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Fusion Family of Mixed Signal FPGAs
Global Buffers with No Programmable Delays
The CLKBUF and CLKBUF_LVPECL/LVDS macros are composite macros that include an I/O macro
driving a global buffer, hardwired together (Figure 2-20).

The CLKINT macro provides a global buffer function driven by the FPGA core.

The CLKBUF, CLKBUF_LVPECL/LVDS, and CLKINT macros are pass-through clock sources and do not
use the PLL or provide any programmable delay functionality.

Many specific CLKBUF macros support the wide variety of single-ended and differential I/O standards
supported by Fusion devices. The available CLKBUF macros are described in the IGLOO, ProASIC3,
SmartFusion and Fusion Macro Library Guide.

Global Buffers with Programmable Delay
The CLKDLY macro is a pass-through clock source that does not use the PLL, but provides the ability to
delay the clock input using a programmable delay (Figure 2-21 on page 2-25). The CLKDLY macro takes
the selected clock input and adds a user-defined delay element. This macro generates an output clock
phase shift from the input clock.

The CLKDLY macro can be driven by an INBUF macro to create a composite macro, where the I/O
macro drives the global buffer (with programmable delay) using a hardwired connection. In this case, the
I/O must be placed in one of the dedicated global I/O locations.

Many specific INBUF macros support the wide variety of single-ended and differential I/O standards
supported by the Fusion family. The available INBUF macros are described in the IGLOO, ProASIC3,
SmartFusion and Fusion Macro Library Guide. 

The CLKDLY macro can be driven directly from the FPGA core. 

The CLKDLY macro can also be driven from an I/O that is routed through the FPGA regular routing
fabric. In this case, users must instantiate a special macro, PLLINT, to differentiate from the hardwired
I/O connection described earlier. 

The visual CLKDLY configuration in the SmartGen part of the Libero SoC and Designer tools allows the
user to select the desired amount of delay and configures the delay elements appropriately. SmartGen
also allows the user to select the input clock source. SmartGen will automatically instantiate the special
macro, PLLINT, when needed.

Figure 2-20 • Global Buffers with No Programmable Delay
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Device Architecture
Real-Time Counter (part of AB macro)
The RTC is a 40-bit loadable counter and used as the primary timekeeping element (Figure 2-29). The
clock source, RTCCLK, must come from the CLKOUT signal of the crystal oscillator. The RTC can be
configured to reset itself when a count value reaches the match value set in the Match Register.

The RTC is part of the Analog Block (AB) macro. The RTC is configured by the analog configuration
MUX (ACM). Each address contains one byte of data. The circuitry in the RTC is powered by VCC33A,
so the RTC can be used in standby mode when the 1.5 V supply is not present.

The 40-bit counter can be preloaded with an initial value as a starting point by the Counter Register. The
count from the 40-bit counter can be read through the same set of address space. The count comes from
a Read-Hold Register to avoid data changing during read. When the counter value equals the Match
Register value, all Match Bits Register values will be 0xFFFFFFFFFF. The RTCMATCH and
RTCPSMMATCH signals will assert. The 40-bit counter can be configured to automatically reset to
0x0000000000 when the counter value equals the Match Register value. The automatic reset does not
apply if the Match Register value is 0x0000000000. The RTCCLK has a prescaler to divide the clock by
128 before it is used for the 40-bit counter. Below is an example of how to calculate the OFF time.

Figure 2-29 • RTC Block Diagram

Table 2-14 • RTC Signal Description

Signal Name Width Direction Function

RTCCLK 1 In Must come from CLKOUT of XTLOSC.

RTCXTLMODE[1:0] 2 Out Controlled by xt_mode in CTRL_STAT. Signal must connect to the
RTC_MODE signal in XTLOSC, as shown in Figure 2-27.

RTCXTLSEL 1 Out Controlled by xtal_en from CTRL_STAT register. Signal must connect to
RTC_MODE signal in XTLOSC in Figure 2-27.

RTCMATCH 1 Out Match signal for FPGA

0 – Counter value does not equal the Match Register value.

1 – Counter value equals the Match Register value.

RTCPSMMATCH 1 Out Same signal as RTCMATCH. Signal must connect to RTCPSMMATCH in
VRPSM, as shown in Figure 2-27.
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Fusion Family of Mixed Signal FPGAs
Read Operation
Read operations are designed to read data from the FB Array, Page Buffer, Block Buffer, or status
registers. Read operations support a normal read and a read-ahead mode (done by asserting
READNEXT). Also, the timing for Read operations is dependent on the setting of PIPE.

The following diagrams illustrate representative timing for Non-Pipe Mode (Figure 2-38) and Pipe Mode
(Figure 2-39) reads of the flash memory block interface.  

Figure 2-38 • Read Waveform (Non-Pipe Mode, 32-bit access)

Figure 2-39 • Read Waveform (Pipe Mode, 32-bit access)
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Device Architecture
Unprotect Page Operation
An Unprotect Page operation will clear the protection for a page addressed on the ADDR input. It is
initiated by setting the UNPROTECTPAGE signal on the interface along with the page address on
ADDR. 

If the page is not in the Page Buffer, the Unprotect Page operation will copy the page into the Page
Buffer. The Copy Page operation occurs only if the current page in the Page Buffer is not Page Loss
Protected.

