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Fusion Family of Mixed Signal FPGAs
Global Clocking
Fusion devices have extensive support for multiple clocking domains. In addition to the CCC and PLL
support described above, there are on-chip oscillators as well as a comprehensive global clock
distribution network.

The integrated RC oscillator generates a 100 MHz clock. It is used internally to provide a known clock
source to the flash memory read and write control. It can also be used as a source for the PLLs.

The crystal oscillator supports the following operating modes:

• Crystal (32.768 KHz to 20 MHz)

• Ceramic (500 KHz to 8 MHz)

• RC (32.768 KHz to 4 MHz)

Each VersaTile input and output port has access to nine VersaNets: six main and three quadrant global
networks. The VersaNets can be driven by the CCC or directly accessed from the core via MUXes. The
VersaNets can be used to distribute low-skew clock signals or for rapid distribution of high-fanout nets.

Digital I/Os with Advanced I/O Standards
The Fusion family of FPGAs features a flexible digital I/O structure, supporting a range of voltages (1.5 V,
1.8 V, 2.5 V, and 3.3 V). Fusion FPGAs support many different digital I/O standards, both single-ended
and differential. 

The I/Os are organized into banks, with four or five banks per device. The configuration of these banks
determines the I/O standards supported. The banks along the east and west sides of the device support
the full range of I/O standards (single-ended and differential). The south bank supports the Analog Quads
(analog I/O). In the family's two smaller devices, the north bank supports multiple single-ended digital I/O
standards. In the family’s larger devices, the north bank is divided into two banks of digital Pro I/Os,
supporting a wide variety of single-ended, differential, and voltage-referenced I/O standards.

Each I/O module contains several input, output, and enable registers. These registers allow the
implementation of the following applications:

• Single-Data-Rate (SDR) applications 

• Double-Data-Rate (DDR) applications—DDR LVDS I/O for chip-to-chip communications

• Fusion banks support LVPECL, LVDS, BLVDS, and M-LVDS with 20 multi-drop points. 

VersaTiles
The Fusion core consists of VersaTiles, which are also used in the successful ProASIC3 family. The
Fusion VersaTile supports the following:

• All 3-input logic functions—LUT-3 equivalent 

• Latch with clear or set

• D-flip-flop with clear or set and optional enable

Refer to Figure 1-2 for the VersaTile configuration arrangement.

Figure 1-2 • VersaTile Configurations
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Fusion Family of Mixed Signal FPGAs
Figure 2-4 • Combinatorial Timing Model and Waveforms
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Device Architecture
Figure 2-9 • Efficient Long-Line Resources

LL L L L L

LL L L L L

LL L L L L

LL L L L L

LL L L L L

Spans One VersaTile

Spans Two VersaTiles
Spans Four VersaTiles

Spans One VersaTile
Spans Two VersaTiles

Spans Four VersaTiles

VersaTile
2-9 Revision 6



Device Architecture
Real-Time Counter (part of AB macro)
The RTC is a 40-bit loadable counter and used as the primary timekeeping element (Figure 2-29). The
clock source, RTCCLK, must come from the CLKOUT signal of the crystal oscillator. The RTC can be
configured to reset itself when a count value reaches the match value set in the Match Register.

The RTC is part of the Analog Block (AB) macro. The RTC is configured by the analog configuration
MUX (ACM). Each address contains one byte of data. The circuitry in the RTC is powered by VCC33A,
so the RTC can be used in standby mode when the 1.5 V supply is not present.

The 40-bit counter can be preloaded with an initial value as a starting point by the Counter Register. The
count from the 40-bit counter can be read through the same set of address space. The count comes from
a Read-Hold Register to avoid data changing during read. When the counter value equals the Match
Register value, all Match Bits Register values will be 0xFFFFFFFFFF. The RTCMATCH and
RTCPSMMATCH signals will assert. The 40-bit counter can be configured to automatically reset to
0x0000000000 when the counter value equals the Match Register value. The automatic reset does not
apply if the Match Register value is 0x0000000000. The RTCCLK has a prescaler to divide the clock by
128 before it is used for the 40-bit counter. Below is an example of how to calculate the OFF time.

Figure 2-29 • RTC Block Diagram

Table 2-14 • RTC Signal Description

Signal Name Width Direction Function

RTCCLK 1 In Must come from CLKOUT of XTLOSC.

