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Fusion Family of Mixed Signal FPGAs
Clock Conditioning Circuits
In Fusion devices, the CCCs are used to implement frequency division, frequency multiplication, phase
shifting, and delay operations.

The CCCs are available in six chip locations—each of the four chip corners and the middle of the east
and west chip sides.

Each CCC can implement up to three independent global buffers (with or without programmable delay),
or a PLL function (programmable frequency division/multiplication, phase shift, and delays) with up to three
global outputs. Unused global outputs of a PLL can be used to implement independent global buffers, up
to a maximum of three global outputs for a given CCC.

A global buffer can be placed in any of the three global locations (CLKA-GLA, CLKB-GLB, and 
CLKC-GLC) of a given CCC.

A PLL macro uses the CLKA CCC input to drive its reference clock. It uses the GLA and, optionally, the
GLB and GLC global outputs to drive the global networks. A PLL macro can also drive the YB and YC
regular core outputs. The GLB (or GLC) global output cannot be reused if the YB (or YC) output is used
(Figure 2-19). Refer to the "PLL Macro" section on page 2-27 for more information.

Each global buffer, as well as the PLL reference clock, can be driven from one of the following:

• 3 dedicated single-ended I/Os using a hardwired connection

• 2 dedicated differential I/Os using a hardwired connection

• The FPGA core

The CCC block is fully configurable, either via flash configuration bits set in the programming bitstream or
through an asynchronous interface. This asynchronous interface is dynamically accessible from inside
the Fusion device to permit changes of parameters (such as divide ratios) during device operation. To
increase the versatility and flexibility of the clock conditioning system, the CCC configuration is
determined either by the user during the design process, with configuration data being stored in flash
memory as part of the device programming procedure, or by writing data into a dedicated shift register
during normal device operation. This latter mode allows the user to dynamically reconfigure the CCC
without the need for core programming. The shift register is accessed through a simple serial interface.
Refer to the "UJTAG Applications in Microsemi’s Low-Power Flash Devices" chapter of the Fusion FPGA
Fabric User Guide and the "CCC and PLL Characteristics" section on page 2-28 for more information.
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Fusion Family of Mixed Signal FPGAs
Read Operation
Read operations are designed to read data from the FB Array, Page Buffer, Block Buffer, or status
registers. Read operations support a normal read and a read-ahead mode (done by asserting
READNEXT). Also, the timing for Read operations is dependent on the setting of PIPE.

The following diagrams illustrate representative timing for Non-Pipe Mode (Figure 2-38) and Pipe Mode
(Figure 2-39) reads of the flash memory block interface.  

Figure 2-38 • Read Waveform (Non-Pipe Mode, 32-bit access)

Figure 2-39 • Read Waveform (Pipe Mode, 32-bit access)
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Fusion Family of Mixed Signal FPGAs
Flash Memory Block Characteristics

Figure 2-44 • Reset Timing Diagram

Table 2-25 • Flash Memory Block Timing
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

 Parameter  Description –2 –1 Std. 
 

