

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

E·XFI

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	110592
Number of I/O	172
Number of Gates	600000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	484-BGA
Supplier Device Package	484-FPBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/afs600-2fg484i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The on-chip crystal and RC oscillators work in conjunction with the integrated phase-locked loops (PLLs) to provide clocking support to the FPGA array and on-chip resources. In addition to supporting typical RTC uses such as watchdog timer, the Fusion RTC can control the on-chip voltage regulator to power down the device (FPGA fabric, flash memory block, and ADC), enabling a low power standby mode.

The Fusion family offers revolutionary features, never before available in an FPGA. The nonvolatile flash technology gives the Fusion solution the advantage of being a highly secure, low power, single-chip solution that is Instant On. Fusion is reprogrammable and offers time-to-market benefits at an ASIC-level unit cost. These features enable designers to create high-density systems using existing ASIC or FPGA design flows and tools.

Flash Advantages

Reduced Cost of Ownership

Advantages to the designer extend beyond low unit cost, high performance, and ease of use. Flashbased Fusion devices are Instant On and do not need to be loaded from an external boot PROM.

On-board security mechanisms prevent access to the programming information and enable remote updates of the FPGA logic that are protected with high level security. Designers can perform remote insystem reprogramming to support future design iterations and field upgrades, with confidence that valuable IP is highly unlikely to be compromised or copied. ISP can be performed using the

industry-standard AES algorithm with MAC data authentication on the device. The Fusion family device architecture mitigates the need for ASIC migration at higher user volumes. This makes the Fusion family a cost-effective ASIC replacement solution for applications in the consumer, networking and communications, computing, and avionics markets.

Security

As the nonvolatile, flash-based Fusion family requires no boot PROM, there is no vulnerable external bitstream. Fusion devices incorporate FlashLock, which provides a unique combination of reprogrammability and design security without external overhead, advantages that only an FPGA with nonvolatile flash programming can offer.

Fusion devices utilize a 128-bit flash-based key lock and a separate AES key to provide the highest level of protection in the FPGA industry for programmed IP and configuration data. The FlashROM data in Fusion devices can also be encrypted prior to loading. Additionally, the flash memory blocks can be programmed during runtime using the industry-leading AES-128 block cipher encryption standard (FIPS Publication 192). The AES standard was adopted by the National Institute of Standards and Technology (NIST) in 2000 and replaces the DES standard, which was adopted in 1977. Fusion devices have a

built-in AES decryption engine and a flash-based AES key that make Fusion devices the most comprehensive programmable logic device security solution available today. Fusion devices with

AES-based security provide a high level of protection for remote field updates over public networks, such as the Internet, and are designed to ensure that valuable IP remains out of the hands of system overbuilders, system cloners, and IP thieves. As an additional security measure, the FPGA configuration data of a programmed Fusion device cannot be read back, although secure design verification is possible. During design, the user controls and defines both internal and external access to the flash memory blocks.

Security, built into the FPGA fabric, is an inherent component of the Fusion family. The flash cells are located beneath seven metal layers, and many device design and layout techniques have been used to make invasive attacks extremely difficult. Fusion with FlashLock and AES security is unique in being highly resistant to both invasive and noninvasive attacks. Your valuable IP is protected with

industry-standard security, making remote ISP possible. A Fusion device provides the best available security for programmable logic designs.

Single Chip

Flash-based FPGAs store their configuration information in on-chip flash cells. Once programmed, the configuration data is an inherent part of the FPGA structure, and no external configuration data needs to be loaded at system power-up (unlike SRAM-based FPGAs). Therefore, flash-based Fusion FPGAs do not require system configuration components such as EEPROMs or microcontrollers to load device configuration data. This reduces bill-of-materials costs and PCB area, and increases security and system reliability.

Fusion Device Family Overview

The FlashPoint tool in the Fusion development software solutions, Libero SoC and Designer, has extensive support for flash memory blocks and FlashROM. One such feature is auto-generation of sequential programming files for applications requiring a unique serial number in each part. Another feature allows the inclusion of static data for system version control. Data for the FlashROM can be generated quickly and easily using the Libero SoC and Designer software tools. Comprehensive programming file support is also included to allow for easy programming of large numbers of parts with differing FlashROM contents.

