

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	110592
Number of I/O	119
Number of Gates	600000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	256-LBGA
Supplier Device Package	256-FPBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/afs600-fg256

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Routing Architecture

The routing structure of Fusion devices is designed to provide high performance through a flexible four-level hierarchy of routing resources: ultra-fast local resources; efficient long-line resources; high-speed very-long-line resources; and the high-performance VersaNet networks.

The ultra-fast local resources are dedicated lines that allow the output of each VersaTile to connect directly to every input of the eight surrounding VersaTiles (Figure 2-8). The exception to this is that the SET/CLR input of a VersaTile configured as a D-flip-flop is driven only by the VersaNet global network.

The efficient long-line resources provide routing for longer distances and higher-fanout connections. These resources vary in length (spanning one, two, or four VersaTiles), run both vertically and horizontally, and cover the entire Fusion device (Figure 2-9 on page 2-9). Each VersaTile can drive signals onto the efficient long-line resources, which can access every input of every VersaTile. Active buffers are inserted automatically by routing software to limit loading effects.

The high-speed very-long-line resources, which span the entire device with minimal delay, are used to route very long or high-fanout nets: length ± 12 VersaTiles in the vertical direction and length ± 16 in the horizontal direction from a given core VersaTile (Figure 2-10 on page 2-10). Very long lines in Fusion devices, like those in ProASIC3 devices, have been enhanced. This provides a significant performance boost for long-reach signals.

The high-performance VersaNet global networks are low-skew, high-fanout nets that are accessible from external pins or from internal logic (Figure 2-11 on page 2-11). These nets are typically used to distribute clocks, reset signals, and other high-fanout nets requiring minimum skew. The VersaNet networks are implemented as clock trees, and signals can be introduced at any junction. These can be employed hierarchically, with signals accessing every input on all VersaTiles.

Signal Name	Width	Direction		Function				
XTL_EN*	1		Enables the crystal. Active high.					
XTL_MODE*	2		Settings for the crystal clock for different frequency.					
			Value	Modes	Frequency Range			
			b'00	RC network	32 KHz to 4 MHz			
			b'01	Low gain	32 to 200 KHz			
			b'10	Medium gain	0.20 to 2.0 MHz			
			b'11	High gain	2.0 to 20.0 MHz			
SELMODE	1	IN	Selects the source of XTL_MODE and also enables the XTL_EN. Connect from RTCXTLSEL from AB.					
			0	For normal operation or sleep mode, XTL_EN depends on FPGA_EN, XTL_MODE depends on MODE				
			1	For Standby mode, XTL_EN is enabled, XTL_MODE depends on RTC_MODE				
RTC_MODE[1:0]	2	IN	Settings for RTC_MODE	Settings for the crystal clock for different frequency ranges. XTL_MODE uses RTC_MODE when SELMODE is '1'.				
MODE[1:0]	2	IN	Settings for the crystal clock for different frequency ranges. XTL_MODE uses MODE when SELMODE is '0'. In Standby, MODE inputs will be 0's.					
FPGA_EN*	1	IN	0 when 1.5	0 when 1.5 V is not present for VCC 1 when 1.5 V is present for VCC				
XTL	1	IN	Crystal Cloo	Crystal Clock source				
CLKOUT	1	OUT	Crystal Cloo	ck output				

Table 2-10 • XTLOSC Signals Descriptions

Note: *Internal signal—does not exist in macro.

Clock Conditioning Circuits

In Fusion devices, the CCCs are used to implement frequency division, frequency multiplication, phase shifting, and delay operations.

The CCCs are available in six chip locations—each of the four chip corners and the middle of the east and west chip sides.

Each CCC can implement up to three independent global buffers (with or without programmable delay), or a PLL function (programmable frequency division/multiplication, phase shift, and delays) with up to three global outputs. Unused global outputs of a PLL can be used to implement independent global buffers, up to a maximum of three global outputs for a given CCC.

A global buffer can be placed in any of the three global locations (CLKA-GLA, CLKB-GLB, and CLKC-GLC) of a given CCC.

A PLL macro uses the CLKA CCC input to drive its reference clock. It uses the GLA and, optionally, the GLB and GLC global outputs to drive the global networks. A PLL macro can also drive the YB and YC regular core outputs. The GLB (or GLC) global output cannot be reused if the YB (or YC) output is used (Figure 2-19). Refer to the "PLL Macro" section on page 2-27 for more information.

