VOL Output Low Voltage  0.96  1.27  1.06  1.43  1.30  1.57 V

VOH Output High Voltage  1.8  2.11  1.92  2.28  2.13  2.41 V

VIL, VIH Input Low, Input High Voltages  0  3.6  0  3.6  0  3.6 V

VODIFF Differential Output Voltage  0.625  0.97  0.625  0.97  0.625  0.97 V

VOCM Output Common Mode Voltage  1.762  1.98  1.762  1.98  1.762  1.98 V

VICM Input Common Mode Voltage  1.01  2.57  1.01  2.57  1.01  2.57 V

VIDIFF Input Differential Voltage  300   300   300  mV

Table 2-172 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V) Input High (V) Measuring Point* (V) VREF (typ.) (V)

1.64 1.94 Cross point –

Note: *Measuring point = Vtrip. See Table 2-90 on page 2-166 for a complete table of trip points.
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Table 2-173 • LVPECL
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, 
Worst-Case VCCI = 3.0 V
Applicable to Pro I/Os

Speed Grade tDOUT tDP tDIN tPY Units

 Std. 0.66 2.14 0.04 1.63 ns

 –1 0.56 1.82 0.04 1.39 ns

 –2 0.49 1.60 0.03 1.22 ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-9.
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Device Architecture
DDR Module Specifications
Input DDR Module

Figure 2-142 • Input DDR Timing Model

Table 2-179 • Parameter Definitions

Parameter Name Parameter Definition Measuring Nodes (from, to)

tDDRICLKQ1 Clock-to-Out Out_QR B, D

tDDRICLKQ2 Clock-to-Out Out_QF B, E

tDDRISUD Data Setup Time of DDR Input A, B

tDDRIHD Data Hold Time of DDR Input A, B

tDDRICLR2Q1 Clear-to-Out Out_QR C, D

tDDRICLR2Q2 Clear-to-Out Out_QF C, E

tDDRIREMCLR Clear Removal C, B

tDDRIRECCLR Clear Recovery C, B

Input DDR

Data

CLK

CLKBUF

INBUF

Out_QF
(to core)

FF2

FF1

INBUF

CLR

DDR_IN

E

A

B

C

D

Out_QR
(to core)
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Fusion Family of Mixed Signal FPGAs
Timing Characteristics

Figure 2-145 • Output DDR Timing Diagram

116

1

7

2

8

3

9 10

4 5

2 8 3 9

tDDROREMCLR

tDDROHD1tDDROSUD1

tDDROHD2tDDROSUD2

tDDROCLKQ

tDDRORECCLR

CLK

Data_R

Data_F

CLR

Out

tDDROCLR2Q
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Table 2-182 • Output DDR Propagation Delays
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

Parameter Description –2 –1 Std. Units

tDDROCLKQ Clock-to-Out of DDR for Output DDR 0.70 0.80 0.94 ns

tDDROSUD1 Data_F Data Setup for Output DDR 0.38 0.43 0.51 ns

tDDROSUD2 Data_R Data Setup for Output DDR 0.38 0.43 0.51 ns

tDDROHD1 Data_F Data Hold for Output DDR 0.00 0.00 0.00 ns

tDDROHD2 Data_R Data Hold for Output DDR 0.00 0.00 0.00 ns

tDDROCLR2Q Asynchronous Clear-to-Out for Output DDR 0.80 0.91 1.07 ns

tDDROREMCLR Asynchronous Clear Removal Time for Output DDR 0.00 0.00 0.00 ns

tDDRORECCLR Asynchronous Clear Recovery Time for Output DDR 0.22 0.25 0.30 ns

tDDROWCLR1 Asynchronous Clear Minimum Pulse Width for Output DDR 0.22 0.25 0.30 ns

tDDROCKMPWH Clock Minimum Pulse Width High for the Output DDR 0.36 0.41 0.48 ns

tDDROCKMPWL Clock Minimum Pulse Width Low for the Output DDR 0.32 0.37 0.43 ns

FDDOMAX Maximum Frequency for the Output DDR 1404 1232 1048 MHz

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-9.
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Fusion Family of Mixed Signal FPGAs
Methodology
Total Power Consumption—PTOTAL

Operating Mode, Standby Mode, and Sleep Mode

PTOTAL = PSTAT + PDYN

PSTAT is the total static power consumption.

PDYN is the total dynamic power consumption.

Total Static Power Consumption—PSTAT

Operating Mode

PSTAT = PDC1 + (NNVM-BLOCKS * PDC4) + PDC5+ (NQUADS * PDC6) + (NINPUTS * PDC7) + 
(NOUTPUTS * PDC8) + (NPLLS * PDC9)

NNVM-BLOCKS is the number of NVM blocks available in the device.

NQUADS is the number of Analog Quads used in the design.

NINPUTS is the number of I/O input buffers used in the design.

NOUTPUTS is the number of I/O output buffers used in the design.

NPLLS is the number of PLLs available in the device.

Standby Mode

PSTAT = PDC2

Sleep Mode

PSTAT = PDC3

Total Dynamic Power Consumption—PDYN

Operating Mode

PDYN = PCLOCK + PS-CELL + PC-CELL + PNET + PINPUTS + POUTPUTS + PMEMORY + PPLL + PNVM+ 
PXTL-OSC + PRC-OSC + PAB

Standby Mode

PDYN = PXTL-OSC

Sleep Mode

PDYN = 0 W

Global Clock Dynamic Contribution—PCLOCK

Operating Mode

PCLOCK = (PAC1 + NSPINE * PAC2 + NROW * PAC3 + NS-CELL * PAC4) * FCLK

NSPINE is the number of global spines used in the user design—guidelines are provided in the
"Spine Architecture" section of the Global Resources chapter in the Fusion and Extended
Temperature Fusion FPGA Fabric User's Guide.