SRAM and FIFO

Fusion devices have embedded SRAM blocks along the north and south sides of the device. Each variable-aspect-ratio SRAM block is 4,608 bits in size. Available memory configurations are 256×18, 512×9, 1k×4, 2k×2, and 4k×1 bits. The individual blocks have independent read and write ports that can be configured with different bit widths on each port. For example, data can be written through a 4-bit port and read as a single bitstream. The SRAM blocks can be initialized from the flash memory blocks or via the device JTAG port (ROM emulation mode), using the UJTAG macro.

In addition, every SRAM block has an embedded FIFO control unit. The control unit allows the SRAM block to be configured as a synchronous FIFO without using additional core VersaTiles. The FIFO width and depth are programmable. The FIFO also features programmable Almost Empty (AEMPTY) and Almost Full (AFULL) flags in addition to the normal EMPTY and FULL flags. The embedded FIFO control unit contains the counters necessary for the generation of the read and write address pointers. The SRAM/FIFO blocks can be cascaded to create larger configurations.

Clock Resources

PLLs and Clock Conditioning Circuits (CCCs)

Fusion devices provide designers with very flexible clock conditioning capabilities. Each member of the Fusion family contains six CCCs. In the two larger family members, two of these CCCs also include a PLL; the smaller devices support one PLL.

The inputs of the CCC blocks are accessible from the FPGA core or from one of several inputs with dedicated CCC block connections.

The CCC block has the following key features:

- Wide input frequency range (f_{IN CCC}) = 1.5 MHz to 350 MHz
- Output frequency range ($f_{OUT CCC}$) = 0.75 MHz to 350 MHz
- Clock phase adjustment via programmable and fixed delays from -6.275 ns to +8.75 ns
- Clock skew minimization (PLL)
- Clock frequency synthesis (PLL)
- · On-chip analog clocking resources usable as inputs:
 - 100 MHz on-chip RC oscillator
 - Crystal oscillator

Additional CCC specifications:

- Internal phase shift = 0°, 90°, 180°, and 270°
- Output duty cycle = $50\% \pm 1.5\%$
- Low output jitter. Samples of peak-to-peak period jitter when a single global network is used:
 - 70 ps at 350 MHz
 - 90 ps at 100 MHz
 - 180 ps at 24 MHz
 - Worst case < 2.5% × clock period
- Maximum acquisition time = 150 µs
- Low power consumption of 5 mW

Figure 2-9 • Efficient Long-Line Resources

Signal Name	Width	Direction	Function					
XTL_EN*	1		Enables the crystal. Active high.					
XTL_MODE*	2		Settings for the crystal clock for different frequency.					
			Value	Modes	Frequency Range			
			b'00 RC network 32 KHz to 4 MHz					
			b'01 Low gain 32 to 200 KHz		32 to 200 KHz			
			b'10	Medium gain 0.20 to 2.0 MHz				
			b'11	High gain 2.0 to 20.0 MHz				
SELMODE	1	IN	Selects the source of XTL_MODE and also enables the XTL_EN. Connect from RTCXTLSEL from AB.					
			0 For normal operation or sleep mode, XTL_EN depends on FPGA_EN, XTL_MODE depends on MODE					
			1	For Standby mode, XTL_EN i RTC_MODE	s enabled, XTL_MODE depends on			
RTC_MODE[1:0]	2	IN	Settings for the crystal clock for different frequency ranges. XTL_MODE uses RTC_MODE when SELMODE is '1'.					
MODE[1:0]	2	IN	Settings for the crystal clock for different frequency ranges. XTL_MODE uses MODE when SELMODE is '0'. In Standby, MODE inputs will be 0's.					
FPGA_EN*	1	IN	0 when 1.5 V is not present for VCC 1 when 1.5 V is present for VCC					
XTL	1	IN	Crystal Clock source					
CLKOUT	1	OUT	Crystal Cloo	ck output				

Table 2-10 • XTLOSC Signals Descriptions

Note: *Internal signal—does not exist in macro.