Each global buffer, as well as the PLL reference clock, can be driven from one of the following:

- · 3 dedicated single-ended I/Os using a hardwired connection
- 2 dedicated differential I/Os using a hardwired connection
- The FPGA core

The CCC block is fully configurable, either via flash configuration bits set in the programming bitstream or through an asynchronous interface. This asynchronous interface is dynamically accessible from inside the Fusion device to permit changes of parameters (such as divide ratios) during device operation. To increase the versatility and flexibility of the clock conditioning system, the CCC configuration is determined either by the user during the design process, with configuration data being stored in flash memory as part of the device programming procedure, or by writing data into a dedicated shift register during normal device operation. This latter mode allows the user to dynamically reconfigure the CCC without the need for core programming. The shift register is accessed through a simple serial interface. Refer to the "UJTAG Applications in Microsemi's Low-Power Flash Devices" chapter of the *Fusion FPGA Fabric User Guide* and the "CCC and PLL Characteristics" section on page 2-28 for more information.

Notes:

- 1. Visit the Microsemi SoC Products Group website for application notes concerning dynamic PLL reconfiguration. Refer to the "PLL Macro" section on page 2-27 for signal descriptions.
- 2. Many specific INBUF macros support the wide variety of single-ended and differential I/O standards for the Fusion family.
- 3. Refer to the IGLOO, ProASIC3, SmartFusion and Fusion Macro Library Guide for more information.

Figure 2-19 • Fusion CCC Options: Global Buffers with the PLL Macro

Table 2-11 • Available Selections of I/O Standards within CLKBUF and CLKBUF_LVDS/LVPECL Macros

CLKBUF Macros
CLKBUF_LVCMOS5
CLKBUF_LVCMOS33 ¹
CLKBUF_LVCMOS18
CLKBUF_LVCMOS15
CLKBUF_PCI
CLKBUF_LVDS ²
CLKBUF_LVPECL

Notes:

1. This is the default macro. For more details, refer to the IGLOO, ProASIC3, SmartFusion and Fusion Macro Library Guide.

2. The B-LVDS and M-LVDS standards are supported with CLKBUF_LVDS.

Figure 2-31 • State Diagram for All Different Power Modes

When TRST is 1 or PUB is 0, the 1.5 V voltage regulator is always ON, putting the Fusion device in normal operation at all times. Therefore, when the JTAG port is not in reset, the Fusion device cannot enter sleep mode or standby mode.

To enter standby mode, the Fusion device must first power-up into normal operation. The RTC is enabled through the RTC Control/Status Register described in the "Real-Time Counter (part of AB macro)" section on page 2-33. A match value corresponding to the wake-up time is loaded into the Match Register. The 1.5 V voltage regulator is disabled by setting VRPU to 0 to allow the Fusion device to enter standby mode, when the 1.5 V supply is off but the RTC remains on.

The following signals are used to configure the RAM4K9 memory element.

WIDTHA and WIDTHB

These signals enable the RAM to be configured in one of four allowable aspect ratios (Table 2-27).

|--|

WIDTHA1, WIDTHA0	WIDTHB1, WIDTHB0	D×W			
00	00	4k×1			
01	01	2k×2			
10	10	1k×4			
11	11	512×9			
Note: The aspect ratio settings are constant and cannot be changed on the fly.					

BLKA and BLKB

These signals are active low and will enable the respective ports when asserted. When a BLKx signal is deasserted, the corresponding port's outputs hold the previous value.

WENA and WENB

These signals switch the RAM between read and write mode for the respective ports. A Low on these signals indicates a write operation, and a High indicates a read.

CLKA and CLKB

These are the clock signals for the synchronous read and write operations. These can be driven independently or with the same driver.

PIPEA and PIPEB

These signals are used to specify pipelined read on the output. A Low on PIPEA or PIPEB indicates a nonpipelined read, and the data appears on the corresponding output in the same clock cycle. A High indicates a pipelined, read and data appears on the corresponding output in the next clock cycle.

WMODEA and WMODEB

These signals are used to configure the behavior of the output when the RAM is in write mode. A Low on these signals makes the output retain data from the previous read. A High indicates pass-through behavior, wherein the data being written will appear immediately on the output. This signal is overridden when the RAM is being read.

RESET

This active low signal resets the output to zero, disables reads and writes from the SRAM block, and clears the data hold registers when asserted. It does not reset the contents of the memory.