The waveform for an Unprotect Page operation is shown in Figure 2-42.

The Unprotect Page operation can incur the following error conditions:

1. If the copy of the page to the Page Buffer determines that the page has a single-bit correctable
error in the data, it will report a STATUS = '01'.

2. If the address on ADDR does not match the address of the Page Buffer, PAGELOSSPROTECT is
asserted, and the Page Buffer has been modified, then STATUS = '11' and the addressed page is
not loaded into the Page Buffer.

3. If the copy of the page to the Page Buffer determines that at least one block in the page has a
double-bit uncorrectable error, STATUS = '10' and the Page Buffer will contain the corrupted data.

Discard Page Operation
If the contents of the modified Page Buffer have to be discarded, the DISCARDPAGE signal should be
asserted. This command results in the Page Buffer being marked as unmodified.

The timing for the operation is shown in Figure 2-43. The BUSY signal will remain asserted until the
operation has completed.

Figure 2-42 • FB Unprotected Page Waveform
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Fusion Family of Mixed Signal FPGAs
TUE – Total Unadjusted Error
TUE is a comprehensive specification that includes linearity errors, gain error, and offset error. It is the
worst-case deviation from the ideal device performance. TUE is a static specification (Figure 2-87).

ADC Operation 
Once the ADC has powered up and been released from reset, ADCRESET, the ADC will initiate a
calibration routine designed to provide optimal ADC performance. The Fusion ADC offers a robust
calibration scheme to reduce integrated offset and linearity errors. The offset and linearity errors of the
main capacitor array are compensated for with an 8-bit calibration capacitor array. The offset/linearity
error calibration is carried out in two ways. First, a power-up calibration is carried out when the ADC
comes out of reset. This is initiated by the CALIBRATE output of the Analog Block macro and is a fixed
number of ADC_CLK cycles (3,840 cycles), as shown in Figure 2-89 on page 2-111. In this mode, the
linearity and offset errors of the capacitors are calibrated. 

To further compensate for drift and temperature-dependent effects, every conversion is followed by post-
calibration of either the offset or a bit of the main capacitor array. The post-calibration ensures that, over
time and with temperature, the ADC remains consistent. 

After both calibration and the setting of the appropriate configurations, as explained above, the ADC is
ready for operation. Setting the ADCSTART signal high for one clock period will initiate the sample and
conversion of the analog signal on the channel as configured by CHNUMBER[4:0]. The status signals
SAMPLE and BUSY will show when the ADC is sampling and converting (Figure 2-91 on page 2-112).
Both SAMPLE and BUSY will initially go high. After the ADC has sampled and held the analog signal,
SAMPLE will go low. After the entire operation has completed and the analog signal is converted, BUSY
will go low and DATAVALID will go high. This indicates that the digital result is available on the
RESULT[11:0] pins.

DATAVALID will remain high until a subsequent ADCSTART is issued. The DATAVALID goes low on the
rising edge of SYSCLK as shown in Figure 2-90 on page 2-112. The RESULT signals will be kept
constant until the ADC finishes the subsequent sample. The next sampled RESULT will be available
when DATAVALID goes high again. It is ideal to read the RESULT when DATAVALID is '1'. The RESULT
is latched and remains unchanged until the next DATAVLAID rising edge.

Figure 2-87 • Total Unadjusted Error (TUE)
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Fusion Family of Mixed Signal FPGAs
Examples
Calculating Accuracy for an Uncalibrated Analog Channel

Formula

For a given prescaler range, EQ 30 gives the output voltage.

Output Voltage = (Channel Output Offset in V) + (Input Voltage x Channel Gain)

EQ 30

where

Channel Output offset in V = Channel Input offset in LSBs x Equivalent voltage per LSB

Channel Gain Factor = 1+ (% Channel Gain / 100)

Example

Input Voltage = 5 V

Chosen Prescaler range = 8 V range

Refer to Table 2-51 on page 2-122.

Max. Output Voltage = (Max Positive input offset) + (Input Voltage x Max Positive Channel Gain)

Max. Positive input offset = (21 LSB) x (8 mV per LSB in 10-bit mode)

Max. Positive input offset = 166 mV

Max. Positive Gain Error = +3%

Max. Positive Channel Gain = 1 + (+3% / 100)

Max. Positive Channel Gain = 1.03

Max. Output Voltage = (166 mV) + (5 V x 1.03)

Max. Output Voltage = 5.316 V

Table 2-53 • Analog Channel Accuracy: Monitoring Standard Positive Voltages
Typical Conditions, TA = 25°C

Input Voltage 
(V)

Calibrated Typical Error per Positive Prescaler Setting 1 (%FSR)
Direct ADC 2,3 

(%FSR)

16 V (AT)
16 V (12 V)

(AV/AC)
8 V 

(AV/AC) 4 V (AT)
4 V 

(AV/AC)
2 V 

(AV/AC)
1 V 

(AV/AC) VAREF = 2.56 V

15 1

14 1

12 1 1

5 2 2 1

3.3 2 2 1 1 1

2.5 3 2 1 1 1 1

1.8 4 4 1 1 1 1 1

1.5 5 5 2 2 2 1 1

1.2 7 6 2 2 2 1 1

0.9 9 9 4 3 3 1 1 1

Notes:

1. Requires enabling Analog Calibration using SmartGen Analog System Builder. For further details, refer to the
"Temperature, Voltage, and Current Calibration in Fusion FPGAs" chapter of the Fusion FPGA Fabric User Guide.