CCC and PLL Characteristics

Timing Characteristics

Table 2-12 • Fusion CCC/PLL Specification

Parameter	Min.	Тур.	Max.	Unit
Clock Conditioning Circuitry Input Frequency fIN_CCC	1.5		350	MHz
Clock Conditioning Circuitry Output Frequency f _{OUT_CCC}	0.75		350	MHz
Delay Increments in Programmable Delay Blocks ^{1, 2}		160 ³		ps
Number of Programmable Values in Each Programmable Delay Block			32	
Input Period Jitter			1.5	ns
CCC Output Peak-to-Peak Period Jitter F _{CCC_OUT}	Max Pea	k-to-Peak Po	eriod Jitter	
	1 Global Network Used		3 Global Networks Used	
0.75 MHz to 24 MHz	1.00%		1.00%	
24 MHz to 100 MHz	1.50%		1.50%	
100 MHz to 250 MHz	2.25%		2.25%	
250 MHz to 350 MHz	3.50%		3.50%	
Acquisition Time LockControl = 0			300	μs
LockControl = 1			6.0	ms
Tracking Jitter ⁴ LockControl = 0			1.6	ns
LockControl = 1			0.8	ns
Output Duty Cycle	48.5		51.5	%
Delay Range in Block: Programmable Delay 1 ^{1,2}	0.6		5.56	ns
Delay Range in Block: Programmable Delay 2 ^{1, 2}	0.025		5.56	ns
Delay Range in Block: Fixed Delay ^{1, 2}		2.2		ns

Notes:

1. This delay is a function of voltage and temperature. See Table 3-7 on page 3-9 for deratings.

2. $T_J = 25^{\circ}C$, VCC = 1.5 V

3. When the CCC/PLL core is generated by Microsemi core generator software, not all delay values of the specified delay increments are available. Refer to the Libero SoC Online Help associated with the core for more information.

4. Tracking jitter is defined as the variation in clock edge position of PLL outputs with reference to PLL input clock edge. Tracking jitter does not measure the variation in PLL output period, which is covered by period jitter parameter.

Table 2-16 • RTC Control/Status Register

Bit	Name	Description	Default Value
7	rtc_rst	RTC Reset	
		1 – Resets the RTC	
		0 – Deassert reset on after two ACM_CLK cycle.	
6	cntr_en	Counter Enable	0
		1 – Enables the counter; rtc_rst must be deasserted as well. First counter increments after 64 RTCCLK positive edges.	
		0 – Disables the crystal prescaler but does not reset the counter value. Counter value can only be updated when the counter is disabled.	
5	vr_en_mat	Voltage Regulator Enable on Match	0
		1 – Enables RTCMATCH and RTCPSMMATCH to output 1 when the counter value equals the Match Register value. This enables the 1.5 V voltage regulator when RTCPSMMATCH connects to the RTCPSMMATCH signal in VRPSM.	
		0 – RTCMATCH and RTCPSMMATCH output 0 at all times.	
4:3	xt_mode[1:0]	Crystal Mode	00
		Controls RTCXTLMODE[1:0]. Connects to RTC_MODE signal in XTLOSC. XTL_MODE uses this value when xtal_en is 1. See the "Crystal Oscillator" section on page 2-20 for mode configuration.	
2	rst_cnt_omat	Reset Counter on Match	0
		1 – Enables the sync clear of the counter when the counter value equals the Match Register value. The counter clears on the rising edge of the clock. If all the Match Registers are set to 0, the clear is disabled.	
		0 – Counter increments indefinitely	
1	rstb_cnt	Counter Reset, active Low	0
		0 - Resets the 40-bit counter value	
0	xtal_en	Crystal Enable	0
		Controls RTCXTLSEL. Connects to SELMODE signal in XTLOSC.	
		0 – XTLOSC enables control by FPGA_EN; xt_mode is not used. Sleep mode requires this bit to equal 0.	
		1 – Enables XTLOSC, XTL_MODE control by xt_mode	
		Standby mode requires this bit to be set to 1.	
		See the "Crystal Oscillator" section on page 2-20 for further details on SELMODE configuration.	

Unprotect Page Operation

An Unprotect Page operation will clear the protection for a page addressed on the ADDR input. It is initiated by setting the UNPROTECTPAGE signal on the interface along with the page address on ADDR.

If the page is not in the Page Buffer, the Unprotect Page operation will copy the page into the Page Buffer. The Copy Page operation occurs only if the current page in the Page Buffer is not Page Loss Protected.

The waveform for an Unprotect Page operation is shown in Figure 2-42.