Units 

 tCLK2RD
Clock-to-Q in 5-cycle read mode of the Read Data 7.99 9.10 10.70  ns 

Clock-to-Q in 6-cycle read mode of the Read Data 5.03 5.73 6.74  ns 

 tCLK2BUSY 
Clock-to-Q in 5-cycle read mode of BUSY 4.95 5.63 6.62  ns 

Clock-to-Q in 6-cycle read mode of BUSY 4.45 5.07 5.96  ns 

tCLK2STATUS
Clock-to-Status in 5-cycle read mode 11.24 12.81 15.06  ns 

Clock-to-Status in 6-cycle read mode 4.48 5.10 6.00  ns 

 tDSUNVM Data Input Setup time for the Control Logic 1.92 2.19 2.57  ns 

 tDHNVM Data Input Hold time for the Control Logic 0.00 0.00 0.00  ns 

 tASUNVM Address Input Setup time for the Control Logic 2.76 3.14 3.69  ns 

 tAHNVM Address Input Hold time for the Control Logic 0.00 0.00 0.00  ns 

 tSUDWNVM Data Width Setup time for the Control Logic 1.85 2.11 2.48  ns 

 tHDDWNVM Data Width Hold time for the Control Logic 0.00 0.00 0.00  ns 

tSURENNVM Read Enable Setup time for the Control Logic 3.85 4.39 5.16  ns 

tHDRENNVM Read Enable Hold Time for the Control Logic 0.00 0.00 0.00  ns 

tSUWENNVM Write Enable Setup time for the Control Logic 2.37 2.69 3.17  ns 

tHDWENNVM Write Enable Hold Time for the Control Logic 0.00 0.00 0.00  ns 

tSUPROGNVM Program Setup time for the Control Logic 2.16 2.46 2.89  ns 

tHDPROGNVM Program Hold time for the Control Logic 0.00 0.00 0.00  ns 

tSUSPAREPAGE SparePage Setup time for the Control Logic 3.74 4.26 5.01  ns 

tHDSPAREPAGE SparePage Hold time for the Control Logic 0.00 0.00 0.00  ns 

tSUAUXBLK Auxiliary Block Setup Time for the Control Logic 3.74 4.26 5.00  ns 

tHDAUXBLK Auxiliary Block Hold Time for the Control Logic 0.00 0.00 0.00  ns 

tSURDNEXT ReadNext Setup Time for the Control Logic 2.17 2.47 2.90  ns 

tHDRDNEXT ReadNext Hold Time for the Control Logic 0.00 0.00 0.00  ns 

tSUERASEPG Erase Page Setup Time for the Control Logic 3.76 4.28 5.03  ns 

tHDERASEPG Erase Page Hold Time for the Control Logic 0.00 0.00 0.00  ns 

tSUUNPROTECTPG Unprotect Page Setup Time for the Control Logic 2.01 2.29 2.69  ns 

tHDUNPROTECTPG Unprotect Page Hold Time for the Control Logic 0.00 0.00 0.00  ns 

tSUDISCARDPG Discard Page Setup Time for the Control Logic 1.88 2.14 2.52  ns 

tHDDISCARDPG Discard Page Hold Time for the Control Logic 0.00 0.00 0.00  ns 

tSUOVERWRPRO Overwrite Protect Setup Time for the Control Logic 1.64 1.86 2.19  ns 

tHDOVERWRPRO Overwrite Protect Hold Time for the Control Logic 0.00 0.00 0.00  ns 

CLK

RESET
Active Low, Asynchronous

 BUSY
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Fusion Family of Mixed Signal FPGAs
The following signals are used to configure the RAM4K9 memory element.

WIDTHA and WIDTHB
These signals enable the RAM to be configured in one of four allowable aspect ratios (Table 2-27).

BLKA and BLKB
These signals are active low and will enable the respective ports when asserted. When a BLKx signal is
deasserted, the corresponding port’s outputs hold the previous value.

WENA and WENB
These signals switch the RAM between read and write mode for the respective ports. A Low on these
signals indicates a write operation, and a High indicates a read.

CLKA and CLKB
These are the clock signals for the synchronous read and write operations. These can be driven
independently or with the same driver.

PIPEA and PIPEB 
These signals are used to specify pipelined read on the output. A Low on PIPEA or PIPEB indicates a
nonpipelined read, and the data appears on the corresponding output in the same clock cycle. A High
indicates a pipelined, read and data appears on the corresponding output in the next clock cycle.

WMODEA and WMODEB
These signals are used to configure the behavior of the output when the RAM is in write mode. A Low on
these signals makes the output retain data from the previous read. A High indicates pass-through
behavior, wherein the data being written will appear immediately on the output. This signal is overridden
when the RAM is being read.

RESET
This active low signal resets the output to zero, disables reads and writes from the SRAM block, and
clears the data hold registers when asserted. It does not reset the contents of the memory.

ADDRA and ADDRB
These are used as read or write addresses, and they are 12 bits wide. When a depth of less than 4 k is
specified, the unused high-order bits must be grounded (Table 2-28).

Table 2-27 • Allowable Aspect Ratio Settings for WIDTHA[1:0]

WIDTHA1, WIDTHA0 WIDTHB1, WIDTHB0 D×W

00 00 4k×1

01 01 2k×2

10 10 1k×4

11 11 512×9

Note: The aspect ratio settings are constant and cannot be changed on the fly.

Table 2-28 • Address Pins Unused/Used for Various Supported Bus Widths

D×W
ADDRx

Unused Used

4k×1 None [11:0]

2k×2 [11] [10:0]

1k×4 [11:10] [9:0]

512×9 [11:9] [8:0]

Note: The "x" in ADDRx implies A or B.
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Device Architecture
Typical scaling factors are given in Table 2-57 on page 2-130, and the gain error (which contributes to the
minimum and maximum) is in Table 2-49 on page 2-117. 

Terminology

BW – Bandwidth

BW is a range of frequencies that a Channel can handle.

Channel

A channel is define as an analog input configured as one of the Prescaler range shown in Table 2-57 on
page 2-130. The channel includes the Prescaler circuit and the ADC.

Channel Gain

Channel Gain is a measured of the deviation of the actual slope from the ideal slope. The slope is
measured from the 20% and 80% point.

EQ 1

Channel Gain Error

Channel Gain Error is a deviation from the ideal slope of the transfer function. The Prescaler Gain Error
is expressed as the percent difference between the actual and ideal, as shown in EQ 2.

EQ 2

Figure 2-67 • Analog Quad Prescaler Input Configuration
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Device Architecture
Integrated Voltage Reference
The Fusion device has an integrated on-chip 2.56 V reference voltage for the ADC. The value of this
reference voltage was chosen to make the prescaling and postscaling factors for the prescaler blocks
change in a binary fashion. However, if desired, an external reference voltage of up to 3.3 V can be
connected between the VAREF and ADCGNDREF pins. The VAREFSEL control pin is used to select the
reference voltage. 