RTCXTLMODE[1:0] 2 Out Controlled by xt_mode in CTRL_STAT. Signal must connect to the
RTC_MODE signal in XTLOSC, as shown in Figure 2-27.

RTCXTLSEL 1 Out Controlled by xtal_en from CTRL_STAT register. Signal must connect to
RTC_MODE signal in XTLOSC in Figure 2-27.

RTCMATCH 1 Out Match signal for FPGA

0 – Counter value does not equal the Match Register value.

1 – Counter value equals the Match Register value.

RTCPSMMATCH 1 Out Same signal as RTCMATCH. Signal must connect to RTCPSMMATCH in
VRPSM, as shown in Figure 2-27.
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Fusion Family of Mixed Signal FPGAs
Flash Memory Block Diagram
A simplified diagram of the flash memory block is shown in Figure 2-33.

The logic consists of the following sub-blocks:

• Flash Array

Contains all stored data. The flash array contains 64 sectors, and each sector contains 33 pages
of data.

• Page Buffer

A page-wide volatile register. A page contains 8 blocks of data and an AUX block.

• Block Buffer

Contains the contents of the last block accessed. A block contains 128 data bits.

• ECC Logic

The FB stores error correction information with each block to perform single-bit error correction and
double-bit error detection on all data blocks.

Figure 2-33 • Flash Memory Block Diagram
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Fusion Family of Mixed Signal FPGAs
Channel Input Offset Error

Channel Offset error is measured as the input voltage that causes the transition from zero to a count of
one. An Ideal Prescaler will have offset equal to ½ of LSB voltage. Offset error is a positive or negative
when the first transition point is higher or lower than ideal. Offset error is expressed in LSB or input
voltage.

Total Channel Error

Total Channel Error is defined as the total error measured compared to the ideal value. Total Channel
Error is the sum of gain error and offset error combined. Figure 2-68 shows how Total Channel Error is
measured.

Total Channel Error is defined as the difference between the actual ADC output and ideal ADC output. In
the example shown in Figure 2-68, the Total Channel Error would be a negative number.

Figure 2-68 • Total Channel Error Example
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Device Architecture
Direct Digital Input
The AV, AC, and AT pads can also be configured as high-voltage digital inputs (Figure 2-69). As these
pads are 12 V–tolerant, the digital input can also be up to 12 V. However, the frequency at which these
pads can operate is limited to 10 MHz.

To enable one of these analog input pads to operate as a digital input, its corresponding Digital Input
Enable (DENAxy) pin on the Analog Block must be pulled High, where x is either V, C, or T (for AV, AC,
or AT pads, respectively) and y is in the range 0 to 9, corresponding to the appropriate Analog Quad.

When the pad is configured as a digital input, the signal will come out of the Analog Block macro on the
appropriate DAxOUTy pin, where x represents the pad type (V for AV pad, C for AC pad, or T for AT pad)
and y represents the appropriate Analog Quad number. Example: If the AT pad in Analog Quad 5 is
configured as a digital input, it will come out on the DATOUT5 pin of the Analog Block macro.

Figure 2-69 • Analog Quad Direct Digital Input Configuration
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Device Architecture
ADC Description
The Fusion ADC is a 12-bit SAR ADC. It offers a wide variety of features for different use models.
Figure 2-80 shows a block diagram of the Fusion ADC.

• Configurable resolution: 8-bit, 10-bit, and 12-bit mode

• DNL: 0.6 LSB for 10-bit mode

• INL: 0.4 LSB for 10-bit mode

• No missing code

• Internal VAREF = 2.56 V

• Maximum Sample Rate = 600 Ksps

• Power-up calibration and dynamic calibration after every sample to compensate for temperature
drift over time

ADC Theory of Operation
An analog-to-digital converter is used to capture discrete samples of a continuous analog voltage and
provide a discrete binary representation of the signal. Analog-to-digital converters are generally
characterized in three ways:

• Input voltage range

• Resolution

• Bandwidth or conversion rate

The input voltage range of an ADC is determined by its reference voltage (VREF). Fusion devices
include an internal 2.56 V reference, or the user can supply an external reference of up to 3.3 V. The
following examples use the internal 2.56 V reference, so the full-scale input range of the ADC is 0 to
2.56 V. 

The resolution (LSB) of the ADC is a function of the number of binary bits in the converter. The ADC
approximates the value of the input voltage using 2n steps, where n is the number of bits in the converter.
Each step therefore represents VREF÷ 2n volts. In the case of the Fusion ADC configured for 12-bit
operation, the LSB is 2.56 V / 4096 = 0.625 mV.