Figure 2-42 • FB Unprotected Page Waveform

The Unprotect Page operation can incur the following error conditions:

- 1. If the copy of the page to the Page Buffer determines that the page has a single-bit correctable error in the data, it will report a STATUS = '01'.
- 2. If the address on ADDR does not match the address of the Page Buffer, PAGELOSSPROTECT is asserted, and the Page Buffer has been modified, then STATUS = '11' and the addressed page is not loaded into the Page Buffer.
- 3. If the copy of the page to the Page Buffer determines that at least one block in the page has a double-bit uncorrectable error, STATUS = '10' and the Page Buffer will contain the corrupted data.

Discard Page Operation

If the contents of the modified Page Buffer have to be discarded, the DISCARDPAGE signal should be asserted. This command results in the Page Buffer being marked as unmodified.

The timing for the operation is shown in Figure 2-43. The BUSY signal will remain asserted until the operation has completed.

Figure 2-43 • FB Discard Page Waveform

RAM4K9 Description

Figure 2-48 • RAM4K9

Table 2-36 describes each pin in the Analog Block. Each function within the Analog Block will be explained in detail in the following sections.

Table 2-36 • Analog Block Pin Description

Signal Name	Number of Bits	Direction	Function	Location of Details
VAREF	1	Input/Output	Voltage reference for ADC	ADC
ADCGNDREF	1	Input	External ground reference	ADC
MODE[3:0]	4	Input	ADC operating mode	ADC
SYSCLK	1	Input	External system clock	
TVC[7:0]	8	Input	Clock divide control	ADC
STC[7:0]	8	Input	Sample time control	ADC
ADCSTART	1	Input	Start of conversion	ADC
PWRDWN	1	Input	ADC comparator power-down if 1. When asserted, the ADC will stop functioning, and the digital portion of the analog block will continue operating. This may result in invalid status flags from the analog block. Therefore, Microsemi does not recommend asserting the PWRDWN pin.	ADC
ADCRESET	1	Input	ADC resets and disables Analog Quad – active high	ADC
BUSY	1	Output	1 – Running conversion	ADC
CALIBRATE	1	Output	1 – Power-up calibration	ADC
DATAVALID	1	Output	1 – Valid conversion result	ADC
RESULT[11:0]	12	Output	Conversion result	ADC
TMSTBINT	1	Input	Internal temp. monitor strobe	ADC
SAMPLE	1	Output	 1 – An analog signal is actively being sampled (stays high during signal acquisition only) 0 – No analog signal is being sampled 	ADC
VAREFSEL	1	Input	0 = Output internal voltage reference (2.56 V) to VAREF 1 = Input external voltage reference	ADC
	_		from VAREF and ADCGNDREF	
CHNUMBER[4:0]	5	Input	Analog input channel select	Input multiplexer
ACMCLK	1	Input	ACM clock	ACM
ACMWEN	1	Input	ACM write enable – active high	ACM
ACMRESET	1	Input	ACM reset – active low	ACM
ACMWDATA[7:0]	8	Input	ACM write data	ACM
ACMRDATA[7:0]	8	Output	ACM read data	ACM
ACMADDR[7:0]	8	Input	ACM address	ACM
CMSTB0 to CMSTB9	10	Input	Current monitor strobe – 1 per quad, active high	Analog Quad

Signal Name	Number of Bits	Direction	Function	Location of Details
AG6	1	Output		Analog Quad
AT6	1	Input		Analog Quad
ATRETURN67	1	Input	Temperature monitor return shared by Analog Quads 6 and 7	Analog Quad
AV7	1	Input	Analog Quad 7	Analog Quad
AC7	1	Input		Analog Quad
AG7	1	Output		Analog Quad
AT7	1	Input		Analog Quad
AV8	1	Input	Analog Quad 8	Analog Quad
AC8	1	Input		Analog Quad
AG8	1	Output		Analog Quad
AT8	1	Input		Analog Quad
ATRETURN89	1	Input	Temperature monitor return shared by Analog Quads 8 and 9	Analog Quad
AV9	1	Input	Analog Quad 9	Analog Quad
AC9	1	Input		Analog Quad
AG9	1	Output		Analog Quad
AT9	1	Input		Analog Quad
RTCMATCH	1	Output	МАТСН	RTC
RTCPSMMATCH	1	Output	MATCH connected to VRPSM	RTC
RTCXTLMODE[1:0]	2	Output	Drives XTLOSC RTCMODE[1:0] pins	RTC
RTCXTLSEL	1	Output	Drives XTLOSC MODESEL pin	RTC
RTCCLK	1	Input	RTC clock input	RTC