ADC Clock
The speed of the ADC depends on its internal clock, ADCCLK, which is not accessible to users. The
ADCCLK is derived from SYSCLK. Input signal TVC[7:0], Time Divider Control, determines the speed of
the ADCCLK in relationship to SYSCLK, based on EQ 15.

EQ 15

TVC: Time Divider Control (0–255)

tADCCLK is the period of ADCCLK, and must be between 0.5 MHz and 10 MHz

tSYSCLK is the period of SYSCLK

The frequency of ADCCLK, fADCCLK, must be within 0.5 Hz to 10 MHz.

The inputs to the ADC are synchronized to SYSCLK. A conversion is initiated by asserting the
ADCSTART signal on a rising edge of SYSCLK. Figure 2-90 on page 2-112 and Figure 2-91 on
page 2-112 show the timing diagram for the ADC.

Acquisition Time or Sample Time Control
Acquisition time (tSAMPLE) specifies how long an analog input signal has to charge the internal capacitor
array. Figure 2-88 shows a simplified internal input sampling mechanism of a SAR ADC. 

The internal impedance (ZINAD), external source resistance (RSOURCE), and sample capacitor (CINAD)
form a simple RC network. As a result, the accuracy of the ADC can be affected if the ADC is given
insufficient time to charge the capacitor. To resolve this problem, you can either reduce the source
resistance or increase the sampling time by changing the acquisition time using the STC signal.

Table 2-42 • VAREF Bit Function

Name Bit Function

VAREF 0 Reference voltage selection

0 – Internal voltage reference selected. VAREF pin outputs 2.56 V.

1 – Input external voltage reference from VAREF and ADCGNDREF

tADCCLK 4 1 TVC+  tSYSCLK=

Table 2-43 • TVC Bits Function

Name Bits Function

TVC [7:0] SYSCLK divider control

Figure 2-88 • Simplified Sample and Hold Circuitry

Sample and Hold

ZINAD

CINAD

Rsource
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Fusion Family of Mixed Signal FPGAs
Temperature Monitor Using Analog Pad AT

External
Temperature
Monitor 
(external diode
2N3904, 
TJ = 25°C)4

Resolution 8-bit ADC 4 °C

10-bit ADC 1 °C

12-bit ADC 0.25 °C

Systematic Offset5 AFS090, AFS250, AFS600, 
AFS1500, uncalibrated7

5 °C

AFS090, AFS250, AFS600, 
AFS1500, calibrated7

±5 °C

Accuracy ±3 ±5 °C

External Sensor Source 
Current

High level, TMSTBx = 0 10 µA

Low level, TMSTBx = 1 100 µA

Max Capacitance on AT 
pad

1.3 nF

Internal
Temperature
Monitor

Resolution 8-bit ADC 4 °C

10-bit ADC 1 °C

12-bit ADC 0.25 °C

Systematic Offset5 AFS0907 5 °C

AFS250, AFS600, AFS15007 11 °C

Accuracy ±3 ±5 °C

tTMSHI Strobe High time 10 105 µs

tTMSLO Strobe Low time 5 µs

tTMSSET Settling time 5 µs

Table 2-49 • Analog Channel Specifications  (continued)
Commercial Temperature Range Conditions, TJ = 85°C (unless noted otherwise), 
Typical: VCC33A = 3.3 V, VCC = 1.5 V

Parameter Description Condition Min. Typ. Max. Units

Notes:

1. VRSM is the maximum voltage drop across the current sense resistor.
2. Analog inputs used as digital inputs can tolerate the same voltage limits as the corresponding analog pad. There is no

reliability concern on digital inputs as long as VIND does not exceed these limits.

3. VIND is limited to VCC33A + 0.2 to allow reaching 10 MHz input frequency.

4. An averaging of 1,024 samples (LPF setting in Analog System Builder) is required and the maximum capacitance
allowed across the AT pins is 500 pF.

5. The temperature offset is a fixed positive value.

6. The high current mode has a maximum power limit of 20 mW. Appropriate current limit resistors must be used, based on
voltage on the pad.

7. When using SmartGen Analog System Builder, CalibIP is required to obtain specified offset. For further details on
CalibIP, refer to the "Temperature, Voltage, and Current Calibration in Fusion FPGAs" chapter of the Fusion FPGA
Fabric User Guide.
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Device Architecture
Table 2-81 • Fusion Pro I/O Default Attributes

I/O Standards
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Refer to the following 
tables for more 
information:

Table 2-78 on page 2-152

Table 2-79 on page 2-152

Table 2-80 on page 2-152 

Refer to the following 
tables for more 
information:

Table 2-78 on page 2-152

Table 2-79 on page 2-152

Table 2-80 on page 2-152 

Off None 35 pF – Off 0 Off

LVCMOS 2.5 V Off None 35 pF – Off 0 Off

LVCMOS
2.5/5.0 V

Off None 35 pF – Off 0 Off

LVCMOS 1.8 V Off None 35 pF – Off 0 Off

LVCMOS 1.5 V Off None 35 pF – Off 0 Off

PCI (3.3 V) Off None 10 pF – Off 0 Off

PCI-X (3.3 V) Off None 10 pF – Off 0 Off

GTL+ (3.3 V) Off None 10 pF – Off 0 Off

GTL+ (2.5 V) Off None 10 pF – Off 0 Off

GTL (3.3 V) Off None 10 pF – Off 0 Off

GTL (2.5 V) Off None 10 pF – Off 0 Off

HSTL Class I Off None 20 pF – Off 0 Off

HSTL Class II Off None 20 pF – Off 0 Off

SSTL2
Class I and II

Off None 30 pF – Off 0 Off

SSTL3
Class I and II

Off None 30 pF – Off 0 Off

LVDS, BLVDS,
M-LVDS

Off None 0 pF – Off 0 Off

LVPECL Off None 0 pF – Off 0 Off
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Fusion Family of Mixed Signal FPGAs
User I/O Naming Convention
Due to the comprehensive and flexible nature of Fusion device user I/Os, a naming scheme is used to
show the details of the I/O (Figure 2-113 on page 2-158 and Figure 2-114 on page 2-159). The name
identifies to which I/O bank it belongs, as well as the pairing and pin polarity for differential I/Os.

I/O Nomenclature =  Gmn/IOuxwByVz

Gmn is only used for I/Os that also have CCC access—i.e., global pins. 

G = Global

m = Global pin location associated with each CCC on the device: A (northwest corner), B (northeast corner), C
(east middle), D (southeast corner), E (southwest corner), and F (west middle). 

n = Global input MUX and pin number of the associated Global location m, either A0, A1, A2, B0, B1, B2, C0, C1,
or C2. Figure 2-22 on page 2-25 shows the three input pins per clock source MUX at CCC location m.

u = I/O pair number in the bank, starting at 00 from the northwest I/O bank and proceeding in a clockwise
direction.

x = P (Positive) or N (Negative) for differential pairs, or R (Regular – single-ended) for the I/Os that support single-
ended and voltage-referenced I/O standards only. U (Positive-LVDS only) or V (Negative-LVDS only) restrict
the I/O differential pair from being selected as an LVPECL pair.

w = D (Differential Pair), P (Pair), or S (Single-Ended). D (Differential Pair) if both members of the pair are bonded
out to adjacent pins or are separated only by one GND or NC pin; P (Pair) if both members of the pair are
bonded out but do not meet the adjacency requirement; or S (Single-Ended) if the I/O pair is not bonded out.
For Differential (D) pairs, adjacency for ball grid packages means only vertical or horizontal. Diagonal
adjacency does not meet the requirements for a true differential pair.

B = Bank

y = Bank number (0–3). The Bank number starts at 0 from the northwest I/O bank and proceeds in a clockwise
direction.

V = Reference voltage

z = Minibank number

Figure 2-113 • Naming Conventions of Fusion Devices with Three Digital I/O Banks
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Device Architecture
Applicable to Standard I/O Banks

3.3 V LVTTL / 3.3 V LVCMOS 2 mA 100 300

4 mA 100 300

6 mA 50 150

8 mA 50 150

2.5 V LVCMOS 2 mA 100 200

4 mA 100 200

6 mA 50 100

8 mA 50 100

1.8 V LVCMOS 2 mA 200 225

4 mA 100 112

1.5 V LVCMOS 2 mA 200 224

Table 2-97 • I/O Weak Pull-Up/Pull-Down Resistances
Minimum and Maximum Weak Pull-Up/Pull-Down Resistance Values 

VCCI

R(WEAK PULL-UP)
1

(ohms)
R(WEAK PULL-DOWN)

2

(ohms)

Min. Max. Min. Max.

3.3 V 10 k 45 k 10 k 45 k

2.5 V 11 k 55 k 12 k 74 k

1.8 V 18 k 70 k 17 k 110 k

1.5 V 19 k 90 k 19 k 140 k

Notes:

1. R(WEAK PULL-UP-MAX) = (VCCImax – VOHspec) / IWEAK PULL-UP-MIN
2. R(WEAK PULL-DOWN-MAX) = VOLspec / IWEAK PULL-DOWN-MIN

Table 2-96 • I/O Output Buffer Maximum Resistances 1  (continued)

Standard Drive Strength
RPULL-DOWN

(ohms) 2
RPULL-UP
(ohms) 3

Notes:

1. These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend
on VCC, drive strength selection, temperature, and process. For board design considerations and detailed output buffer
resistances, use the corresponding IBIS models located on the Microsemi SoC Products Group website:
http://www.microsemi.com/soc/techdocs/models/ibis.html.

2. R(PULL-DOWN-MAX) = VOLspec / IOLspec

3. R(PULL-UP-MAX) = (VCCImax – VOHspec) / IOHspec 
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Fusion Family of Mixed Signal FPGAs
Table 2-132 • 1.5 V LVCMOS Low Slew
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, 
Worst-Case VCCI = 1.4 V
Applicable to Standard I/Os

Drive 
Strength

 Speed 
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ  Units 

2 mA  Std. 0.66 12.33 0.04 1.42 0.43 11.79 12.33 2.45 2.32  ns 

 –1 0.56 10.49 0.04 1.21 0.36 10.03 10.49 2.08 1.98  ns 

 –2 0.49 9.21 0.03 1.06 0.32 8.81 9.21 1.83 1.73  ns 

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-9.