2. Direct ADC mode using an external VAREF of 2.56V±4.6mV, without Analog Calibration macro.

3. For input greater than 2.56 V, the ADC output will saturate. A higher VAREF or prescaler usage is recommended.
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Fusion Family of Mixed Signal FPGAs
User I/Os

Introduction
Fusion devices feature a flexible I/O structure, supporting a range of mixed voltages (1.5 V, 1.8 V, 2.5 V,
and 3.3 V) through a bank-selectable voltage. Table 2-68, Table 2-69, Table 2-70, and Table 2-71 on
page 2-135 show the voltages and the compatible I/O standards. I/Os provide programmable slew rates,
drive strengths, weak pull-up, and weak pull-down circuits. 3.3 V PCI and 3.3 V PCI-X are 5 V–tolerant.
See the "5 V Input Tolerance" section on page 2-144 for possible implementations of 5 V tolerance. 

All I/Os are in a known state during power-up, and any power-up sequence is allowed without current
impact. Refer to the "I/O Power-Up and Supply Voltage Thresholds for Power-On Reset (Commercial
and Industrial)" section on page 3-5 for more information. In low power standby or sleep mode (VCC is
OFF, VCC33A is ON, VCCI is ON) or when the resource is not used, digital inputs are tristated, digital
outputs are tristated, and digital bibufs (input/output) are tristated.

I/O Tile

The Fusion I/O tile provides a flexible, programmable structure for implementing a large number of I/O
standards. In addition, the registers available in the I/O tile in selected I/O banks can be used to support
high-performance register inputs and outputs, with register enable if desired (Figure 2-99 on
page 2-133). The registers can also be used to support the JESD-79C DDR standard within the I/O
structure (see the "Double Data Rate (DDR) Support" section on page 2-139 for more information).

As depicted in Figure 2-100 on page 2-138, all I/O registers share one CLR port. The output register and
output enable register share one CLK port. Refer to the "I/O Registers" section on page 2-138 for more
information.

I/O Banks and I/O Standards Compatibility
The digital I/Os are grouped into I/O voltage banks. There are three digital I/O banks on the AFS090 and
AFS250 devices and four digital I/O banks on the AFS600 and AFS1500 devices. Figure 2-113 on
page 2-158 and Figure 2-114 on page 2-159 show the bank configuration by device. The north side of
the I/O in the AFS600 and AFS1500 devices comprises two banks of Pro I/Os. The Pro I/Os support a
wide number of voltage-referenced I/O standards in addition to the multitude of single-ended and
differential I/O standards common throughout all Microsemi digital I/Os. Each I/O voltage bank has
dedicated I/O supply and ground voltages (VCCI/GNDQ for input buffers and VCCI/GND for output
buffers). Because of these dedicated supplies, only I/Os with compatible standards can be assigned to
the same I/O voltage bank. Table 2-69 and Table 2-70 on page 2-134 show the required voltage
compatibility values for each of these voltages.

For more information about I/O and global assignments to I/O banks, refer to the specific pin table of the
device in the "Package Pin Assignments" on page 4-1 and the "User I/O Naming Convention" section on
page 2-158.

Each Pro I/O bank is divided into minibanks. Any user I/O in a VREF minibank (a minibank is the region
of scope of a VREF pin) can be configured as a VREF pin (Figure 2-99 on page 2-133). Only one VREF
pin is needed to control the entire VREF minibank. The location and scope of the VREF minibanks can
be determined by the I/O name. For details, see the "User I/O Naming Convention" section on
page 2-158.

Table 2-70 on page 2-134 shows the I/O standards supported by Fusion devices and the corresponding
voltage levels.

I/O standards are compatible if the following are true:

• Their VCCI values are identical.

• If both of the standards need a VREF, their VREF values must be identical (Pro I/O only).
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Fusion Family of Mixed Signal FPGAs
At the system level, the skew circuit can be used in applications where transmission activities on
bidirectional data lines need to be coordinated. This circuit, when selected, provides a timing margin that
can prevent bus contention and subsequent data loss or transmitter overstress due to transmitter-to-
transmitter current shorts. Figure 2-110 presents an example of the skew circuit implementation in a
bidirectional communication system. Figure 2-111 shows how bus contention is created, and Figure 2-
112 on page 2-151 shows how it can be avoided with the skew circuit.

Figure 2-110 • Example of Implementation of Skew Circuits in Bidirectional Transmission Systems Using 
Fusion Devices

Figure 2-111 • Timing Diagram (bypasses skew circuit)
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Fusion Family of Mixed Signal FPGAs
Timing Characteristics      

Table 2-112 • 2.5 V LVCMOS Low Slew
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, 
Worst-Case VCCI = 2.3 V
Applicable to Pro I/Os

Drive 
Strength

 
Speed 
Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL tZH tLZ tHZ tZLS tZHS