Table 2-36 • Analog Block Pin Description (continued)

Analog Quad

With the Fusion family, Microsemi introduces the Analog Quad, shown in Figure 2-65 on page 2-81, as the basic analog I/O structure. The Analog Quad is a four-channel system used to precondition a set of analog signals before sending it to the ADC for conversion into a digital signal. To maximize the usefulness of the Analog Quad, the analog input signals can also be configured as LVTTL digital input signals. The Analog Quad is divided into four sections.

The first section is called the Voltage Monitor Block, and its input pin is named AV. It contains a twochannel analog multiplexer that allows an incoming analog signal to be routed directly to the ADC or allows the signal to be routed to a prescaler circuit before being sent to the ADC. The prescaler can be configured to accept analog signals between -12 V and 0 or between 0 and +12 V. The prescaler circuit scales the voltage applied to the ADC input pad such that it is compatible with the ADC input voltage range. The AV pin can also be used as a digital input pin.

The second section of the Analog Quad is called the Current Monitor Block. Its input pin is named AC. The Current Monitor Block contains all the same functions as the Voltage Monitor Block with one addition, which is a current monitoring function. A small external current sensing resistor (typically less than 1 Ω) is connected between the AV and AC pins and is in series with a power source. The Current Monitor Block contains a current monitor circuit that converts the current through the external resistor to a voltage that can then be read using the ADC.

Temperature Monitor

The final pin in the Analog Quad is the Analog Temperature (AT) pin. The AT pin is used to implement an accurate temperature monitor in conjunction with an external diode-connected bipolar transistor (Figure 2-76). For improved temperature measurement accuracy, it is important to use the ATRTN pin for the return path of the current sourced by the AT pin. Each ATRTN pin is shared between two adjacent Analog Quads. Additionally, if not used for temperature monitoring, the AT pin can provide functionality similar to that of the AV pad. However, in this mode only positive voltages can be applied to the AT pin, and only two prescaler factors are available (16 V and 4 V ranges—refer to Table 2-57 on page 2-130).

Figure 2-76 • Temperature Monitor Quad

Offset Error

Offset error indicates how well the actual transfer function matches the ideal transfer function at a single point. For an ideal ADC, the first transition occurs at 0.5 LSB above zero. The offset voltage is measured by applying an analog input such that the ADC outputs all zeroes and increases until the first transition occurs (Figure 2-86).

Figure 2-86 • Offset Error

Resolution

ADC resolution is the number of bits used to represent an analog input signal. To more accurately replicate the analog signal, resolution needs to be increased.

Sampling Rate

Sampling rate or sample frequency, specified in samples per second (sps), is the rate at which an ADC acquires (samples) the analog input.

SNR – Signal-to-Noise Ratio

SNR is the ratio of the amplitude of the desired signal to the amplitude of the noise signals at a given point in time. For a waveform perfectly reconstructed from digital samples, the theoretical maximum SNR (EQ 14) is the ratio of the full-scale analog input (RMS value) to the RMS quantization error (residual error). The ideal, theoretical minimum ADC noise is caused by quantization error only and results directly from the ADC's resolution (N bits):

$$SNR_{dB[MAX]} = 6.02_{dB} \times N + 1.76_{dB}$$

EQ 14

SINAD – Signal-to-Noise and Distortion

SINAD is the ratio of the rms amplitude to the mean value of the root-sum-square of the all other spectral components, including harmonics, but excluding DC. SINAD is a good indication of the overall dynamic performance of an ADC because it includes all components which make up noise and distortion.

Total Harmonic Distortion

THD measures the distortion content of a signal, and is specified in decibels relative to the carrier (dBc). THD is the ratio of the RMS sum of the selected harmonics of the input signal to the fundamental itself. Only harmonics within the Nyquist limit are included in the measurement.

Intra-Conversion

Note: **t*_{CONV} represents the conversion time of the second conversion. See EQ 23 on page 2-109 for calculation of the conversion time, *t*_{CONV}.