Table 2-133 • 1.5 V LVCMOS High Slew
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, 
Worst-Case VCCI = 1.4 V
Applicable to Standard I/Os

Drive 
Strength

 Speed 
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ  Units 

2 mA  Std. 0.66 7.65 0.04 1.42 0.43 6.31 7.65 2.45 2.45  ns 

 –1 0.56 6.50 0.04 1.21 0.36 5.37 6.50 2.08 2.08  ns 

 –2 0.49 5.71 0.03 1.06 0.32 4.71 5.71 1.83 1.83  ns 

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-9.
Revision 6 2-196



Device Architecture
Differential I/O Characteristics
Configuration of the I/O modules as a differential pair is handled by the Microsemi Designer
software when the user instantiates a differential I/O macro in the design.

Differential I/Os can also be used in conjunction with the embedded Input Register (InReg), Output
Register (OutReg), Enable Register (EnReg), and Double Data Rate (DDR). However, there is no
support for bidirectional I/Os or tristates with these standards.

LVDS
Low-Voltage Differential Signal (ANSI/TIA/EIA-644) is a high-speed differential I/O standard. It requires
that one data bit be carried through two signal lines, so two pins are needed. It also requires external
resistor termination. 

The full implementation of the LVDS transmitter and receiver is shown in an example in Figure 2-134.
The building blocks of the LVDS transmitter–receiver are one transmitter macro, one receiver macro,
three board resistors at the transmitter end, and one resistor at the receiver end. The values for the three
driver resistors are different from those used in the LVPECL implementation because the output standard
specifications are different.    

Figure 2-134 • LVDS Circuit Diagram and Board-Level Implementation

Table 2-168 • Minimum and Maximum DC Input and Output Levels

DC Parameter Description Min. Typ. Max. Units

VCCI Supply Voltage 2.375  2.5  2.625 V

VOL Output Low Voltage  0.9  1.075  1.25 V

VOH Input High Voltage  1.25  1.425  1.6 V

IOL 1 Output Low Voltage 0.65 0.91 1.16 mA

IOH 1 Output High Voltage 0.65 0.91 1.16 mA

VI Input Voltage  0   2.925 V

IIL 2,3 Input Low Voltage 10 A

IIH 2,4 Input High Voltage 10 A

VODIFF Differential Output Voltage  250  350  450 mV

VOCM Output Common Mode Voltage  1.125  1.25  1.375 V

VICM Input Common Mode Voltage  0.05  1.25  2.35 V

VIDIFF Input Differential Voltage  100  350  mV

Notes:

1. IOL/IOH defined by VODIFF/(Resistor Network)
2. Currents are measured at 85°C junction temperature.  

3. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

4. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is
larger when operating outside recommended ranges.

140  100 

ZO = 50 

ZO = 50 

165 

165 

+
–

P

N

P

N

INBUF_LVDS

OUTBUF_LVDS
FPGA FPGA

Bourns Part Number: CAT16-LV4F12  
2-209 Revision 6



Device Architecture
Pin Descriptions

Supply Pins

GND Ground

Ground supply voltage to the core, I/O outputs, and I/O logic.

GNDQ Ground (quiet)

Quiet ground supply voltage to input buffers of I/O banks. Within the package, the GNDQ plane is
decoupled from the simultaneous switching noise originated from the output buffer ground domain. This
minimizes the noise transfer within the package and improves input signal integrity. GNDQ needs to
always be connected on the board to GND. Note: In FG256, FG484, and FG676 packages, GNDQ and
GND pins are connected within the package and are labeled as GND pins in the respective package pin
assignment tables.

ADCGNDREF Analog Reference Ground

Analog ground reference used by the ADC. This pad should be connected to a quiet analog ground.

GNDA Ground (analog)

Quiet ground supply voltage to the Analog Block of Fusion devices. The use of a separate analog ground
helps isolate the analog functionality of the Fusion device from any digital switching noise. A 0.2 V
maximum differential voltage between GND and GNDA/GNDQ should apply to system implementation.

GNDAQ Ground (analog quiet)

Quiet ground supply voltage to the analog I/O of Fusion devices. The use of a separate analog ground
helps isolate the analog functionality of the Fusion device from any digital switching noise. A 0.2 V
maximum differential voltage between GND and GNDA/GNDQ should apply to system implementation.
Note: In FG256, FG484, and FG676 packages, GNDAQ and GNDA pins are connected within the
package and are labeled as GNDA pins in the respective package pin assignment tables. 

GNDNVM Flash Memory Ground

Ground supply used by the Fusion device's flash memory block module(s).

GNDOSC Oscillator Ground

Ground supply for both integrated RC oscillator and crystal oscillator circuit.