ADDRA and ADDRB

These are used as read or write addresses, and they are 12 bits wide. When a depth of less than 4 k is specified, the unused high-order bits must be grounded (Table 2-28).

Table 2-28 • Address Pins Unused/Used for Various Supported Bus Widths

D×W	ADDRx					
	Unused	Used				
4k×1	None	[11:0]				
2k×2	[11]	[10:0]				
1k×4	[11:10]	[9:0]				
512×9	[11:9]	[8:0]				

Note: The "x" in ADDRx implies A or B.

Figure 2-60 • FIFO EMPTY Flag and AEMPTY Flag Assertion

Analog Block

With the Fusion family, Microsemi has introduced the world's first mixed-mode FPGA solution. Supporting a robust analog peripheral mix, Fusion devices will support a wide variety of applications. It is this Analog Block that separates Fusion from all other FPGA solutions on the market today.

By combining both flash and high-speed CMOS processes in a single chip, these devices offer the best of both worlds. The high-performance CMOS is used for building RAM resources. These high-performance structures support device operation up to 350 MHz. Additionally, the advanced Microsemi 0.13 μ m flash process incorporates high-voltage transistors and a high-isolation, triple-well process. Both of these are suited for the flash-based programmable logic and nonvolatile memory structures.

High-voltage transistors support the integration of analog technology in several ways. They aid in noise immunity so that the analog portions of the chip can be better isolated from the digital portions, increasing analog accuracy. Because they support high voltages, Microsemi flash FPGAs can be connected directly to high-voltage input signals, eliminating the need for external resistor divider networks, reducing component count, and increasing accuracy. By supporting higher internal voltages, the Microsemi advanced flash process enables high dynamic range on analog circuitry, increasing precision and signal–noise ratio. Microsemi flash FPGAs also drive high-voltage outputs, eliminating the need for external level shifters and drivers.

The unique triple-well process enables the integration of high-performance analog features with increased noise immunity and better isolation. By increasing the efficiency of analog design, the triple-well process also enables a smaller overall design size, reducing die size and cost.

The Analog Block consists of the Analog Quad I/O structure, RTC (for details refer to the "Real-Time Counter System" section on page 2-31), ADC, and ACM. All of these elements are combined in the single Analog Block macro, with which the user implements this functionality (Figure 2-64).

The Analog Block needs to be reset/reinitialized after the core powers up or the device is programmed. An external reset/initialize signal, which can come from the internal voltage regulator when it powers up, must be applied.

This process results in a binary approximation of VIN. Generally, there is a fixed interval T, the sampling period, between the samples. The inverse of the sampling period is often referred to as the sampling frequency $f_S = 1 / T$. The combined effect is illustrated in Figure 2-82.

Figure 2-82 • Conversion Example

Figure 2-82 demonstrates that if the signal changes faster than the sampling rate can accommodate, or if the actual value of VIN falls between counts in the result, this information is lost during the conversion. There are several techniques that can be used to address these issues.

First, the sampling rate must be chosen to provide enough samples to adequately represent the input signal. Based on the Nyquist-Shannon Sampling Theorem, the minimum sampling rate must be at least twice the frequency of the highest frequency component in the target signal (Nyquist Frequency). For example, to recreate the frequency content of an audio signal with up to 22 KHz bandwidth, the user must sample it at a minimum of 44 ksps. However, as shown in Figure 2-82, significant post-processing of the data is required to interpolate the value of the waveform during the time between each sample.

Similarly, to re-create the amplitude variation of a signal, the signal must be sampled with adequate resolution. Continuing with the audio example, the dynamic range of the human ear (the ratio of the amplitude of the threshold of hearing to the threshold of pain) is generally accepted to be 135 dB, and the dynamic range of a typical symphony orchestra performance is around 85 dB. Most commercial recording media provide about 96 dB of dynamic range using 16-bit sample resolution. But 16-bit fidelity does not necessarily mean that you need a 16-bit ADC. As long as the input is sampled at or above the Nyquist Frequency, post-processing techniques can be used to interpolate intermediate values and reconstruct the original input signal to within desired tolerances.

If sophisticated digital signal processing (DSP) capabilities are available, the best results are obtained by implementing a reconstruction filter, which is used to interpolate many intermediate values with higher resolution than the original data. Interpolating many intermediate values increases the effective number of samples, and higher resolution increases the effective number of bits in the sample. In many cases, however, it is not cost-effective or necessary to implement such a sophisticated reconstruction algorithm. For applications that do not require extremely fine reproduction of the input signal, alternative methods can enhance digital sampling results with relatively simple post-processing. The details of such techniques are out of the scope of this chapter; refer to the *Improving ADC Results through Oversampling and Post-Processing of Data* white paper for more information.