Figure 2-92 • Intra-Conversion Timing Diagram

Injected Conversion

Note: *See EQ 23 on page 2-109 for calculation on the conversion time, t_{CONV}.

Figure 2-93 • Injected Conversion Timing Diagram

Table 2-68 • I/O Bank Support by Device

I/O Bank	AFS090	AFS250	AFS600	AFS1500
Standard I/O	Ν	Ν	_	-
Advanced I/O	E, W	E, W	E, W	E, W
Pro I/O	-	_	Ν	Ν
Analog Quad	S	S	S	S

Note: E = *East side of the device*

W = West side of the device

N = *North* side of the device

S = South side of the device

Table 2-69 • Fusion VCCI Voltages and Compatible Standards

VCCI (typical)	Compatible Standards
3.3 V	LVTTL/LVCMOS 3.3, PCI 3.3, SSTL3 (Class I and II),* GTL+ 3.3, GTL 3.3,* LVPECL
2.5 V	LVCMOS 2.5, LVCMOS 2.5/5.0, SSTL2 (Class I and II),* GTL+ 2.5,* GTL 2.5,* LVDS, BLVDS, M-LVDS
1.8 V	LVCMOS 1.8
1.5 V	LVCMOS 1.5, HSTL (Class I),* HSTL (Class II)*

Note: *I/O standard supported by Pro I/O banks.

Table 2-70 • Fusion VREF Voltages and Compatible Standards*

VREF (typical)	Compatible Standards
1.5 V	SSTL3 (Class I and II)
1.25 V	SSTL2 (Class I and II)
1.0 V	GTL+ 2.5, GTL+ 3.3
0.8 V	GTL 2.5, GTL 3.3
0.75 V	HSTL (Class I), HSTL (Class II)

Note: *I/O standards supported by Pro I/O banks.

Double Data Rate (DDR) Support

Fusion Pro I/Os support 350 MHz DDR inputs and outputs. In DDR mode, new data is present on every transition of the clock signal. Clock and data lines have identical bandwidths and signal integrity requirements, making it very efficient for implementing very high-speed systems.

DDR interfaces can be implemented using HSTL, SSTL, LVDS, and LVPECL I/O standards. In addition, high-speed DDR interfaces can be implemented using LVDS I/O.

Input Support for DDR

The basic structure to support a DDR input is shown in Figure 2-101. Three input registers are used to capture incoming data, which is presented to the core on each rising edge of the I/O register clock.

Each I/O tile on Fusion devices supports DDR inputs.

Output Support for DDR

The basic DDR output structure is shown in Figure 2-102 on page 2-140. New data is presented to the output every half clock cycle. Note: DDR macros and I/O registers do not require additional routing. The combiner automatically recognizes the DDR macro and pushes its registers to the I/O register area at the edge of the chip. The routing delay from the I/O registers to the I/O buffers is already taken into account in the DDR macro.

Refer to the application note Using DDR for Fusion Devices for more information.

Figure 2-101 • DDR Input Register Support in Fusion Devices

Table 2-78 • Fusion Standard I/O Standards—OUT_DRIVE Settings

	OUT_DRIVE (mA)						
I/O Standards	2	4	6	8	Sle	ew .	
LVTTL/LVCMOS 3.3 V	3	3	3	3	High	Low	
LVCMOS 2.5 V	3	3	3	3	High	Low	
LVCMOS 1.8 V	3	3	-	-	High	Low	
LVCMOS 1.5 V	3	_	-	-	High	Low	

Table 2-79 • Fusion Advanced I/O Standards—SLEW and OUT_DRIVE Settings

		OUT_DRIVE (mA)							
I/O Standards	2	4	6	8	12	16	Sle	ew .	
LVTTL/LVCMOS 3.3 V	3	3	3	3	3	3	High	Low	
LVCMOS 2.5 V	3	3	3	3	3	-	High	Low	
LVCMOS 1.8 V	3	3	3	3	-	-	High	Low	
LVCMOS 1.5 V	3	3	_	_	_	_	High	Low	

Table 2-80	 Fusion Pro 	I/O Standards-	-SLEW and OUT	DRIVE Settings
------------	--------------------------------	----------------	---------------	----------------