Finally, bandwidth is an indication of the maximum number of conversions the ADC can perform each
second. The bandwidth of an ADC is constrained by its architecture and several key performance
characteristics. 

Figure 2-80 • ADC Simplified Block Diagram
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Fusion Family of Mixed Signal FPGAs
INL – Integral Non-Linearity
INL is the deviation of an actual transfer function from a straight line. After nullifying offset and gain
errors, the straight line is either a best-fit straight line or a line drawn between the end points of the
transfer function (Figure 2-85).

LSB – Least Significant Bit
In a binary number, the LSB is the least weighted bit in the group. Typically, the LSB is the furthest right
bit. For an ADC, the weight of an LSB equals the full-scale voltage range of the converter divided by 2N,
where N is the converter’s resolution. 

EQ 13 shows the calculation for a 10-bit ADC with a unipolar full-scale voltage of 2.56 V:

1 LSB = (2.56 V / 210) = 2.5 mV

EQ 13

No Missing Codes
An ADC has no missing codes if it produces all possible digital codes in response to a ramp signal
applied to the analog input.

Figure 2-85 • Integral Non-Linearity (INL)
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Device Architecture
Typical Performance Characteristics

Figure 2-94 • Temperature Error

Figure 2-95 • Effect of External Sensor Capacitance
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Device Architecture
Dynamic Performance

SNR Signal-to-Noise Ratio 8-bit mode 48.0 49.5 dB

10-bit mode 58.0 60.0 dB

12-bit mode 62.9 64.5 dB

SINAD Signal-to-Noise Distortion 8-bit mode 47.6 49.5 dB

10-bit mode 57.4 59.8 dB

12-bit mode 62.0 64.2 dB

THD Total Harmonic
Distortion

8-bit mode –74.4 –63.0 dBc

10-bit mode –78.3 –63.0 dBc

12-bit mode –77.9 –64.4 dBc

ENOB Effective Number of Bits 8-bit mode 7.6 7.9 bits

10-bit mode 9.5 9.6 bits

12-bit mode 10.0 10.4 bits

Conversion Rate

Conversion Time 8-bit mode 1.7 µs

10-bit mode 1.8 µs

12-bit mode 2 µs

Sample Rate 8-bit mode 600 Ksps

10-bit mode 550 Ksps

12-bit mode 500 Ksps

Table 2-50 • ADC Characteristics in Direct Input Mode  (continued)
Commercial Temperature Range Conditions, TJ = 85°C (unless noted otherwise),
Typical: VCC33A = 3.3 V, VCC = 1.5 V

Parameter Description Condition Min. Typ. Max. Units

Notes:

1. Accuracy of the external reference is 2.56 V ± 4.6 mV.
2. Data is based on characterization.

3. The sample rate is time-shared among active analog inputs.
2-121 Revision 6



Fusion Family of Mixed Signal FPGAs
Table 2-57 details the settings available to control the prescaler values of the AV, AC, and AT pins. Note
that the AT pin has a reduced number of available prescaler values.

Table 2-58 details the settings available to control the MUX within each of the AV, AC, and AT circuits.
This MUX determines whether the signal routed to the ADC is the direct analog input, prescaled signal,
or output of either the Current Monitor Block or the Temperature Monitor Block.

Table 2-59 details the settings available to control the Direct Analog Input switch for the AV, AC, and AT
pins.

Table 2-60 details the settings available to control the polarity of the signals coming to the AV, AC, and AT
pins. Note that the only valid setting for the AT pin is logic 0 to support positive voltages.

Table 2-57 • Prescaler Control Truth Table—AV (x = 0), AC (x = 1), and AT (x = 3)

Control Lines 
Bx[2:0]

Scaling 
Factor, Pad to 

ADC Input 

LSB for an 
8-Bit 

Conversion1 
(mV)

LSB for a 
10-Bit 

Conversion1 
(mV)

LSB for a 
12-Bit 

Conversion1 
(mV)

Full-Scale 
Voltage in 

10-Bit 
Mode2 Range Name

000 3 0.15625 64 16 4 16.368 V 16 V 

001 0.3125 32 8 2 8.184 V 8 V 

010 3 0.625 16 4 1 4.092 V 4 V 

011 1.25 8 2 0.5 2.046 V 2 V 

100 2.5 4 1 0.25 1.023 V 1 V 

101 5.0 2 0.5 0.125 0.5115 V 0.5 V 

110 10.0 1 0.25 0.0625 0.25575 V 0.25 V 

111 20.0 0.5 0.125 0.03125 0.127875 V 0.125 V 

Notes:

1. LSB voltage equivalences assume VAREF = 2.56 V.
2. Full Scale voltage for n-bit mode: ((2^n) - 1) x (LSB for a n-bit Conversion)

3. These are the only valid ranges for the Temperature Monitor Block Prescaler.

Table 2-58 • Analog Multiplexer Truth Table—AV (x = 0), AC (x = 1), and AT (x = 3)

Control Lines Bx[4] Control Lines Bx[3] ADC Connected To 

0 0 Prescaler 

0 1 Direct input 

1 0 Current amplifier temperature monitor 

1 1 Not valid 

Table 2-59 • Direct Analog Input Switch Control Truth Table—AV (x = 0), AC (x = 1), and AT (x = 3)

Control Lines Bx[5] Direct Input Switch 

0 Off 

1 On 

Table 2-60 • Voltage Polarity Control Truth Table—AV (x = 0), AC (x = 1), and AT (x = 3)*

Control Lines Bx[6] Input Signal Polarity 

0 Positive 

1 Negative 

Note: *The B3[6] signal for the AT pad should be kept at logic 0 to accept only positive voltages.
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Device Architecture
Detailed I/O DC Characteristics

Table 2-95 • Input Capacitance

Symbol Definition Conditions Min. Max. Units

CIN Input capacitance VIN = 0, f = 1.0 MHz 8 pF

CINCLK Input capacitance on the clock pin VIN = 0, f = 1.0 MHz 8 pF

Table 2-96 • I/O Output Buffer Maximum Resistances 1 

Standard Drive Strength
RPULL-DOWN

(ohms) 2
RPULL-UP
(ohms) 3

Applicable to Pro I/O Banks

3.3 V LVTTL / 3.3 V LVCMOS 4 mA 100 300

8 mA 50 150

12 mA 25 75

16 mA 17 50

24 mA 11 33

2.5 V LVCMOS 4 mA 100 200

8 mA 50 100

12 mA 25 50

16 mA 20 40

24 mA 11 22

1.8 V LVCMOS 2 mA 200 225

4 mA 100 112

6 mA 50 56

8 mA 50 56

12 mA 20 22

16 mA 20 22

1.5 V LVCMOS 2 mA 200 224

4 mA 100 112

6 mA 67 75

8 mA 33 37

12 mA 33 37

3.3 V PCI/PCI-X Per PCI/PCI-X specification 25 75

3.3 V GTL 20 mA 11 –

2.5 V GTL 20 mA 14 –

3.3 V GTL+ 35 mA 12 –

2.5 V GTL+ 33 mA 15 –

Notes:

1. These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend
on VCC, drive strength selection, temperature, and process. For board design considerations and detailed output buffer
resistances, use the corresponding IBIS models located on the Microsemi SoC Products Group website:
http://www.microsemi.com/soc/techdocs/models/ibis.html.

2. R(PULL-DOWN-MAX) = VOLspec / IOLspec

3. R(PULL-UP-MAX) = (VCCImax – VOHspec) / IOHspec 
2-169 Revision 6
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Device Architecture
SSTL2 Class I
Stub-Speed Terminated Logic for 2.5 V memory bus standard (JESD8-9). Fusion devices support Class
I. This provides a differential amplifier input buffer and a push-pull output buffer.   

Timing Characteristics  

Table 2-156 • Minimum and Maximum DC Input and Output Levels

SSTL2 Class I VIL VIH VOL VOH IOL IOH IOSL IOSH IIL1 IIH2

Drive 
Strength

Min.
V

Max.
V

Min.
V

Max.
V

Max.
V

Min.
V mA mA

Max.
mA3

Max.
mA3 µA4 µA4

15 mA –0.3 VREF – 0.2 VREF + 0.2 3.6 0.54 VCCI – 0.62 15 15 87 83 10 10

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is

larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

Figure 2-130 • AC Loading

Table 2-157 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V) Input High (V) Measuring Point* (V) VREF (typ.) (V) VTT (typ.) (V) CLOAD (pF)

VREF – 0.2 VREF + 0.2 1.25 1.25 1.25 30

Note: *Measuring point = Vtrip. See Table 2-90 on page 2-166 for a complete table of trip points.