ADC Terminology

Conversion Time

Conversion time is the interval between the release of the hold state (imposed by the input circuitry of a track-and-hold) and the instant at which the voltage on the sampling capacitor settles to within one LSB of a new input value.

DNL – Differential Non-Linearity

For an ideal ADC, the analog-input levels that trigger any two successive output codes should differ by one LSB (DNL = 0). Any deviation from one LSB in defined as DNL (Figure 2-83).

Figure 2-83 • Differential Non-Linearity (DNL)

ENOB – Effective Number of Bits

ENOB specifies the dynamic performance of an ADC at a specific input frequency and sampling rate. An ideal ADC's error consists only of quantization of noise. As the input frequency increases, the overall noise (particularly in the distortion components) also increases, thereby reducing the ENOB and SINAD (also see "Signal-to-Noise and Distortion Ratio (SINAD)".) ENOB for a full-scale, sinusoidal input waveform is computed using EQ 12.

$$ENOB = \frac{SINAD - 1.76}{6.02}$$

EQ 12

FS Error – Full-Scale Error

Full-scale error is the difference between the actual value that triggers that transition to full-scale and the ideal analog full-scale transition value. Full-scale error equals offset error plus gain error.

Solution 3

The board-level design must ensure that the reflected waveform at the pad does not exceed limits provided in Table 3-4 on page 3-4. This is a long-term reliability requirement.

This scheme will also work for a 3.3 V PCI/PCIX configuration, but the internal diode should not be used for clamping, and the voltage must be limited by the bus switch, as shown in Figure 2-105. Relying on the diode clamping would create an excessive pad DC voltage of 3.3 V + 0.7 V = 4 V.

Solution 4

Figure 2-106 • Solution 4

User I/O Naming Convention

Due to the comprehensive and flexible nature of Fusion device user I/Os, a naming scheme is used to show the details of the I/O (Figure 2-113 on page 2-158 and Figure 2-114 on page 2-159). The name identifies to which I/O bank it belongs, as well as the pairing and pin polarity for differential I/Os.

I/O Nomenclature = Gmn/IOuxwByVz

Gmn is only used for I/Os that also have CCC access—i.e., global pins.

- G = Global
- m = Global pin location associated with each CCC on the device: A (northwest corner), B (northeast corner), C (east middle), D (southeast corner), E (southwest corner), and F (west middle).
- n = Global input MUX and pin number of the associated Global location m, either A0, A1, A2, B0, B1, B2, C0, C1, or C2. Figure 2-22 on page 2-25 shows the three input pins per clock source MUX at CCC location m.
- u = I/O pair number in the bank, starting at 00 from the northwest I/O bank and proceeding in a clockwise direction.
- x = P (Positive) or N (Negative) for differential pairs, or R (Regular single-ended) for the I/Os that support single-ended and voltage-referenced I/O standards only. U (Positive-LVDS only) or V (Negative-LVDS only) restrict the I/O differential pair from being selected as an LVPECL pair.
- w = D (Differential Pair), P (Pair), or S (Single-Ended). D (Differential Pair) if both members of the pair are bonded out to adjacent pins or are separated only by one GND or NC pin; P (Pair) if both members of the pair are bonded out but do not meet the adjacency requirement; or S (Single-Ended) if the I/O pair is not bonded out. For Differential (D) pairs, adjacency for ball grid packages means only vertical or horizontal. Diagonal adjacency does not meet the requirements for a true differential pair.

```
B = Bank
```

- y = Bank number (0–3). The Bank number starts at 0 from the northwest I/O bank and proceeds in a clockwise direction.
- V = Reference voltage
- z = Minibank number

Standard I/O Bank

Figure 2-113 • Naming Conventions of Fusion Devices with Three Digital I/O Banks

Device Architecture

Table 2-107 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew

Commercial Temperature Range Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Advanced I/Os