	OUT_DRIVE (mA)								
I/O Standards	2	4	6	8	12	16	24	Slew	
LVTTL/LVCMOS 3.3 V	3	3	3	3	3	3	3	High	Low
LVCMOS 2.5 V	3	3	3	3	3	3	3	High	Low
LVCMOS 2.5 V/5.0 V	3	3	3	3	3	3	3	High	Low
LVCMOS 1.8 V	3	3	3	3	3	3	-	High	Low
LVCMOS 1.5 V	3	3	3	3	3	_	_	High	Low

Table 2-96 • I/O Output Buffer Maximum Resistances ¹ (continued)

Standard	Drive Strength	R _{PULL-DOWN} (ohms) ²	R _{PULL-UP} (ohms) ³
Applicable to Standard I/O Bank	s		
3.3 V LVTTL / 3.3 V LVCMOS	2 mA	100	300
	4 mA	100	300
	6 mA	50	150
	8 mA	50	150
2.5 V LVCMOS	2 mA	100	200
	4 mA	100	200
	6 mA	50	100
	8 mA	50	100
1.8 V LVCMOS	2 mA	200	225
	4 mA	100	112
1.5 V LVCMOS	2 mA	200	224

Notes:

1. These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend on VCC, drive strength selection, temperature, and process. For board design considerations and detailed output buffer resistances, use the corresponding IBIS models located on the Microsemi SoC Products Group website: http://www.microsemi.com/soc/techdocs/models/ibis.html.

2. R_(PULL-DOWN-MAX) = VOLspec / I_{OLspec}

3. R_(PULL-UP-MAX) = (VCCImax – VOHspec) / IOHspec

Table 2-97 • I/O Weak Pull-Up/Pull-Down Resistances Minimum and Maximum Weak Pull-Up/Pull-Down Resistance Values

	R _{(WEAK I} (oh	PULL-UP) ms)	R _{(WEAK PUI} (ohr	LL-DOWN) ² ns)
VCCI	Min.	Max.	Min.	Max.
3.3 V	10 k	45 k	10 k	45 k
2.5 V	11 k	55 k	12 k	74 k
1.8 V	18 k	70 k	17 k	110 k
1.5 V	19 k	90 k	19 k	140 k

Notes:

R_(WEAK PULL-UP-MAX) = (VCCImax – VOHspec) / I_{WEAK PULL-UP-MIN}
 R_(WEAK PULL-DOWN-MAX) = VOLspec / I_{WEAK PULL-DOWN-MIN}

Table 2-132 • 1.5 V LVCMOS Low Slew
Commercial Temperature Range Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V,
Worst-Case VCCI = 1.4 V
Applicable to Standard I/Os

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	Units
2 mA	Std.	0.66	12.33	0.04	1.42	0.43	11.79	12.33	2.45	2.32	ns
	-1	0.56	10.49	0.04	1.21	0.36	10.03	10.49	2.08	1.98	ns
	-2	0.49	9.21	0.03	1.06	0.32	8.81	9.21	1.83	1.73	ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

Table 2-133 • 1.5 V LVCMOS High Slew

Commercial Temperature Range Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V Applicable to Standard I/Os

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	Std.	0.66	7.65	0.04	1.42	0.43	6.31	7.65	2.45	2.45	ns
	-1	0.56	6.50	0.04	1.21	0.36	5.37	6.50	2.08	2.08	ns
	-2	0.49	5.71	0.03	1.06	0.32	4.71	5.71	1.83	1.83	ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

Power per I/O Pin

Table 3-12 • Summary of I/O Input Buffer Power (per pin)—Default I/O Software Settings