VCC15A Analog Power Supply (1.5 V)

1.5 V clean analog power supply input for use by the 1.5 V portion of the analog circuitry.

VCC33A Analog Power Supply (3.3 V)

3.3 V clean analog power supply input for use by the 3.3 V portion of the analog circuitry.

VCC33N Negative 3.3 V Output

This is the –3.3 V output from the voltage converter. A 2.2 µF capacitor must be connected from this pin
to ground.

VCC33PMP Analog Power Supply (3.3 V)

3.3 V clean analog power supply input for use by the analog charge pump. To avoid high current draw,
VCC33PMP should be powered up simultaneously with or after VCC33A.

VCCNVM Flash Memory Block Power Supply (1.5 V)

1.5 V power supply input used by the Fusion device's flash memory block module(s). To avoid high
current draw, VCC should be powered up before or simultaneously with VCCNVM.

VCCOSC Oscillator Power Supply (3.3 V)

Power supply for both integrated RC oscillator and crystal oscillator circuit. The internal 100 MHz
oscillator, powered by the VCCOSC pin, is needed for device programming, operation of the VDDN33
pump, and eNVM operation. VCCOSC is off only when VCCA is off. VCCOSC must be powered
whenever the Fusion device needs to function.
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DC and Power Characteristics
IJTAG JTAG I/O quiescent
current

Operational standby4, 
VJTAG = 3.63 V

TJ = 25°C 80 100 µA

TJ = 85°C 80 100 µA

TJ = 100°C 80 100 µA

Standby mode5 or Sleep mode6, 
VJTAG = 0 V

0 0 µA

IPP Programming supply
current

Non-programming mode, 
VPUMP =  3.63 V

TJ = 25°C 39 80 µA

TJ = 85°C 40 80 µA

TJ = 100°C 40 80 µA

Standby mode5 or Sleep mode6,
VPUMP = 0 V

0 0 µA

ICCNVM Embedded NVM
current

Reset asserted, VCCNVM = 1.575 V TJ = 25°C 50 150 µA

TJ =85°C 50 150 µA

TJ = 100°C 50 150 µA

ICCPLL 1.5 V PLL quiescent
current

Operational standby
, VCCPLL = 1.575 V

TJ = 25°C 130 200 µA

TJ = 85°C 130 200 µA

TJ = 100°C 130 200 µA

Table 3-8 • AFS1500 Quiescent Supply Current Characteristics (continued)

Parameter Description Conditions Temp. Min. Typ. Max. Unit

Notes:

1. ICC is the 1.5 V power supplies, ICC and ICC15A.
2. ICC33A includes ICC33A, ICC33PMP, and ICCOSC.

3. ICCI includes all ICCI0, ICCI1, ICCI2, and ICCI4.

4. Operational standby is when the Fusion device is powered up, all blocks are used, no I/O is toggling, Voltage Regulator is
loaded with 200 mA, VCC33PMP is ON, XTAL is ON, and ADC is ON.

5. XTAL is configured as high gain, VCC = VJTAG = VPUMP = 0 V.

6. Sleep Mode, VCC = VJTAG = VPUMP = 0 V.
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Fusion Family of Mixed Signal FPGAs
Table 3-13 • Summary of I/O Output Buffer Power (per pin)—Default I/O Software Settings1 

CLOAD (pF) VCCI (V) 
Static Power
PDC8 (mW)2 

Dynamic Power
PAC10 (µW/MHz)3

Applicable to Pro I/O Banks

Single-Ended 

3.3 V LVTTL/LVCMOS 35 3.3 – 474.70 

2.5 V LVCMOS 35 2.5 – 270.73 

1.8 V LVCMOS 35 1.8 – 151.78 

1.5 V LVCMOS (JESD8-11) 35 1.5 – 104.55 

3.3 V PCI 10 3.3 – 204.61 

3.3 V PCI-X 10 3.3 – 204.61 

Voltage-Referenced 

3.3 V GTL 10 3.3 – 24.08

2.5 V GTL 10 2.5 – 13.52

3.3 V GTL+ 10 3.3 – 24.10

2.5 V GTL+ 10 2.5 – 13.54

HSTL (I) 20 1.5 7.08 26.22

HSTL (II) 20 1.5 13.88 27.22

SSTL2 (I) 30 2.5 16.69 105.56

SSTL2 (II) 30 2.5 25.91 116.60

SSTL3 (I) 30 3.3 26.02 114.87

SSTL3 (II) 30 3.3 42.21 131.76

Differential 

LVDS – 2.5 7.70 89.62

LVPECL – 3.3 19.42 168.02

Applicable to Advanced I/O Banks

Single-Ended 

3.3 V LVTTL / 3.3 V LVCMOS 35 3.3 – 468.67

2.5 V LVCMOS 35 2.5 – 267.48

1.8 V LVCMOS 35 1.8 – 149.46

1.5 V LVCMOS (JESD8-11) 35 1.5 – 103.12

3.3 V PCI 10 3.3 – 201.02

3.3 V PCI-X 10 3.3 – 201.02

Notes:

1. Dynamic power consumption is given for standard load and software-default drive strength and output slew.
2. PDC8 is the static power (where applicable) measured on VCCI.