Drive	Speed												l
Strength	Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
4 mA	Std.	0.66	7.66	0.04	1.20	0.43	7.80	6.59	2.65	2.61	10.03	8.82	ns
	-1	0.56	6.51	0.04	1.02	0.36	6.63	5.60	2.25	2.22	8.54	7.51	ns
	-2	0.49	5.72	0.03	0.90	0.32	5.82	4.92	1.98	1.95	7.49	6.59	ns
8 mA	Std.	0.66	4.91	0.04	1.20	0.43	5.00	4.07	2.99	3.20	7.23	6.31	ns
	-1	0.56	4.17	0.04	1.02	0.36	4.25	3.46	2.54	2.73	6.15	5.36	ns
	-2	0.49	3.66	0.03	0.90	0.32	3.73	3.04	2.23	2.39	5.40	4.71	ns
12 mA	Std.	0.66	3.53	0.04	1.20	0.43	3.60	2.82	3.21	3.58	5.83	5.06	ns
	-1	0.56	3.00	0.04	1.02	0.36	3.06	2.40	2.73	3.05	4.96	4.30	ns
	-2	0.49	2.64	0.03	0.90	0.32	2.69	2.11	2.40	2.68	4.36	3.78	ns
16 mA	Std.	0.66	3.33	0.04	1.20	0.43	3.39	2.56	3.26	3.68	5.63	4.80	ns
	-1	0.56	2.83	0.04	1.02	0.36	2.89	2.18	2.77	3.13	4.79	4.08	ns
	-2	0.49	2.49	0.03	0.90	0.32	2.53	1.91	2.44	2.75	4.20	3.58	ns
24 mA	Std.	0.66	3.08	0.04	1.20	0.43	3.13	2.12	3.32	4.06	5.37	4.35	ns
	-1	0.56	2.62	0.04	1.02	0.36	2.66	1.80	2.83	3.45	4.57	3.70	ns
	-2	0.49	2.30	0.03	0.90	0.32	2.34	1.58	2.48	3.03	4.01	3.25	ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

Table 2-108 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew

Commercial Temperature Range Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Standard I/Os

Drive	Speed										
Strength	Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	Units
2 mA	Std.	0.66	9.46	0.04	1.00	0.43	9.64	8.54	2.07	2.04	ns
	-1	0.56	8.05	0.04	0.85	0.36	8.20	7.27	1.76	1.73	ns
	-2	0.49	7.07	0.03	0.75	0.32	7.20	6.38	1.55	1.52	ns
4 mA	Std.	0.66	9.46	0.04	1.00	0.43	9.64	8.54	2.07	2.04	ns
	-1	0.56	8.05	0.04	0.85	0.36	8.20	7.27	1.76	1.73	ns
	-2	0.49	7.07	0.03	0.75	0.32	7.20	6.38	1.55	1.52	ns
6 mA	Std.	0.66	6.57	0.04	1.00	0.43	6.69	5.98	2.40	2.57	ns
	-1	0.56	5.59	0.04	0.85	0.36	5.69	5.09	2.04	2.19	ns
	-2	0.49	4.91	0.03	0.75	0.32	5.00	4.47	1.79	1.92	ns
8 mA	Std.	0.66	6.57	0.04	1.00	0.43	6.69	5.98	2.40	2.57	ns
	-1	0.56	5.59	0.04	0.85	0.36	5.69	5.09	2.04	2.19	ns
	-2	0.49	4.91	0.03	0.75	0.32	5.00	4.47	1.79	1.92	ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

 P_{S-CELL} = N_{S-CELL} * (PAC5 + (α_1 / 2) * PAC6) * F_{CLK}

N_{S-CELL} is the number of VersaTiles used as sequential modules in the design. When a multi-tile sequential cell is used, it should be accounted for as 1.

 α_1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 3-16 on page 3-27.

F_{CLK} is the global clock signal frequency.

Standby Mode and Sleep Mode

 $P_{S-CELL} = 0 W$

Combinatorial Cells Dynamic Contribution—P_{C-CELL}

Operating Mode

 $P_{C-CELL} = N_{C-CELL} * (\alpha_1 / 2) * PAC7 * F_{CLK}$

N_{C-CELL} is the number of VersaTiles used as combinatorial modules in the design.

 α_1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 3-16 on page 3-27.

F_{CLK} is the global clock signal frequency.

Standby Mode and Sleep Mode

 $P_{C-CELL} = 0 W$

Routing Net Dynamic Contribution-PNET

Operating Mode

 $P_{NET} = (N_{S-CELL} + N_{C-CELL}) * (\alpha_1 / 2) * PAC8 * F_{CLK}$

N_{S-CELL} is the number VersaTiles used as sequential modules in the design.