NROW is the number of VersaTile rows used in the design—guidelines are provided in the "Spine
Architecture" section of the Global Resources chapter in the Fusion and Extended Temperature
Fusion FPGA Fabric User's Guide.

FCLK is the global clock signal frequency.

NS-CELL is the number of VersaTiles used as sequential modules in the design.

Standby Mode and Sleep Mode

PCLOCK = 0 W

Sequential Cells Dynamic Contribution—PS-CELL

Operating Mode
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DC and Power Characteristics
RC Oscillator Dynamic Contribution—PRC-OSC

Operating Mode

PRC-OSC = PAC19

Standby Mode and Sleep Mode

PRC-OSC = 0 W

Analog System Dynamic Contribution—PAB

Operating Mode

PAB = PAC20

Standby Mode and Sleep Mode

PAB = 0 W

Guidelines
Toggle Rate Definition
A toggle rate defines the frequency of a net or logic element relative to a clock. It is a percentage. If the
toggle rate of a net is 100%, this means that the net switches at half the clock frequency. Below are some
examples:

• The average toggle rate of a shift register is 100%, as all flip-flop outputs toggle at half of the clock
frequency.

• The average toggle rate of an 8-bit counter is 25%:

– Bit 0 (LSB) = 100%

– Bit 1 = 50%

– Bit 2 = 25%

– …

– Bit 7 (MSB) = 0.78125%

– Average toggle rate = (100% + 50% + 25% + 12.5% + . . . 0.78125%) / 8.

Enable Rate Definition
Output enable rate is the average percentage of time during which tristate outputs are enabled. When
non-tristate output buffers are used, the enable rate should be 100%.

Table 3-16 • Toggle Rate Guidelines Recommended for Power Calculation

Component Definition Guideline 

1 Toggle rate of VersaTile outputs 10% 

2 I/O buffer toggle rate 10% 

Table 3-17 • Enable Rate Guidelines Recommended for Power Calculation

Component Definition Guideline 

1 I/O output buffer enable rate 100% 

2 RAM enable rate for read operations 12.5% 

3 RAM enable rate for write operations 12.5% 

4 NVM enable rate for read operations 0% 
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Fusion Family of Mixed Signal FPGAs
K9 VCC VCC VCC VCC

K10 GND GND GND GND

K11 NC GDC2/IO57PPB1V0 GDC2/IO57PPB2V0 GDC2/IO84PPB2V0

K12 GND GND GND GND

K13 NC GDA0/IO54NDB1V0 GDA0/IO54NDB2V0 GDA0/IO81NDB2V0

K14 NC GDA2/IO55PPB1V0 GDA2/IO55PPB2V0 GDA2/IO82PPB2V0

K15 VCCIB1 VCCIB1 VCCIB2 VCCIB2

K16 NC GDB1/IO53PPB1V0 GDB1/IO53PPB2V0 GDB1/IO80PPB2V0

L1 NC GEC1/IO63PDB3V0 GEC1/IO63PDB4V0 GEC1/IO90PDB4V0

L2 NC GEC0/IO63NDB3V0 GEC0/IO63NDB4V0 GEC0/IO90NDB4V0

L3 NC GEB1/IO62PDB3V0 GEB1/IO62PDB4V0 GEB1/IO89PDB4V0

L4 NC GEB0/IO62NDB3V0 GEB0/IO62NDB4V0 GEB0/IO89NDB4V0

L5 NC IO60NDB3V0 IO60NDB4V0 IO87NDB4V0

L6 NC GEC2/IO60PDB3V0 GEC2/IO60PDB4V0 GEC2/IO87PDB4V0

L7 GNDA GNDA GNDA GNDA

L8 AC0 AC0 AC2 AC2

L9 AV2 AV2 AV4 AV4

L10 AC3 AC3 AC5 AC5

L11 PTEM PTEM PTEM PTEM

L12 TDO TDO TDO TDO

L13 VJTAG VJTAG VJTAG VJTAG

L14 NC IO57NPB1V0 IO57NPB2V0 IO84NPB2V0

L15 GDB2/IO41PPB1V0 GDB2/IO56PPB1V0 GDB2/IO56PPB2V0 GDB2/IO83PPB2V0

L16 NC IO55NPB1V0 IO55NPB2V0 IO82NPB2V0

M1 GND GND GND GND

M2 NC GEA1/IO61PDB3V0 GEA1/IO61PDB4V0 GEA1/IO88PDB4V0

M3 NC GEA0/IO61NDB3V0 GEA0/IO61NDB4V0 GEA0/IO88NDB4V0

M4 VCCIB3 VCCIB3 VCCIB4 VCCIB4

M5 NC IO58NPB3V0 IO58NPB4V0 IO85NPB4V0

M6 NC NC AV0 AV0

M7 NC NC AC1 AC1

M8 AG1 AG1 AG3 AG3

M9 AC2 AC2 AC4 AC4

M10 AC4 AC4 AC6 AC6

M11 NC AG5 AG7 AG7

M12 VPUMP VPUMP VPUMP VPUMP

M13 VCCIB1 VCCIB1 VCCIB2 VCCIB2

M14 TMS TMS TMS TMS

FG256

Pin Number AFS090 Function AFS250 Function AFS600 Function AFS1500 Function
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