Test Point

30 pF

50

25

SSTL2
Class I

VTT

Table 2-158 • SSTL 2 Class I
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, 
Worst-Case VCCI = 2.3 V, VREF = 1.25 V

Speed 
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units

 Std. 0.66 2.13 0.04 1.33 0.43 2.17 1.85 4.40 4.08 ns

 –1 0.56 1.81 0.04 1.14 0.36 1.84 1.57 3.74 3.47 ns

 –2 0.49 1.59 0.03 1.00 0.32 1.62 1.38 3.29 3.05 ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-9.
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Fusion Family of Mixed Signal FPGAs
connected to the internal core logic I/O tile and the input, output, and control ports of an I/O buffer to
capture and load data into the register to control or observe the logic state of each I/O.

Figure 2-146 • Boundary Scan Chain in Fusion

Table 2-185 • Boundary Scan Opcodes
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DC and Power Characteristics
Table 3-2 • Recommended Operating Conditions1

Symbol Parameter2 Commercial Industrial Units

TJ Junction temperature 0 to +85 –40 to +100 °C

VCC 1.5 V DC core supply voltage 1.425 to 1.575 1.425 to 1.575 V

VJTAG JTAG DC voltage 1.4 to 3.6 1.4 to 3.6 V

VPUMP Programming voltage Programming mode3 3.15 to 3.45 3.15 to 3.45 V

Operation4 0 to 3.6 0 to 3.6 V

VCCPLL Analog power supply (PLL) 1.425 to 1.575 1.425 to 1.575 V

VCCI 1.5 V DC supply voltage 1.425 to 1.575 1.425 to 1.575 V

1.8 V DC supply voltage 1.7 to 1.9 1.7 to 1.9 V

2.5 V DC supply voltage 2.3 to 2.7 2.3 to 2.7 V

3.3 V DC supply voltage 3.0 to 3.6 3.0 to 3.6 V

LVDS differential I/O 2.375 to 2.625 2.375 to 2.625 V

LVPECL differential I/O 3.0 to 3.6 3.0 to 3.6 V

VCC33A +3.3 V power supply 2.97 to 3.63 2.97 to 3.63 V

VCC33PMP +3.3 V power supply 2.97 to 3.63 2.97 to 3.63 V

VAREF Voltage reference for ADC 2.527 to 2.593 2.527 to 2.593 V

VCC15A 5 Digital power supply for the analog system 1.425 to 1.575 1.425 to 1.575 V

VCCNVM Embedded flash power supply 1.425 to 1.575 1.425 to 1.575 V

VCCOSC Oscillator power supply 2.97 to 3.63 2.97 to 3.63 V

AV, AC 6 Unpowered, ADC reset asserted or unconfigured –10.5 to 12.0 –10.5 to 11.6 V

Analog input (+16 V to +2 V prescaler range) –0.3 to 12.0 –0.3 to 11.6 V

Analog input (+1 V to + 0.125 V prescaler range) –0.3 to 3.6 –0.3 to 3.6 V

Analog input (–16 V to –2 V prescaler range) –10.5 to 0.3 –10.5 to 0.3 V

Analog input (–1 V to –0.125 V prescaler range) –3.6 to 0.3 –3.6 to 0.3 V

Analog input (direct input to ADC) –0.3 to 3.6 –0.3 to 3.6 V

Digital input –0.3 to 12.0 –0.3 to 11.6 V

AG 6 Unpowered, ADC reset asserted or unconfigured –10.5 to 12.0 –10.5 to 11.6 V

Low Current Mode (1 µA, 3 µA, 10 µA, 30 µA) –0.3 to 12.0 –0.3 to 11.6 V

Low Current Mode (–1 µA, –3 µA, –10 µA, –30 µA) –10.5 to 0.3 –10.5 to 0.3 V

High Current Mode 7 –10.5 to 12.0 –10.5 to 11.6 V

AT 6 Unpowered, ADC reset asserted or unconfigured –0.3 to 15.5 –0.3 to 14.5 V

Analog input (+16 V, +4 V prescaler range) –0.3 to 15.5 –0.3 to 14.5 V

Analog input (direct input to ADC) –0.3 to 3.6 –0.3 to 3.6 V

Digital input –0.3 to 15.5 –0.3 to 14.5 V

Notes:

1. The ranges given here are for power supplies only. The recommended input voltage ranges specific to each I/O
standard are given in Table 2-85 on page 2-157. 