N_{C-CELL} is the number of VersaTiles used as combinatorial modules in the design.

 α_1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 3-16 on page 3-27.

F_{CLK} is the global clock signal frequency.

Standby Mode and Sleep Mode

 $P_{NET} = 0 W$

I/O Input Buffer Dynamic Contribution—PINPUTS

Operating Mode

 $P_{INPUTS} = N_{INPUTS} * (\alpha_2 / 2) * PAC9 * F_{CLK}$

N_{INPUTS} is the number of I/O input buffers used in the design.

 α_2 is the I/O buffer toggle rate—guidelines are provided in Table 3-16 on page 3-27.

F_{CLK} is the global clock signal frequency.

Standby Mode and Sleep Mode

P_{INPUTS} = 0 W

I/O Output Buffer Dynamic Contribution—POUTPUTS

Operating Mode

 $\mathsf{P}_{\mathsf{OUTPUTS}} = \mathsf{N}_{\mathsf{OUTPUTS}} * (\alpha_2 / 2) * \beta_1 * \mathsf{PAC10} * \mathsf{F}_{\mathsf{CLK}}$

N_{OUTPUTS} is the number of I/O output buffers used in the design.

 α_2 is the I/O buffer toggle rate—guidelines are provided in Table 3-16 on page 3-27.

 β_1 is the I/O buffer enable rate—guidelines are provided in Table 3-17 on page 3-27.

F_{CLK} is the global clock signal frequency.

Standby Mode and Sleep Mode

P_{OUTPUTS} = 0 W

QN180

Note: The die attach paddle center of the package is tied to ground (GND).

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/default.aspx.

Fusion Family of Mixed Signal FPGAs

	PQ208			PQ208	
Pin Number	AFS250 Function	AFS600 Function	Pin Number	AFS250 Function	AFS600 Function
74	AV2	AV4	111	VCCNVM	VCCNVM
75	AC2	AC4	112	VCC	VCC
76	AG2	AG4	112	VCC	VCC
77	AT2	AT4	113	VPUMP	VPUMP
78	ATRTN1	ATRTN2	114	GNDQ	NC
79	AT3	AT5	115	VCCIB1	ТСК
80	AG3	AG5	116	ТСК	TDI
81	AC3	AC5	117	TDI	TMS
82	AV3	AV5	118	TMS	TDO
83	AV4	AV6	119	TDO	TRST
84	AC4	AC6	120	TRST	VJTAG
85	AG4	AG6	121	VJTAG	IO57NDB2V0
86	AT4	AT6	122	IO57NDB1V0	GDC2/IO57PDB2V0
87	ATRTN2	ATRTN3	123	GDC2/IO57PDB1V0	IO56NDB2V0
88	AT5	AT7	124	IO56NDB1V0	GDB2/IO56PDB2V0
89	AG5	AG7	125	GDB2/IO56PDB1V0	IO55NDB2V0
90	AC5	AC7	126	VCCIB1	GDA2/IO55PDB2V0
91	AV5	AV7	127	GND	GDA0/IO54NDB2V0
92	NC	AV8	128	IO55NDB1V0	GDA1/IO54PDB2V0
93	NC	AC8	129	GDA2/IO55PDB1V0	VCCIB2
94	NC	AG8	130	GDA0/IO54NDB1V0	GND
95	NC	AT8	131	GDA1/IO54PDB1V0	VCC
96	NC	ATRTN4	132	GDB0/IO53NDB1V0	GCA0/IO45NDB2V0
97	NC	AT9	133	GDB1/IO53PDB1V0	GCA1/IO45PDB2V0
98	NC	AG9	134	GDC0/IO52NDB1V0	GCB0/IO44NDB2V0
99	NC	AC9	135	GDC1/IO52PDB1V0	GCB1/IO44PDB2V0
100	NC	AV9	136	IO51NSB1V0	GCC0/IO43NDB2V
101	GNDAQ	GNDAQ			0
102	VCC33A	VCC33A	137	VCCIB1	GCC1/IO43PDB2V0
103	ADCGNDREF	ADCGNDREF	138	GND	IO42NDB2V0
104	VAREF	VAREF	139	VCC	IO42PDB2V0
105	PUB	PUB	140	IO50NDB1V0	IO41NDB2V0
106	VCC33A	VCC33A	141	IO50PDB1V0	GCC2/IO41PDB2V0
107	GNDA	GNDA	142	GCA0/IO49NDB1V0	VCCIB2
108	PTEM	PTEM	143	GCA1/IO49PDB1V0	GND
109	PTBASE	PTBASE	144	GCB0/IO48NDB1V0	VCC
110	GNDNVM	GNDNVM	145	GCB1/IO48PDB1V0	IO40NDB2V0
		L]	146	GCC0/IO47NDB1V0	GCB2/IO40PDB2V0

FG256

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/default.aspx.