3. PAC10 is the total dynamic power measured on VCC and VCCI.
Revision 6 3-20



Fusion Family of Mixed Signal FPGAs
Dynamic Power Consumption of Various Internal Resources

Table 3-14 • Different Components Contributing to the Dynamic Power Consumption in Fusion Devices

Parameter Definition

Power Supply
Device-Specific 

Dynamic Contributions

UnitsName Setting AFS1500 AFS600 AFS250 AFS090

PAC1 Clock contribution of a Global
Rib

VCC 1.5 V 14.5 12.8 11 11 µW/MHz

PAC2 Clock contribution of a Global
Spine

VCC 1.5 V 2.5 1.9 1.6 0.8 µW/MHz

PAC3 Clock contribution of a VersaTile
row

VCC 1.5 V 0.81 µW/MHz

PAC4 Clock contribution of a VersaTile
used as a sequential module

VCC 1.5 V 0.11 µW/MHz

PAC5 First contribution of a VersaTile
used as a sequential module

VCC 1.5 V 0.07 µW/MHz

PAC6 Second contribution of a
VersaTile used as a sequential
module

VCC 1.5 V 0.29 µW/MHz

PAC7 Contribution of a VersaTile used
as a combinatorial module

VCC 1.5 V 0.29 µW/MHz

PAC8 Average contribution of a routing
net

VCC 1.5 V 0.70 µW/MHz

PAC9 Contribution of an I/O input pin
(standard dependent)

VCCI See Table 3-12 on page 3-18

PAC10 Contribution of an I/O output pin
(standard dependent)

VCCI See Table 3-13 on page 3-20

PAC11 Average contribution of a RAM
block during a read operation

VCC 1.5 V 25 µW/MHz

PAC12 Average contribution of a RAM
block during a write operation

VCC 1.5 V 30 µW/MHz

PAC13 Dynamic Contribution for PLL VCC 1.5 V 2.6 µW/MHz

PAC15 Contribution of NVM block during
a read operation (F < 33MHz)

VCC 1.5 V 358 µW/MHz

PAC16 1st contribution of NVM block
during a read operation (F > 33
MHz)

VCC 1.5 V 12.88 mW

PAC17 2nd contribution of NVM block
during a read operation (F > 33
MHz)

VCC 1.5 V 4.8 µW/MHz

PAC18 Crystal Oscillator contribution VCC33A 3.3 V 0.63 mW

PAC19 RC Oscillator contribution VCC33A 3.3 V 3.3 mW

PAC20 Analog Block dynamic power
contribution of ADC

VCC 1.5 V 3 mW
Revision 6 3-22



Fusion Family of Mixed Signal FPGAs
Methodology
Total Power Consumption—PTOTAL

Operating Mode, Standby Mode, and Sleep Mode

PTOTAL = PSTAT + PDYN

PSTAT is the total static power consumption.

PDYN is the total dynamic power consumption.

Total Static Power Consumption—PSTAT

Operating Mode

PSTAT = PDC1 + (NNVM-BLOCKS * PDC4) + PDC5+ (NQUADS * PDC6) + (NINPUTS * PDC7) + 
(NOUTPUTS * PDC8) + (NPLLS * PDC9)

NNVM-BLOCKS is the number of NVM blocks available in the device.

NQUADS is the number of Analog Quads used in the design.

NINPUTS is the number of I/O input buffers used in the design.

NOUTPUTS is the number of I/O output buffers used in the design.

NPLLS is the number of PLLs available in the device.

Standby Mode

PSTAT = PDC2

Sleep Mode

PSTAT = PDC3

Total Dynamic Power Consumption—PDYN

Operating Mode

PDYN = PCLOCK + PS-CELL + PC-CELL + PNET + PINPUTS + POUTPUTS + PMEMORY + PPLL + PNVM+ 
PXTL-OSC + PRC-OSC + PAB

Standby Mode

PDYN = PXTL-OSC

Sleep Mode

PDYN = 0 W

Global Clock Dynamic Contribution—PCLOCK

Operating Mode

PCLOCK = (PAC1 + NSPINE * PAC2 + NROW * PAC3 + NS-CELL * PAC4) * FCLK

NSPINE is the number of global spines used in the user design—guidelines are provided in the
"Spine Architecture" section of the Global Resources chapter in the Fusion and Extended
Temperature Fusion FPGA Fabric User's Guide.

NROW is the number of VersaTile rows used in the design—guidelines are provided in the "Spine
Architecture" section of the Global Resources chapter in the Fusion and Extended Temperature
Fusion FPGA Fabric User's Guide.

FCLK is the global clock signal frequency.

NS-CELL is the number of VersaTiles used as sequential modules in the design.