2. All parameters representing voltages are measured with respect to GND unless otherwise specified.

3. The programming temperature range supported is Tambient = 0°C to 85°C.

4. VPUMP can be left floating during normal operation (not programming mode).

5. Violating the VCC15A recommended voltage supply during an embedded flash program cycle can corrupt the page being
programmed.

6. The input voltage may overshoot by up to 500 mV above the Recommended Maximum (150 mV in Direct mode),
provided the duration of the overshoot is less than 50% of the operating lifetime of the device.

7. The AG pad should also conform to the limits as specified in Table 2-48 on page 2-114.
3-3 Revision 6



Fusion Family of Mixed Signal FPGAs
Power per I/O Pin

Table 3-12 • Summary of I/O Input Buffer Power (per pin)—Default I/O Software Settings 

VCCI (V) 
Static Power
PDC7 (mW)1 

Dynamic Power
PAC9 (µW/MHz)2

Applicable to Pro I/O Banks

Single-Ended 

3.3 V LVTTL/LVCMOS  3.3 – 17.39

3.3 V LVTTL/LVCMOS – Schmitt trigger  3.3 – 25.51 

2.5 V LVCMOS  2.5 – 5.76

2.5 V LVCMOS – Schmitt trigger  2.5 – 7.16

1.8 V LVCMOS  1.8 – 2.72

1.8 V LVCMOS – Schmitt trigger  1.8 – 2.80

1.5 V LVCMOS (JESD8-11)  1.5 – 2.08

1.5 V LVCMOS (JESD8-11) – Schmitt trigger  1.5 – 2.00

3.3 V PCI  3.3 – 18.82

3.3 V PCI – Schmitt trigger  3.3 – 20.12

3.3 V PCI-X  3.3 – 18.82

3.3 V PCI-X – Schmitt trigger  3.3 – 20.12

Voltage-Referenced 

3.3 V GTL 3.3 2.90 8.23

2.5 V GTL 2.5 2.13 4.78

3.3 V GTL+ 3.3 2.81 4.14

2.5 V GTL+ 2.5 2.57 3.71

HSTL (I) 1.5 0.17 2.03

HSTL (II) 1.5 0.17 2.03

SSTL2 (I) 2.5 1.38 4.48

SSTL2 (II) 2.5 1.38 4.48

SSTL3 (I) 3.3 3.21 9.26

SSTL3 (II) 3.3 3.21 9.26

Differential

LVDS 2.5 2.26 1.50

LVPECL 3.3 5.71 2.17

Notes:

1. PDC7 is the static power (where applicable) measured on VCCI.
2. PAC9 is the total dynamic power measured on VCC and VCCI.
Revision 6 3-18