FG256							
Pin Number	AFS090 Function	AFS250 Function	AFS600 Function	AFS1500 Function			
C7	IO09RSB0V0	IO12RSB0V0	IO06NDB0V0	IO09NDB0V1			
C8	IO14RSB0V0	IO22RSB0V0	IO16PDB1V0	IO23PDB1V0			
C9	IO15RSB0V0	IO23RSB0V0	IO16NDB1V0	IO23NDB1V0			
C10	IO22RSB0V0	IO30RSB0V0	IO25NDB1V1	IO31NDB1V1			
C11	IO20RSB0V0	IO31RSB0V0	IO25PDB1V1	IO31PDB1V1			
C12	VCCIB0	VCCIB0	VCCIB1	VCCIB1			
C13	GBB1/IO28RSB0V0	GBC1/IO35RSB0V0	GBC1/IO26PPB1V1	GBC1/IO40PPB1V2			
C14	VCCIB1	VCCIB1	VCCIB2	VCCIB2			
C15	GND	GND	GND	GND			
C16	VCCIB1	VCCIB1	VCCIB2	VCCIB2			
D1	GFC2/IO50NPB3V0	IO75NDB3V0	IO84NDB4V0	IO124NDB4V0			
D2	GFA2/IO51NDB3V0	GAB2/IO75PDB3V0	GAB2/IO84PDB4V0	GAB2/IO124PDB4V0			
D3	GAC2/IO51PDB3V0	IO76NDB3V0	IO85NDB4V0	IO125NDB4V0			
D4	GAA2/IO52PDB3V0	GAA2/IO76PDB3V0	GAA2/IO85PDB4V0	GAA2/IO125PDB4V0			
D5	GAB2/IO52NDB3V0	GAB0/IO02RSB0V0	GAB0/IO02NPB0V0	GAB0/IO02NPB0V0			
D6	GAC0/IO04RSB0V0	GAC0/IO04RSB0V0	GAC0/IO03NDB0V0	GAC0/IO03NDB0V0			
D7	IO08RSB0V0	IO13RSB0V0	IO06PDB0V0	IO09PDB0V1			
D8	NC	IO20RSB0V0	IO14NDB0V1	IO15NDB0V2			
D9	NC	IO21RSB0V0	IO14PDB0V1	IO15PDB0V2			
D10	IO21RSB0V0	IO28RSB0V0	IO23PDB1V1	IO37PDB1V2			
D11	IO23RSB0V0	GBB0/IO36RSB0V0	GBB0/IO27NDB1V1	GBB0/IO41NDB1V2			
D12	NC	NC	VCCIB1	VCCIB1			
D13	GBA2/IO31PDB1V0	GBA2/IO40PDB1V0	GBA2/IO30PDB2V0	GBA2/IO44PDB2V0			
D14	GBB2/IO31NDB1V0	IO40NDB1V0	IO30NDB2V0	IO44NDB2V0			
D15	GBC2/IO32PDB1V0	GBB2/IO41PDB1V0	GBB2/IO31PDB2V0	GBB2/IO45PDB2V0			
D16	GCA2/IO32NDB1V0	IO41NDB1V0	IO31NDB2V0	IO45NDB2V0			
E1	GND	GND	GND	GND			
E2	GFB0/IO48NPB3V0	IO73NDB3V0	IO81NDB4V0	IO118NDB4V0			
E3	GFB2/IO50PPB3V0	IO73PDB3V0	IO81PDB4V0	IO118PDB4V0			
E4	VCCIB3	VCCIB3	VCCIB4	VCCIB4			
E5	NC	IO74NPB3V0	IO83NPB4V0	IO123NPB4V0			
E6	NC	IO08RSB0V0	IO04NPB0V0	IO05NPB0V1			
E7	GND	GND	GND	GND			
E8	NC	IO18RSB0V0	IO08PDB0V1	IO11PDB0V1			
E9	NC	NC	IO20NDB1V0	IO27NDB1V1			
E10	GND	GND	GND	GND			
E11	IO24RSB0V0	GBB1/IO37RSB0V0	GBB1/IO27PDB1V1	GBB1/IO41PDB1V2			
E12	NC	IO50PPB1V0	IO33PSB2V0	IO48PSB2V0			