 
Units

4 mA  Std. 0.60 12.00 0.04 1.51 1.66 0.43 12.23 11.61 2.72 2.20 14.46 13.85  ns 

 –1 0.51 10.21 0.04 1.29 1.41 0.36 10.40 9.88 2.31 1.87 12.30 11.78  ns 

 –2 0.45 8.96 0.03 1.13 1.24 0.32 9.13 8.67 2.03 1.64 10.80 10.34  ns 

8 mA  Std. 0.60 8.73 0.04 1.51 1.66 0.43 8.89 8.01 3.10 2.93 11.13 10.25  ns 

 –1 0.51 7.43 0.04 1.29 1.41 0.36 7.57 6.82 2.64 2.49 9.47 8.72  ns 

 –2 0.45 6.52 0.03 1.13 1.24 0.32 6.64 5.98 2.32 2.19 8.31 7.65  ns 

12 mA  Std. 0.66 6.77 0.04 1.51 1.66 0.43 6.90 6.11 3.37 3.39 9.14 8.34  ns 

 –1 0.56 5.76 0.04 1.29 1.41 0.36 5.87 5.20 2.86 2.89 7.77 7.10  ns 

 –2 0.49 5.06 0.03 1.13 1.24 0.32 5.15 4.56 2.51 2.53 6.82 6.23  ns 

16 mA  Std. 0.66 6.31 0.04 1.51 1.66 0.43 6.42 5.73 3.42 3.52 8.66 7.96  ns 

 –1 0.56 5.37 0.04 1.29 1.41 0.36 5.46 4.87 2.91 3.00 7.37 6.77  ns 

 –2 0.49 4.71 0.03 1.13 1.24 0.32 4.80 4.28 2.56 2.63 6.47 5.95  ns 

24 mA  Std. 0.66 5.93 0.04 1.51 1.66 0.43 6.04 5.70 3.49 4.00 8.28 7.94  ns 

 –1 0.56 5.05 0.04 1.29 1.41 0.36 5.14 4.85 2.97 3.40 7.04 6.75  ns 

 –2 0.49 4.43 0.03 1.13 1.24 0.32 4.51 4.26 2.61 2.99 6.18 5.93  ns 

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-9.
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Fusion Family of Mixed Signal FPGAs
Table 2-117 • 2.5 V LVCMOS High Slew
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, 
Worst-Case VCCI = 2.3 V
Applicable to Standard I/Os

Drive 
Strength

 Speed 
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ  Units 

2 mA  Std. 0.66 8.20 0.04 1.29 0.43 7.24 8.20 2.03 1.91  ns 

 –1 0.56 6.98 0.04 1.10 0.36 6.16 6.98 1.73 1.62  ns 

 –2 0.49 6.13 0.03 0.96 0.32 5.41 6.13 1.52 1.43  ns 

4 mA  Std. 0.66 8.20 0.04 1.29 0.43 7.24 8.20 2.03 1.91  ns 

 –1 0.56 6.98 0.04 1.10 0.36 6.16 6.98 1.73 1.62  ns 

 –2 0.49 6.13 0.03 0.96 0.32 5.41 6.13 1.52 1.43  ns 

6 mA  Std. 0.66 4.77 0.04 1.29 0.43 4.55 4.77 2.38 2.55  ns 

 –1 0.56 4.05 0.04 1.10 0.36 3.87 4.05 2.03 2.17  ns 

 –2 0.49 3.56 0.03 0.96 0.32 3.40 3.56 1.78 1.91  ns 

8 mA  Std. 0.66 4.77 0.04 1.29 0.43 4.55 4.77 2.38 2.55  ns 

 –1 0.56 4.05 0.04 1.10 0.36 3.87 4.05 2.03 2.17  ns 

 –2 0.49 3.56 0.03 0.96 0.32 3.40 3.56 1.78 1.91  ns 

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-9.
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Device Architecture
Table 2-130 • 1.5 V LVCMOS Low Slew
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,
Worst-Case VCCI = 1.4 V
Applicable to Advanced I/Os

Drive 
Strength

 Speed 
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS  Units 

2 mA  Std. 0.66 12.78 0.04 1.31 0.43 12.81 12.78 3.40 2.64 15.05 15.02  ns 

 –1 0.56 10.87 0.04 1.11 0.36 10.90 10.87 2.89 2.25 12.80 12.78  ns 

 –2 0.49 9.55 0.03 0.98 0.32 9.57 9.55 2.54 1.97 11.24 11.22  ns 

4 mA  Std. 0.66 10.01 0.04 1.31 0.43 10.19 9.55 3.75 3.27 12.43 11.78  ns 

 –1 0.56 8.51 0.04 1.11 0.36 8.67 8.12 3.19 2.78 10.57 10.02  ns 

 –2 0.49 7.47 0.03 0.98 0.32 7.61 7.13 2.80 2.44 9.28 8.80  ns 

8 mA  Std. 0.66 9.33 0.04 1.31 0.43 9.51 8.89 3.83 3.43 11.74 11.13  ns 

 –1 0.56 7.94 0.04 1.11 0.36 8.09 7.56 3.26 2.92 9.99 9.47  ns 

 –2 0.49 6.97 0.03 0.98 0.32 7.10 6.64 2.86 2.56 8.77 8.31  ns 

12 mA  Std. 0.66 8.91 0.04 1.31 0.43 9.07 8.89 3.95 4.05 11.31 11.13  ns 

 –1 0.56 7.58 0.04 1.11 0.36 7.72 7.57 3.36 3.44 9.62 9.47  ns 

 –2 0.49 6.65 0.03 0.98 0.32 6.78 6.64 2.95 3.02 8.45 8.31  ns 

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-9.