Package Pin Assignments
C7 IO09RSB0V0 IO12RSB0V0 IO06NDB0V0 IO09NDB0V1

C8 IO14RSB0V0 IO22RSB0V0 IO16PDB1V0 IO23PDB1V0

C9 IO15RSB0V0 IO23RSB0V0 IO16NDB1V0 IO23NDB1V0

C10 IO22RSB0V0 IO30RSB0V0 IO25NDB1V1 IO31NDB1V1

C11 IO20RSB0V0 IO31RSB0V0 IO25PDB1V1 IO31PDB1V1

C12 VCCIB0 VCCIB0 VCCIB1 VCCIB1

C13 GBB1/IO28RSB0V0 GBC1/IO35RSB0V0 GBC1/IO26PPB1V1 GBC1/IO40PPB1V2

C14 VCCIB1 VCCIB1 VCCIB2 VCCIB2

C15 GND GND GND GND

C16 VCCIB1 VCCIB1 VCCIB2 VCCIB2

D1 GFC2/IO50NPB3V0 IO75NDB3V0 IO84NDB4V0 IO124NDB4V0

D2 GFA2/IO51NDB3V0 GAB2/IO75PDB3V0 GAB2/IO84PDB4V0 GAB2/IO124PDB4V0

D3 GAC2/IO51PDB3V0 IO76NDB3V0 IO85NDB4V0 IO125NDB4V0

D4 GAA2/IO52PDB3V0 GAA2/IO76PDB3V0 GAA2/IO85PDB4V0 GAA2/IO125PDB4V0

D5 GAB2/IO52NDB3V0 GAB0/IO02RSB0V0 GAB0/IO02NPB0V0 GAB0/IO02NPB0V0

D6 GAC0/IO04RSB0V0 GAC0/IO04RSB0V0 GAC0/IO03NDB0V0 GAC0/IO03NDB0V0

D7 IO08RSB0V0 IO13RSB0V0 IO06PDB0V0 IO09PDB0V1

D8 NC IO20RSB0V0 IO14NDB0V1 IO15NDB0V2

D9 NC IO21RSB0V0 IO14PDB0V1 IO15PDB0V2

D10 IO21RSB0V0 IO28RSB0V0 IO23PDB1V1 IO37PDB1V2

D11 IO23RSB0V0 GBB0/IO36RSB0V0 GBB0/IO27NDB1V1 GBB0/IO41NDB1V2

D12 NC NC VCCIB1 VCCIB1

D13 GBA2/IO31PDB1V0 GBA2/IO40PDB1V0 GBA2/IO30PDB2V0 GBA2/IO44PDB2V0

D14 GBB2/IO31NDB1V0 IO40NDB1V0 IO30NDB2V0 IO44NDB2V0

D15 GBC2/IO32PDB1V0 GBB2/IO41PDB1V0 GBB2/IO31PDB2V0 GBB2/IO45PDB2V0

D16 GCA2/IO32NDB1V0 IO41NDB1V0 IO31NDB2V0 IO45NDB2V0

E1 GND GND GND GND

E2 GFB0/IO48NPB3V0 IO73NDB3V0 IO81NDB4V0 IO118NDB4V0

E3 GFB2/IO50PPB3V0 IO73PDB3V0 IO81PDB4V0 IO118PDB4V0

E4 VCCIB3 VCCIB3 VCCIB4 VCCIB4

E5 NC IO74NPB3V0 IO83NPB4V0 IO123NPB4V0

E6 NC IO08RSB0V0 IO04NPB0V0 IO05NPB0V1

E7 GND GND GND GND

E8 NC IO18RSB0V0 IO08PDB0V1 IO11PDB0V1

E9 NC NC IO20NDB1V0 IO27NDB1V1

E10 GND GND GND GND

E11 IO24RSB0V0 GBB1/IO37RSB0V0 GBB1/IO27PDB1V1 GBB1/IO41PDB1V2

E12 NC IO50PPB1V0 IO33PSB2V0 IO48PSB2V0

FG256

Pin Number AFS090 Function AFS250 Function AFS600 Function AFS1500 Function
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Fusion Family of Mixed Signal FPGAs
E13 VCCIB1 VCCIB1 VCCIB2 VCCIB2