FG256						
Pin Number	AFS090 Function	AFS250 Function	AFS600 Function	AFS1500 Function		
R5	AV0	AV0	AV2	AV2		
R6	AT0	AT0	AT2	AT2		
R7	AV1	AV1	AV3	AV3		
R8	AT3	AT3	AT5	AT5		
R9	AV4	AV4	AV6	AV6		
R10	NC	AT5	AT7	AT7		
R11	NC	AV5	AV7	AV7		
R12	NC	NC	AT9	AT9		
R13	NC	NC	AG9	AG9		
R14	NC	NC	AC9	AC9		
R15	PUB	PUB	PUB	PUB		
R16	VCCIB1	VCCIB1	VCCIB2	VCCIB2		
T1	GND	GND	GND	GND		
T2	NCAP	NCAP	NCAP	NCAP		
Т3	VCC33N	VCC33N	VCC33N	VCC33N		
T4	NC	NC	ATRTN0	ATRTN0		
T5	AT1	AT1	AT3	AT3		
Т6	ATRTN0	ATRTN0	ATRTN1	ATRTN1		
Τ7	AT2	AT2	AT4	AT4		
Т8	ATRTN1	ATRTN1	ATRTN2	ATRTN2		
Т9	AT4	AT4	AT6	AT6		
T10	ATRTN2	ATRTN2	ATRTN3	ATRTN3		
T11	NC	NC	AT8	AT8		
T12	NC	NC	ATRTN4	ATRTN4		
T13	GNDA	GNDA	GNDA	GNDA		
T14	VCC33A	VCC33A	VCC33A	VCC33A		
T15	VAREF	VAREF	VAREF	VAREF		
T16	GND	GND	GND	GND		

Revision	Changes	Page					
Advance v1.5 (continued)	This bullet was added to the "Integrated A/D Converter (ADC) and Analog I/O" section: ADC Accuracy is Better than 1%	I					
	In the "Integrated Analog Blocks and Analog I/Os" section, ±4 LSB was changed to 0.72. The following sentence was deleted:	1-4					
	The input range for voltage signals is from -12 V to +12 V with full-scale output values from 0.125 V to 16 V.						
	In addition, 2°C was changed to 3°C:	1					
	"One analog input in each quad can be connected to an external temperature monitor diode and achieves detection accuracy of ±3°C."	1					
	The following sentence was deleted:						
	The input range for voltage signals is from -12 V to $+12$ V with full-scale output values from 0.125 V to 16 V.						
	The title of the datasheet changed from Actel Programmable System Chips to Actel Fusion Mixed Signal FPGAs. In addition, all instances of programmable system chip were changed to mixed signal FPGA.						
Advance v1.4 (July 2008)	In Table 3-8 · Quiescent Supply Current Characteristics (IDDQ)1, footnote references were updated for I_{DC2} and I_{DC3} . Footnote 3 and 4 were updated and footnote 5 is new.	3-11					
Advance v1 3	The "ADC Description" section was significantly updated. Please review carefully	2-102					
(July 2008)							
Advance v1.2	Table 2-25 • Flash Memory Block Timing was significantly updated.						
(May 2008)	The "V _{AREF} Analog Reference Voltage" pin description section was significantly update. Please review it carefully.	2-226					
	Table 2-45 • ADC Interface Timing was significantly updated.						
	Table 2-56 • Direct Analog Input Switch Control Truth Table—AV ($x = 0$), AC ($x = 1$), and AT ($x = 3$) was significantly updated.	2-131					
	The following sentence was deleted from the "Voltage Monitor" section:	2-86					
	The Analog Quad inputs are tolerant up to 12 V + 10%.	l					
	The "180-Pin QFN" figure was updated. D1 to D4 are new and the figure was changed to bottom view. The note below the figure is new.	3-3					
Advance v1.1	The following text was incorrect and therefore deleted:	2-204					
(May 2008)	VCC33A Analog Power Filter	1					
	Analog power pin for the analog power supply low-pass filter. An external 100 pF capacitor should be connected between this pin and ground.	l					
	There is still a description of V _{CC33A} on page 2-224.	L					