Table 2-131 • 1.5 V LVCMOS High Slew
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, 
Worst-Case VCCI = 1.4 V
Applicable to Advanced I/Os

Drive 
Strength

 Speed 
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS  Units 

2 mA  Std. 0.66 8.36 0.04 1.44 0.43 6.82 8.36 3.39 2.77 9.06 10.60  ns 

 –1 0.56 7.11 0.04 1.22 0.36 5.80 7.11 2.88 2.35 7.71 9.02  ns 

 –2 0.49 6.24 0.03 1.07 0.32 5.10 6.24 2.53 2.06 6.76 7.91  ns 

4 mA  Std. 0.66 5.31 0.04 1.44 0.43 4.85 5.31 3.74 3.40 7.09 7.55  ns 

 –1 0.56 4.52 0.04 1.22 0.36 4.13 4.52 3.18 2.89 6.03 6.42  ns 

 –2 0.49 3.97 0.03 1.07 0.32 3.62 3.97 2.79 2.54 5.29 5.64  ns 

8 mA  Std. 0.66 4.67 0.04 1.44 0.43 4.55 4.67 3.82 3.56 6.78 6.90  ns 

 –1 0.56 3.97 0.04 1.22 0.36 3.87 3.97 3.25 3.03 5.77 5.87  ns 

 –2 0.49 3.49 0.03 1.07 0.32 3.40 3.49 2.85 2.66 5.07 5.16  ns 

12 mA  Std. 0.66 4.08 0.04 1.44 0.43 4.15 3.58 3.94 4.20 6.39 5.81  ns 

 –1 0.56 3.47 0.04 1.22 0.36 3.53 3.04 3.36 3.58 5.44 4.95  ns 

 –2 0.49 3.05 0.03 1.07 0.32 3.10 2.67 2.95 3.14 4.77 4.34  ns 

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-9.
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Device Architecture
3.3 V PCI, 3.3 V PCI-X
The Peripheral Component Interface for 3.3 V standard specifies support for 33 MHz and 66 MHz PCI
Bus applications.  

AC loadings are defined per the PCI/PCI-X specifications for the datapath; Microsemi loadings for enable
path characterization are described in Figure 2-123. 

AC loadings are defined per PCI/PCI-X specifications for the data path; Microsemi loading for tristate is
described in Table 2-135.

Table 2-134 • Minimum and Maximum DC Input and Output Levels

3.3 V PCI/PCI-X VIL VIH VOL VOH IOL IOH IOSL IOSH IIL1 IIH2

Drive Strength
Min.

V
Max.

V
Min.

V
Max.

V
Max.

V
Min.

V mA mA
Max.
mA3

Max.
mA3 µA4 µA4

Per PCI
specification

Per PCI curves 10 10

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is

larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

Figure 2-123 • AC Loading

Test Point
Enable Path

R = 1 k

Test Point
Data Path

R = 25 R to VCCI for tDP (F)
R to GND for tDP (R)

R to VCCI for tLZ / tZL / tZLS
R to GND for tHZ / tZH / tZHS

10 pF for tZH / tZHS / tZL / tZLS
10 pF for tHZ / tLZ

Table 2-135 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V) Input High (V) Measuring Point* (V) VREF (typ.) (V) CLOAD (pF)

0 3.3 0.285 * VCCI for tDP(R)

0.615 * VCCI for tDP(F)

– 10

Note: *Measuring point = Vtrip. See Table 2-90 on page 2-166 for a complete table of trip points.
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Device Architecture
Differential I/O Characteristics
Configuration of the I/O modules as a differential pair is handled by the Microsemi Designer
software when the user instantiates a differential I/O macro in the design.

Differential I/Os can also be used in conjunction with the embedded Input Register (InReg), Output
Register (OutReg), Enable Register (EnReg), and Double Data Rate (DDR). However, there is no
support for bidirectional I/Os or tristates with these standards.

LVDS
Low-Voltage Differential Signal (ANSI/TIA/EIA-644) is a high-speed differential I/O standard. It requires
that one data bit be carried through two signal lines, so two pins are needed. It also requires external
resistor termination. 

The full implementation of the LVDS transmitter and receiver is shown in an example in Figure 2-134.
The building blocks of the LVDS transmitter–receiver are one transmitter macro, one receiver macro,
three board resistors at the transmitter end, and one resistor at the receiver end. The values for the three
driver resistors are different from those used in the LVPECL implementation because the output standard
specifications are different.    

Figure 2-134 • LVDS Circuit Diagram and Board-Level Implementation

Table 2-168 • Minimum and Maximum DC Input and Output Levels

DC Parameter Description Min. Typ. Max. Units

VCCI Supply Voltage 2.375  2.5  2.625 V

VOL Output Low Voltage  0.9  1.075  1.25 V

VOH Input High Voltage  1.25  1.425  1.6 V

IOL 1 Output Low Voltage 0.65 0.91 1.16 mA

IOH 1 Output High Voltage 0.65 0.91 1.16 mA

VI Input Voltage  0   2.925 V

IIL 2,3 Input Low Voltage 10 A

IIH 2,4 Input High Voltage 10 A

VODIFF Differential Output Voltage  250  350  450 mV

VOCM Output Common Mode Voltage  1.125  1.25  1.375 V

VICM Input Common Mode Voltage  0.05  1.25  2.35 V

VIDIFF Input Differential Voltage  100  350  mV

Notes:

1. IOL/IOH defined by VODIFF/(Resistor Network)
2. Currents are measured at 85°C junction temperature.  

3. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

4. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is
larger when operating outside recommended ranges.