	VCCI (V)	Static Power PDC7 (mW) ¹	Dynamic Power PAC9 (µW/MHz) ²
Applicable to Pro I/O Banks	<u> </u>		
Single-Ended			
3.3 V LVTTL/LVCMOS	3.3		17.39
3.3 V LVTTL/LVCMOS – Schmitt trigger	3.3	_	25.51
2.5 V LVCMOS	2.5	_	5.76
2.5 V LVCMOS – Schmitt trigger	2.5	_	7.16
1.8 V LVCMOS	1.8	_	2.72
1.8 V LVCMOS – Schmitt trigger	1.8	_	2.80
1.5 V LVCMOS (JESD8-11)	1.5	_	2.08
1.5 V LVCMOS (JESD8-11) – Schmitt trigger	1.5	_	2.00
3.3 V PCI	3.3	_	18.82
3.3 V PCI – Schmitt trigger	3.3	_	20.12
3.3 V PCI-X	3.3	_	18.82
3.3 V PCI-X – Schmitt trigger	3.3	_	20.12
Voltage-Referenced	<u></u>		
3.3 V GTL	3.3	2.90	8.23
2.5 V GTL	2.5	2.13	4.78
3.3 V GTL+	3.3	2.81	4.14
2.5 V GTL+	2.5	2.57	3.71
HSTL (I)	1.5	0.17	2.03
HSTL (II)	1.5	0.17	2.03
SSTL2 (I)	2.5	1.38	4.48
SSTL2 (II)	2.5	1.38	4.48
SSTL3 (I)	3.3	3.21	9.26
SSTL3 (II)	3.3	3.21	9.26
Differential	<u>.</u>		•
LVDS	2.5	2.26	1.50
LVPECL	3.3	5.71	2.17

Notes:

1. PDC7 is the static power (where applicable) measured on VCCI.

2. PAC9 is the total dynamic power measured on VCC and VCCI.

Datasheet Information

Revision	Changes	Page			
Advance v1.0 (January 2008)	All Timing Characteristics tables were updated. For the Differential I/O Standards, the Standard I/O support tables are new.	N/A			
	Table 2-3 • Array Coordinates was updated to change the max x and y values	2-9			
	Table 2-12 • Fusion CCC/PLL Specification was updated.	2-31			
	A note was added to Table 2-16 · RTC ACM Memory Map.	2-37			
	A reference to the Peripheral's User's Guide was added to the "Voltage Regulator Power Supply Monitor (VRPSM)" section.	2-42			
	In Table 2-25 • Flash Memory Block Timing, the commercial conditions were updated.	2-55			
	In Table 2-26 • FlashROM Access Time, the commercial conditions were missing and have been added below the title of the table.	2-58			
	In Table 2-36 • Analog Block Pin Description, the function description was updated for the ADCRESET.	2-82			
	In the "Voltage Monitor" section, the following sentence originally had \pm 10% and it was changed to +10%.	2-86			
	The Analog Quad inputs are tolerant up to 12 V + 10%.				
	In addition, this statement was deleted from the datasheet:				
	Each I/O will draw power when connected to power (3 mA at 3 V).	0.00			
	The "Terminology" section is new.	2-88			
	Diagram for Current Monitor Section was significantly updated. Figure 2-72 • Timing Diagram for Current Monitor Strobe to Figure 2-74 • Negative Current Monitor and Table 2-37 • Recommended Resistor for Different Current Range Measurement are new.				
	The "ADC Description" section was updated to add the "Terminology" section.	2-93			
	In the "Gate Driver" section, 25 mA was changed to 20 mA and 1.5 MHz was changed to 1.3 MHz. In addition, the following sentence was deleted: The maximum AG pad switching frequency is 1.25 MHz.	2-94			
	The "Temperature Monitor" section was updated to rewrite most of the text and add Figure 2-78, Figure 2-79, and Table 2-38 • Temperature Data Format.	2-96			
	In Table 2-38 • Temperature Data Format, the temperature K column was changed for 85°C from 538 to 358.	2-98			
	In Table 2-45 • ADC Interface Timing, "Typical-Case" was changed to "Worst-Case."	2-110			
	The "ADC Interface Timing" section is new.	2-110			
	Table 2-46 • Analog Channel Specifications was updated.	2-118			
	The "V _{CC15A} Analog Power Supply (1.5 V)" section was updated.				
	The "V _{CCPLA/B} PLL Supply Voltage" section is new.	2-225			
	In "V $_{\rm CCNVM}$ Flash Memory Block Power Supply (1.5 V)" section, supply was changed to supply input.	2-224			
	The "V_{CCPLAVB} PLL Supply Voltage" pin description was updated to include the following statement:	2-225			
	Actel recommends tying VCCPLX to VCC and using proper filtering circuits to decouple V_{CC} noise from PLL.				
	The "V _{COMPLA/B} Ground for West and East PLL" section was updated.	2-225			