E14 GCC2/IO33NDB1V0 IO42NDB1V0 IO32NDB2V0 IO46NDB2V0

E15 GCB2/IO33PDB1V0 GBC2/IO42PDB1V0 GBC2/IO32PDB2V0 GBC2/IO46PDB2V0

E16 GND GND GND GND

F1 NC NC IO79NDB4V0 IO111NDB4V0

F2 NC NC IO79PDB4V0 IO111PDB4V0

F3 GFB1/IO48PPB3V0 IO72NDB3V0 IO76NDB4V0 IO112NDB4V0

F4 GFC0/IO49NDB3V0 IO72PDB3V0 IO76PDB4V0 IO112PDB4V0

F5 NC NC IO82PSB4V0 IO120PSB4V0

F6 GFC1/IO49PDB3V0 GAC2/IO74PPB3V0 GAC2/IO83PPB4V0 GAC2/IO123PPB4V0

F7 NC IO09RSB0V0 IO04PPB0V0 IO05PPB0V1

F8 NC IO19RSB0V0 IO08NDB0V1 IO11NDB0V1

F9 NC NC IO20PDB1V0 IO27PDB1V1

F10 NC IO29RSB0V0 IO23NDB1V1 IO37NDB1V2

F11 NC IO43NDB1V0 IO36NDB2V0 IO50NDB2V0

F12 NC IO43PDB1V0 IO36PDB2V0 IO50PDB2V0

F13 NC IO44NDB1V0 IO39NDB2V0 IO59NDB2V0

F14 NC GCA2/IO44PDB1V0 GCA2/IO39PDB2V0 GCA2/IO59PDB2V0

F15 GCC1/IO34PDB1V0 GCB2/IO45PDB1V0 GCB2/IO40PDB2V0 GCB2/IO60PDB2V0

F16 GCC0/IO34NDB1V0 IO45NDB1V0 IO40NDB2V0 IO60NDB2V0

G1 GEC0/IO46NPB3V0 IO70NPB3V0 IO74NPB4V0 IO109NPB4V0

G2 VCCIB3 VCCIB3 VCCIB4 VCCIB4

G3 GEC1/IO46PPB3V0 GFB2/IO70PPB3V0 GFB2/IO74PPB4V0 GFB2/IO109PPB4V0

G4 GFA1/IO47PDB3V0 GFA2/IO71PDB3V0 GFA2/IO75PDB4V0 GFA2/IO110PDB4V0

G5 GND GND GND GND

G6 GFA0/IO47NDB3V0 IO71NDB3V0 IO75NDB4V0 IO110NDB4V0

G7 GND GND GND GND

G8 VCC VCC VCC VCC

G9 GND GND GND GND

G10 VCC VCC VCC VCC

G11 GDA1/IO37NDB1V0 GCC0/IO47NDB1V0 GCC0/IO43NDB2V0 GCC0/IO62NDB2V0

G12 GND GND GND GND

G13 IO37PDB1V0 GCC1/IO47PDB1V0 GCC1/IO43PDB2V0 GCC1/IO62PDB2V0

G14 GCB0/IO35NPB1V0 IO46NPB1V0 IO41NPB2V0 IO61NPB2V0

G15 VCCIB1 VCCIB1 VCCIB2 VCCIB2

G16 GCB1/IO35PPB1V0 GCC2/IO46PPB1V0 GCC2/IO41PPB2V0 GCC2/IO61PPB2V0

H1 GEB1/IO45PDB3V0 GFC2/IO69PDB3V0 GFC2/IO73PDB4V0 GFC2/IO108PDB4V0

H2 GEB0/IO45NDB3V0 IO69NDB3V0 IO73NDB4V0 IO108NDB4V0

FG256

Pin Number AFS090 Function AFS250 Function AFS600 Function AFS1500 Function
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Datasheet Information
Advance v1.0
(continued)

This change table states that in the "208-Pin PQFP" table listed under the Advance
v0.8 changes, the AFS090 device had a pin change. That is incorrect. Pin 102 was
updated for AFS250 and AFS600. The function name changed from VCC33ACAP to
VCC33A.

3-8

Advance v0.9
(October 2007)

In the "Package I/Os: Single-/Double-Ended (Analog)" table, the
AFS1500/M7AFS1500 I/O counts were updated for the following devices:

FG484: 223/109

FG676: 252/126

II

In the "108-Pin QFN" table, the function changed from VCC33ACAP to VCC33A for the
following pin:

B25

3-2

In the "180-Pin QFN" table, the function changed from VCC33ACAP to VCC33A for the
following pins:

AFS090: B29

AFS250: B29

3-4

In the "208-Pin PQFP" table, the function changed from VCC33ACAP to VCC33A for the
following pins:

AFS090: 102

AFS250: 102

3-8

In the "256-Pin FBGA" table, the function changed from VCC33ACAP to VCC33A for the
following pins:

AFS090: T14

AFS250: T14

AFS600: T14

AFS1500: T14

3-12

Advance v0.9
(continued)

In the "484-Pin FBGA" table, the function changed from VCC33ACAP to VCC33A for the
following pins:

AFS600: AB18

AFS1500: AB18

3-20

In the "676-Pin FBGA" table, the function changed from VCC33ACAP to VCC33A for the
following pins:

AFS1500: AD20

3-28

Advance v0.8
(June 2007)

Figure 2-16 • Fusion Clocking Options and the "RC Oscillator" section were updated
to change GND_OSC and VCC_OSC to GNDOSC and VCCOSC.

2-20, 2-21

Figure 2-19 • Fusion CCC Options: Global Buffers with the PLL Macro was updated
to change the positions of OADIVRST and OADIVHALF, and a note was added.

2-25

The "Crystal Oscillator" section was updated to include information about controlling
and enabling/disabling the crystal oscillator.

2-22

Table 2-11 · Electrical Characteristics of the Crystal Oscillator was updated to
change the typical value of IDYNXTAL for 0.032–0.2 MHz to 0.19.

2-24

The "1.5 V Voltage Regulator" section was updated to add "or floating" in the
paragraph stating that an external pull-down is required on TRST to power down the
VR.

2-41

The "1.5 V Voltage Regulator" section was updated to include information on
powering down with the VR.

2-41

Revision Changes Page
5-11 Revision 6