140  100 

ZO = 50 

ZO = 50 

165 

165 

+
–

P

N

P

N

INBUF_LVDS

OUTBUF_LVDS
FPGA FPGA

Bourns Part Number: CAT16-LV4F12  
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Device Architecture
Table 2-175 • Parameter Definitions and Measuring Nodes

Parameter Name Parameter Definition
Measuring Nodes 

(from, to)*

tOCLKQ Clock-to-Q of the Output Data Register HH, DOUT

tOSUD Data Setup Time for the Output Data Register FF, HH

tOHD Data Hold Time for the Output Data Register FF, HH

tOSUE Enable Setup Time for the Output Data Register GG, HH

tOHE Enable Hold Time for the Output Data Register GG, HH

tOCLR2Q Asynchronous Clear-to-Q of the Output Data Register LL, DOUT

tOREMCLR Asynchronous Clear Removal Time for the Output Data Register LL, HH

tORECCLR Asynchronous Clear Recovery Time for the Output Data Register LL, HH

tOECLKQ Clock-to-Q of the Output Enable Register HH, EOUT

tOESUD Data Setup Time for the Output Enable Register JJ, HH

tOEHD Data Hold Time for the Output Enable Register JJ, HH

tOESUE Enable Setup Time for the Output Enable Register KK, HH

tOEHE Enable Hold Time for the Output Enable Register KK, HH

tOECLR2Q Asynchronous Clear-to-Q of the Output Enable Register II, EOUT

tOEREMCLR Asynchronous Clear Removal Time for the Output Enable Register II, HH

tOERECCLR Asynchronous Clear Recovery Time for the Output Enable Register II, HH

tICLKQ Clock-to-Q of the Input Data Register AA, EE

tISUD Data Setup Time for the Input Data Register CC, AA

tIHD Data Hold Time for the Input Data Register CC, AA

tISUE Enable Setup Time for the Input Data Register BB, AA

tIHE Enable Hold Time for the Input Data Register BB, AA

tICLR2Q Asynchronous Clear-to-Q of the Input Data Register DD, EE

tIREMCLR Asynchronous Clear Removal Time for the Input Data Register DD, AA

tIRECCLR Asynchronous Clear Recovery Time for the Input Data Register DD, AA

Note: *See Figure 2-138 on page 2-214 for more information.
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Fusion Family of Mixed Signal FPGAs
Input Register

Timing Characteristics  

Figure 2-139 • Input Register Timing Diagram

50%

Preset

Clear

Out_1

CLK

Data

Enable

tISUE

50%

50%

tISUD

tIHD

50% 50%

tICLKQ

1 0

tIHE

tIRECPRE tIREMPRE

tIRECCLR tIREMCLR
tIWCLR

tIWPRE

tIPRE2Q

tICLR2Q

tICKMPWH tICKMPWL

50% 50%

50% 50% 50%

50% 50%

50% 50% 50% 50% 50% 50%

50%

Table 2-176 • Input Data Register Propagation Delays
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

Parameter Description –2 –1 Std. Units

tICLKQ Clock-to-Q of the Input Data Register 0.24 0.27 0.32 ns

tISUD Data Setup Time for the Input Data Register 0.26 0.30 0.35 ns

tIHD Data Hold Time for the Input Data Register 0.00 0.00 0.00 ns

tISUE Enable Setup Time for the Input Data Register 0.37 0.42 0.50 ns

tIHE Enable Hold Time for the Input Data Register 0.00 0.00 0.00 ns

tICLR2Q Asynchronous Clear-to-Q of the Input Data Register 0.45 0.52 0.61 ns

tIPRE2Q Asynchronous Preset-to-Q of the Input Data Register 0.45 0.52 0.61 ns

tIREMCLR Asynchronous Clear Removal Time for the Input Data Register 0.00 0.00 0.00 ns

tIRECCLR Asynchronous Clear Recovery Time for the Input Data Register 0.22 0.25 0.30 ns

tIREMPRE Asynchronous Preset Removal Time for the Input Data Register 0.00 0.00 0.00 ns

tIRECPRE Asynchronous Preset Recovery Time for the Input Data Register 0.22 0.25 0.30 ns

tIWCLR Asynchronous Clear Minimum Pulse Width for the Input Data Register 0.22 0.25 0.30 ns

tIWPRE Asynchronous Preset Minimum Pulse Width for the Input Data Register 0.22 0.25 0.30 ns

tICKMPWH Clock Minimum Pulse Width High for the Input Data Register 0.36 0.41 0.48 ns

tICKMPWL Clock Minimum Pulse Width Low for the Input Data Register 0.32 0.37 0.43 ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-9.
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Fusion Family of Mixed Signal FPGAs
AV, AC Unpowered, ADC reset asserted or
unconfigured

–11.0 to 12.6 –11.0 to 12.0 V

Analog input (+16 V to +2 V prescaler range) –0.4 to 12.6 –0.4 to 12.0 V

Analog input (+1 V to +0.125 V prescaler
range)