Standby Mode and Sleep Mode

PCLOCK = 0 W

Sequential Cells Dynamic Contribution—PS-CELL

Operating Mode
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DC and Power Characteristics
RC Oscillator Dynamic Contribution—PRC-OSC

Operating Mode

PRC-OSC = PAC19

Standby Mode and Sleep Mode

PRC-OSC = 0 W

Analog System Dynamic Contribution—PAB

Operating Mode

PAB = PAC20

Standby Mode and Sleep Mode

PAB = 0 W

Guidelines
Toggle Rate Definition
A toggle rate defines the frequency of a net or logic element relative to a clock. It is a percentage. If the
toggle rate of a net is 100%, this means that the net switches at half the clock frequency. Below are some
examples:

• The average toggle rate of a shift register is 100%, as all flip-flop outputs toggle at half of the clock
frequency.

• The average toggle rate of an 8-bit counter is 25%:

– Bit 0 (LSB) = 100%

– Bit 1 = 50%

– Bit 2 = 25%

– …

– Bit 7 (MSB) = 0.78125%

– Average toggle rate = (100% + 50% + 25% + 12.5% + . . . 0.78125%) / 8.

Enable Rate Definition
Output enable rate is the average percentage of time during which tristate outputs are enabled. When
non-tristate output buffers are used, the enable rate should be 100%.

Table 3-16 • Toggle Rate Guidelines Recommended for Power Calculation

Component Definition Guideline 

1 Toggle rate of VersaTile outputs 10% 

2 I/O buffer toggle rate 10% 

Table 3-17 • Enable Rate Guidelines Recommended for Power Calculation

Component Definition Guideline 

1 I/O output buffer enable rate 100% 

2 RAM enable rate for read operations 12.5% 

3 RAM enable rate for write operations 12.5% 

4 NVM enable rate for read operations 0% 
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Package Pin Assignments
147 GCC1/IO47PDB1V0 IO39NDB2V0

148 IO42NDB1V0 GCA2/IO39PDB2V0

149 GBC2/IO42PDB1V0 IO31NDB2V0

150 VCCIB1 GBB2/IO31PDB2V0

151 GND IO30NDB2V0

152 VCC GBA2/IO30PDB2V0

153 IO41NDB1V0 VCCIB2

154 GBB2/IO41PDB1V0 GNDQ

155 IO40NDB1V0 VCOMPLB

156 GBA2/IO40PDB1V0 VCCPLB

157 GBA1/IO39RSB0V0 VCCIB1

158 GBA0/IO38RSB0V0 GNDQ

159 GBB1/IO37RSB0V0 GBB1/IO27PPB1V1

160 GBB0/IO36RSB0V0 GBA1/IO28PPB1V1

161 GBC1/IO35RSB0V0 GBB0/IO27NPB1V1

162 VCCIB0 GBA0/IO28NPB1V1

163 GND VCCIB1

164 VCC GND

165 GBC0/IO34RSB0V0 VCC

166 IO33RSB0V0 GBC1/IO26PDB1V1

167 IO32RSB0V0 GBC0/IO26NDB1V1

168 IO31RSB0V0 IO24PPB1V1

169 IO30RSB0V0 IO23PPB1V1

170 IO29RSB0V0 IO24NPB1V1

171 IO28RSB0V0 IO23NPB1V1

172 IO27RSB0V0 IO22PPB1V0

173 IO26RSB0V0 IO21PPB1V0

174 IO25RSB0V0 IO22NPB1V0

175 VCCIB0 IO21NPB1V0

176 GND IO20PSB1V0

177 VCC IO19PSB1V0

178 IO24RSB0V0 IO14NSB0V1

179 IO23RSB0V0 IO12PDB0V1

180 IO22RSB0V0 IO12NDB0V1

181 IO21RSB0V0 VCCIB0

182 IO20RSB0V0 GND

183 IO19RSB0V0 VCC

PQ208

Pin 
Number AFS250 Function AFS600 Function

184 IO18RSB0V0 IO10PPB0V1

185 IO17RSB0V0 IO09PPB0V1

186 IO16RSB0V0 IO10NPB0V1

187 IO15RSB0V0 IO09NPB0V1

188 VCCIB0 IO08PPB0V1

189 GND IO07PPB0V1

190 VCC IO08NPB0V1

191 IO14RSB0V0 IO07NPB0V1

192 IO13RSB0V0 IO06PPB0V0

193 IO12RSB0V0 IO05PPB0V0

194 IO11RSB0V0 IO06NPB0V0

195 IO10RSB0V0 IO04PPB0V0

196 IO09RSB0V0 IO05NPB0V0

197 IO08RSB0V0 IO04NPB0V0

198 IO07RSB0V0 GAC1/IO03PDB0V0

199 IO06RSB0V0 GAC0/IO03NDB0V0

200 GAC1/IO05RSB0V0 VCCIB0

201 VCCIB0 GND

202 GND VCC

203 VCC GAB1/IO02PDB0V0

204 GAC0/IO04RSB0V0 GAB0/IO02NDB0V0

205 GAB1/IO03RSB0V0 GAA1/IO01PDB0V0

206 GAB0/IO02RSB0V0 GAA0/IO01NDB0V0

207 GAA1/IO01RSB0V0 GNDQ

208 GAA0/IO00RSB0V0 VCCIB0

PQ208

Pin 
Number AFS250 Function AFS600 Function
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