–0.4 to 3.75 –0.4 to 3.75 V

Analog input (–16 V to –2 V prescaler range) –11.0 to 0.4 –11.0 to 0.4 V

Analog input (–1 V to –0.125 V prescaler
range)

–3.75 to 0.4 –3.75 to 0.4 V

Analog input (direct input to ADC) –0.4 to 3.75 –0.4 to 3.75 V

Digital input –0.4 to 12.6 –0.4 to 12.0 V

AG Unpowered, ADC reset asserted or
unconfigured

–11.0 to 12.6 –11.0 to 12.0 V

Low Current Mode (1 µA, 3 µA, 10 µA, 30 µA) –0.4 to 12.6 –0.4 to 12.0 V

Low Current Mode (–1 µA, –3 µA, –10 µA, –30
µA)

–11.0 to 0.4 –11.0 to 0.4 V

High Current Mode 3 –11.0 to 12.6 –11.0 to 12.0 V

AT Unpowered, ADC reset asserted or
unconfigured

–0.4 to 16.0 –0.4 to 15.0 V

Analog input (+16 V, 4 V prescaler range) –0.4 to 16.0 –0.4 to 15.0 V

Analog input (direct input to ADC) –0.4 to 3.75 –0.4 to 3.75 V

Digital input –0.4 to 16.0 –0.4 to 15.0 V

TSTG
4 Storage temperature –65 to +150 °C

TJ
4 Junction temperature +125 °C

Table 3-1 • Absolute Maximum Ratings  (continued)

Symbol Parameter Commercial Industrial Units

Notes:

1. The device should be operated within the limits specified by the datasheet. During transitions, the input signal may
undershoot or overshoot according to the limits shown in Table 3-4 on page 3-4.

2. Analog data not valid beyond 3.65 V.

3. The high current mode has a maximum power limit of 20 mW. Appropriate current limit resistors must be used, based on
voltage on the pad.

4. For flash programming and retention maximum limits, refer to Table 3-5 on page 3-5. For recommended operating limits
refer to Table 3-2 on page 3-3.
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DC and Power Characteristics
Thermal Characteristics

Introduction
The temperature variable in the Microsemi Designer software refers to the junction temperature, not the
ambient, case, or board temperatures. This is an important distinction because dynamic and static power
consumption will cause the chip's junction temperature to be higher than the ambient, case, or board
temperatures. EQ 1 through EQ 3 give the relationship between thermal resistance, temperature
gradient, and power.

EQ 1

EQ 2

EQ 3

where  

JA = Junction-to-air thermal resistance

JB = Junction-to-board thermal resistance

JC = Junction-to-case thermal resistance

TJ = Junction temperature

TA = Ambient temperature

TB = Board temperature (measured 1.0 mm away from the
package edge)

TC = Case temperature

P = Total power dissipated by the device

JA

TJ A–

P
------------------=

JB

TJ TB–

P
-------------------=

JC

TJ TC–

P
-------------------=

Table 3-6 • Package Thermal Resistance

Product

JA

JC JB UnitsStill Air 1.0 m/s 2.5 m/s

AFS090-QN108 34.5 30.0 27.7 8.1 16.7 °C/W

AFS090-QN180 33.3 27.6 25.7 9.2 21.2 °C/W

AFS250-QN180 32.2 26.5 24.7 5.7 15.0 °C/W

AFS250-PQ208 42.1 38.4 37 20.5 36.3 °C/W

AFS600-PQ208 23.9 21.3 20.48 6.1 16.5 °C/W

AFS090-FG256 37.7 33.9 32.2 11.5 29.7 °C/W

AFS250-FG256 33.7 30.0 28.3 9.3 24.8 °C/W

AFS600-FG256 28.9 25.2 23.5 6.8 19.9 °C/W

AFS1500-FG256 23.3 19.6 18.0 4.3 14.2 °C/W

AFS600-FG484 21.8 18.2 16.7 7.7 16.8 °C/W

AFS1500-FG484 21.6 16.8 15.2 5.6 14.9 °C/W

AFS1500-FG676 TBD TBD TBD TBD TBD °C/W
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Fusion Family of Mixed Signal FPGAs
Dynamic Power Consumption of Various Internal Resources

Table 3-14 • Different Components Contributing to the Dynamic Power Consumption in Fusion Devices

Parameter Definition

Power Supply
Device-Specific 

Dynamic Contributions

UnitsName Setting AFS1500 AFS600 AFS250 AFS090

PAC1 Clock contribution of a Global
Rib

VCC 1.5 V 14.5 12.8 11 11 µW/MHz

PAC2 Clock contribution of a Global
Spine

VCC 1.5 V 2.5 1.9 1.6 0.8 µW/MHz

PAC3 Clock contribution of a VersaTile
row

VCC 1.5 V 0.81 µW/MHz

PAC4 Clock contribution of a VersaTile
used as a sequential module

VCC 1.5 V 0.11 µW/MHz

PAC5 First contribution of a VersaTile
used as a sequential module

VCC 1.5 V 0.07 µW/MHz

PAC6 Second contribution of a
VersaTile used as a sequential
module

VCC 1.5 V 0.29 µW/MHz

PAC7 Contribution of a VersaTile used
as a combinatorial module

VCC 1.5 V 0.29 µW/MHz

PAC8 Average contribution of a routing
net

VCC 1.5 V 0.70 µW/MHz

PAC9 Contribution of an I/O input pin
(standard dependent)

VCCI See Table 3-12 on page 3-18

PAC10 Contribution of an I/O output pin
(standard dependent)

VCCI See Table 3-13 on page 3-20

PAC11 Average contribution of a RAM
block during a read operation

VCC 1.5 V 25 µW/MHz

PAC12 Average contribution of a RAM
block during a write operation

VCC 1.5 V 30 µW/MHz

PAC13 Dynamic Contribution for PLL VCC 1.5 V 2.6 µW/MHz

PAC15 Contribution of NVM block during
a read operation (F < 33MHz)

VCC 1.5 V 358 µW/MHz

PAC16 1st contribution of NVM block
during a read operation (F > 33
MHz)

VCC 1.5 V 12.88 mW

PAC17 2nd contribution of NVM block
during a read operation (F > 33
MHz)

VCC 1.5 V 4.8 µW/MHz

PAC18 Crystal Oscillator contribution VCC33A 3.3 V 0.63 mW

PAC19 RC Oscillator contribution VCC33A 3.3 V 3.3 mW

PAC20 Analog Block dynamic power
contribution of ADC

VCC 1.5 V 3 mW
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Fusion Family of Mixed Signal FPGAs
Power Consumption
Table 3-18 • Power Consumption 

Parameter Description Condition Min. Typical Max. Units

Crystal Oscillator

ISTBXTAL Standby Current of Crystal
Oscillator

10 µA

IDYNXTAL Operating Current RC 0.6 mA

0.032–0.2 0.19 mA

0.2–2.0 0.6 mA

2.0–20.0 0.6 mA

RC Oscillator

IDYNRC Operating Current 1 mA

ACM

Operating Current (fixed
clock)

200 µA/MHz

Operating Current (user
clock)

30 µA

NVM System

NVM Array Operating Power Idle 795 µA

Read 
operation 

See
Table 3-15 on 

page 3-23.

 See
Table 3-15 on 

page 3-23.

Erase 900 µA

Write 900 µA

PNVMCTRL NVM Controller Operating
Power

20 µW/MHz
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Package Pin Assignments
L17 VCCIB2

L18 GCB2/IO60PDB2V0

L19 IO58NDB2V0

L20 IO57NDB2V0

L21 IO59NDB2V0

L22 GCC2/IO61PDB2V0

L23 IO55PPB2V0

L24 IO56PDB2V0

L25 IO55NPB2V0

L26 GND

M1 NC

M2 VCCIB4

M3 GFC2/IO108PDB4V0

M4 GND

M5 IO109NDB4V0

M6 IO110NDB4V0

M7 GND

M8 IO104NDB4V0

M9 IO111NDB4V0

M10 GND

M11 VCC

M12 GND

M13 VCC

M14 GND

M15 VCC

M16 GND

M17 GND

M18 IO60NDB2V0

M19 IO58PDB2V0

M20 GND

M21 IO68NPB2V0

M22 IO61NDB2V0

M23 GND

M24 IO56NDB2V0

M25 VCCIB2

M26 IO65PDB2V0

FG676

Pin Number AFS1500 Function

N1 NC

N2 NC

N3 IO108NDB4V0

N4 VCCOSC

N5 VCCIB4

N6 XTAL2

N7 GFC1/IO107PDB4V0

N8 VCCIB4

N9 GFB1/IO106PDB4V0

N10 VCCIB4

N11 GND

N12 VCC

N13 GND

N14 VCC

N15 GND

N16 VCC

N17 VCCIB2

N18 IO70PDB2V0

N19 VCCIB2

N20 IO69PDB2V0

N21 GCA1/IO64PDB2V0

N22 VCCIB2

N23 GCC0/IO62NDB2V0

N24 GCC1/IO62PDB2V0

N25 IO66PDB2V0

N26 IO65NDB2V0

P1 NC

P2 NC

P3 IO103PDB4V0

P4 XTAL1

P5 VCCIB4

P6 GNDOSC

P7 GFC0/IO107NDB4V0

P8 VCCIB4

P9 GFB0/IO106NDB4V0

P10 VCCIB4

FG676

Pin Number AFS1500 Function

P11 VCC

P12 GND

P13 VCC

P14 GND

P15 VCC

P16 GND

P17 VCCIB2

P18 IO70NDB2V0

P19 VCCIB2

P20 IO69NDB2V0

P21 GCA0/IO64NDB2V0

P22 VCCIB2

P23 GCB0/IO63NDB2V0

P24 GCB1/IO63PDB2V0

P25 IO66NDB2V0

P26 IO67PDB2V0

R1 NC

R2 VCCIB4

R3 IO103NDB4V0

R4 GND

R5 IO101PDB4V0

R6 IO100NPB4V0

R7 GND

R8 IO99PDB4V0

R9 IO97PDB4V0

R10 GND

R11 GND

R12 VCC

R13 GND

R14 VCC

R15 GND

R16 VCC

R17 GND

R18 GDB2/IO83PDB2V0

R19 IO78PDB2V0

R20 GND

FG676

Pin Number AFS1500 Function
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